JP4193188B2 - Thin composite plate heat pipe - Google Patents

Thin composite plate heat pipe Download PDF

Info

Publication number
JP4193188B2
JP4193188B2 JP08319397A JP8319397A JP4193188B2 JP 4193188 B2 JP4193188 B2 JP 4193188B2 JP 08319397 A JP08319397 A JP 08319397A JP 8319397 A JP8319397 A JP 8319397A JP 4193188 B2 JP4193188 B2 JP 4193188B2
Authority
JP
Japan
Prior art keywords
heat pipe
heat
container
less
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08319397A
Other languages
Japanese (ja)
Other versions
JPH10238973A (en
Inventor
久輝 赤地
Original Assignee
アクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクトロニクス株式会社 filed Critical アクトロニクス株式会社
Priority to JP08319397A priority Critical patent/JP4193188B2/en
Publication of JPH10238973A publication Critical patent/JPH10238973A/en
Application granted granted Critical
Publication of JP4193188B2 publication Critical patent/JP4193188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明はプレートヒートパイプの構造に関するもので、特に小型で接着面積の小さな発熱体の熱量を大型放熱器の大きな接着面積に高感度で且つ効率的に拡散輸送する従来のプレートヒートパイプの機能を全く損なわず且つ如何なる適用姿勢でも熱量輸送性能を保持することを可能ならしめる薄形複合プレートヒートパイプの構造に関する。
【0002】
【従来の技術】
従来の技術におけるプレートヒートパイプでは図6に例示の如くプレートヒートパイプ11にはプレート状密閉コンテナ11−1が内蔵せしめられて構成され、密閉コンテナの両内壁面間はピン群13により相互に連結結合せしめられることにより密閉コンテナ内の作動液の飽和蒸気圧の変化による正負の内圧に耐え得るよう補強されてあり、更に密閉コンテナの両内壁面の夫々にはピン間隙にウイック14が形成されてあり、密閉コンテナ内には高真空に脱気の後に所定の二相凝縮性作動液5の所定の量が封入封止されて構成されてあることが一般的であった。この様なプレートヒートパイプ11は高感度で熱拡散機能を発揮し、その受熱面11−2に装着された小型発熱体6の小面積の接着面からも良好に熱量を吸収し、放熱面11−3に装着された大型ヒートシンク7の広い接着面にも効率よく且つ全面均一に熱量を輸送することを可能ならしめ、ヒートシンク7のフィン群7−1から冷却対流8に良好に熱量を伝達するものであった。プレートヒートパイプが小型の場合は図5に例示のウイック14は省略されることがある。この場合にも機能的な特徴には大差がない。
【0003】
上述のごとく構成されたプレートヒートパイプは図6の如く受熱面を底面として水平に保持した場合は以下の如く作動する。密閉コンテナ11−1の底面のウイック14に充満した二相凝縮性作動液15は小型発熱体6からの熱入力により小型発熱体6の接着面に対応した密閉コンテナ1−1の底面における、小型発熱体6の接着面よりやや広い部分を蒸発部として蒸発する。この際の蒸発の潜熱を吸収した作動液蒸気は作動液蒸気流15−2の矢印の如く蒸発部(高温高蒸気圧部)から総ての低温部(低蒸気圧部)に向かって高速度で移動し、低温部で凝縮の潜熱を放出しながら凝縮して低温部に熱量を供給する。低温部で凝縮液化された凝縮作動液は15−2はピン群を介して密閉コンテナ11−1の底面に移動し、更にウイック14の作用により蒸発部に還流する。この様な作動液の相変化を伴う循環により小型発熱体6による供給熱量は密閉コンテナ11−1内の、受熱部より温度の低い総ての部分に熱量を供給する。この場合受熱部との温度差の大きい部分に向かう作動液蒸気流15−2程流速が早く、即ち温度差の大きい部分程多くの熱量が供給されることになる。従ってこの様なプレートヒートパイプはその総ての部分に熱量を高感度効率的に拡散せしめるとともに表面温度を均一化せしめる特長を備えている。
【0004】
図6に例示の従来技術のプレートヒートパイプは上述の如く作動するから受熱面を底面として水平に保持した場合に最も良好な性能を示し、傾斜角度が大きくなるほど性能が低下する。密閉コンテナ11−1の厚さが4mm前後の如く薄い場合は受熱面を頂面に放熱面を底面とした場合でも比較的良好に作動する。この保持姿勢の場合は放熱面に凝縮作動液15−1が停滞し、受熱面に作動液が不足となり、作動困難になる筈であるが、実際にはピン群13の伝熱により放熱面側に停滞した作動液が沸騰しこれにより、受熱面に作動液が供給されてヒートパイプとしての作動が可能になる。
【0005】
【発明が解決しようとする課題】
上述のごとく従来技術のプレートヒートパイプは熱量を高感度効率的に拡散せしめるとともに表面温度を均一化せしめる優れた特長を有するが、従来技術の円筒ヒートパイプと同様な各種の問題点を有しており、産業界ではその優れた機能を損なうことなくその問題点を解決することが要望されている。即ち本願発明のプレートヒートパイプは従来技術のプレートヒートパイプの優れた特長を維持しつつその大きな問題点である熱輸送性能及び熱拡散性能の保持姿勢依存性を改善することを目的としている。
【0006】
プレートヒートパイプは必ずしも水平保持姿勢またはそれに準ずるような小傾斜角度姿勢のみで使用されるとは限らない。傾斜角度が大きくしかも小型発熱体6の接着位置が放熱部に対し相対的に水位が高い姿勢の場合即ちトップヒートモードでは性能が大幅に低下する。その極端な場合として図7に示してある例ではプレートヒートパイプが垂直に保持され小型発熱体6は最も水位の高い位置に接着されてある。このような保持姿勢の場合には凝縮作動液15−1は密閉コンテナ11−1の低位置に図の如く停滞する。凝縮作動液15−1はウイック14の作用により密閉コンテナ11−1の内壁に沿って上昇するが重力に妨げられて極めて少量のみが小型発熱体6が接着されている位置まで到着するに過ぎない。従って作動液蒸気の発生量も極めて少ないので作動液蒸気流15−2は図示されていない。これは放熱面側のウイック14を通じて行われるべき作動液の還流も極めて少なく、停滞凝縮作動液15−1は殆ど増減が無いことになる。結局作動液の循環量は極めて少ないものとなり、図7に例示の如き保持姿勢におけるこのプレートヒートパイプ放熱性能はピン群13の金属間熱伝導による放熱性能より若干良好な程度となり大幅に低下することになる。
【0007】
ウイック14が省略されたウイックレスのプレートヒートパイプの場合は停滞凝縮作動液15−1からの蒸発部に対する作動液還流は更に困難になりプレートヒートパイプの作動は全く停止する。同様の理由からこのプレートヒートパイプは傾斜角度が少なくても放熱性能は極めて悪化する。このようなプレートヒートパイプの放熱はピン群13による金属間熱伝導による放熱のみとなりヒートパイプとは云い難いような低性能のものとなる。
【0008】
またウイックレス構造のプレートヒートパイプにおいて内蔵する密閉コンテナ11−1の厚さが3mm以下の如く極めて薄い場合は上記の如き熱性能の保持姿勢依存性は更に大きくなる。即ち傾斜により偏在した凝縮作動液15−1はコンテナ内の処々においてコンテナを充填する状態になり、作動液蒸気流の流れが妨害され、作動液蒸気の分布が不均一になりプレートヒートパイプの最大の特長の温度均一化性が失われるに至る。
【0009】
【課題を解決する為の手段】
従来型プレートヒートパイプの熱輸送及び熱拡散性能の保持姿勢依存性の改善手段としては保持姿勢依存性の極めて少ない蛇行細管ヒートパイプとの複合化型とすることによりこの二種類のヒートパイプの機能を相互補完せしめ、保持姿勢依存性を解消せしめる。
【0010】
複合型プレートヒートパイプについて、本発明者は先に特願平8−182588号及び特願平8−224298号を提案し現在実用化に努めつつある。然しこの先特願の複合型プレートヒートパイプは構成も複合化により得られる機能も本願発明とは全く異なるものである。先特願の複合型プレートヒートパイプにおいては薄形プレートの片面に突起成形された蛇行細管ヒートパイプを主体として、その特性を、その突起間隙を従来型の作動液の相変化の潜熱により熱量を輸送する方式のヒートパイプとして構成し、このヒートパイプの機能と突起形成された従来型細管ヒートパイプのプレートヒートパイプの機能とが相互に補完し合って高性能化されるものであった。それに対して本願発明の薄形複合プレートヒートパイプは後述する通り従来型プレートヒートパイプのウイックとして蛇行細管ヒートパイプを適用して複合化せしめて従来型プレートヒートパイプの熱輸送性能を改善するものである。
【0011】
図1は本願発明の薄形複合プレートヒートパイプの基本構造を示す説明図の断面図である。その片側の面はその面積に対して比較的大きな接触面を有するヒートシンク7が装着されて面放熱せしめられるコンテナ放熱面であり、他の片側の面は放熱面より大幅に小さな接触面を有する小型放熱体が装着されて面加熱せしめられるコンテナ受熱面であり、この様な両面を有する中空金属プレートの中空空間がプレート形状の密閉ヒートパイプコンテナ1−1として形成されてある面間熱輸送用の複合プレートヒートパイプ1であって、コンテナ内には外径1.4mm以下の極細金属管で形成された多数ターンの蛇行細管ヒートパイプ2が充填配設されてあり、その蛇行細管ヒートパイプ2はその直管部が相互に平行並列に相互に近接配置せしめられ、且つコンテナ内壁面1−2、1−3に直接または補助ウイック4を介して、接触展開して配設され、コンテナ内壁面1−2、1−3と蛇行細管ヒートパイプ2の表面、蛇行細管の相互近接面等に形成される微小間隙の毛細管作用を有効利用するヒートパイプウイックとして適用されてあり、コンテナ内における蛇行細管ヒートパイプ2の配設の余剰空間の所定の部分には必須構成要素とはしない補助ウイック4が配設され更に高真空度に脱気の後に所定の二相凝縮性作動液5が封入封止されてヒートパイプ化されてあることを特徴としている。この場合補助ウイック4は製作工程上蛇行細管ヒートパイプ2とコンテナ内壁面との間隙、蛇行細管ヒートパイプ2の細管相互間の間隙、等が大きくなり、ウイックとしての機能が低下する恐れある場合にその間隙に充填してウイック機能を補助する為に使用する。従って必須構成要素とはならない。
【0012】
【作用】
このような薄形複合プレートヒートパイプ1において蛇行細管ヒートパイプ2は小型発熱体6から受熱した熱量によりその全表面がほぼ受熱部の温度と同一温度に上昇し、これと接触する作動液5はその全表面から活発に蒸発する。この蒸気は最短の距離を流路としてコンテナ放熱側内壁面1−3に到達して冷却凝縮せしめられる。この場合作動液の蒸発による大量の潜熱がコンテナ受熱側内壁面1−2を介して小型発熱体6から熱量を奪いこれを冷却する。また作動液蒸気の凝縮による大量の潜熱が放出されこの潜熱はコンテナ放熱側内壁面1−3を介してヒートシンク7及びそのフィン群7−1に熱量を伝導し冷却対流8の中に熱量を捨て去る。この様な構成の薄形複合プレートヒートパイプ1はは従来型のプレートヒートパイプに比較して次の如き優れた作用を発揮する。
【0013】
(1)蒸発部面積が拡大されて蒸気発生量が増加し放熱性能が大幅に向上する。図6に例示の従来型のプレートヒートパイプ11の作動液蒸発面積は受熱面11−2における小型放熱器6の接着面積にほぼ等しいコンテナ内壁面積であり、極めて小さな蒸発面である。これに対して本発明の薄形複合プレートヒートパイプ1の蒸発面積はコンテナ内部に接触充填された蛇行細管ヒートパイプ2の全表面積から接触面積を除いた面積であり、従来型のプレートヒートパイプ11に比較して桁違いに広い蒸発面積となる。これは低入力でも多量の蒸気が容易に発生することを意味する。視点を変えれば本発明の薄形複合プレート
ヒートパイプ1の作動感度が極めて敏感になることを意味する。
【0014】
(2)蒸気の移動距離が極めて短くなり、蒸気移動による熱量損失が極めて少ない。
従来型のプレートヒートパイプ11においては図6に例示の如く小型発熱体6に近い蒸発部で発生する蒸気は作動液蒸気流15−2として遠距離を移動して放熱面11−3の低温部のすべての部分に到達して凝縮して液化される。この間の圧力損失を避けるため密閉コンテナ11−1は受熱側と放熱側の両内壁面は図の如く相互間に十分な間隔を必要とし、それでも内壁面のウイック、両内壁面の耐圧補強の為に設けられてあるピン群等の圧力損失による熱損失は避けられない。これに対して図1に例示の本発明の薄形複合プレートヒートパイプ1における作動液蒸気の移動距離は蛇行細管ヒートパイプ2の表面からコンテナ放熱側内壁面1−3に至る距離であり、図示不可能な程の微小距離である
従って蒸気の移動に依る熱損失は無視しても良い程度に少ないものとなる。
【0015】
(3)複合プレートヒートパイプを極めて薄形に構成することを可能にする。
上述の如く蒸気の移動距離が微小距離であるから、従来型のプレートヒートパイプ11の如ごとく蒸気移動の圧力損失増加を防ぐためコンテナ受熱側内壁面1−2とコンテナ放熱側内壁面1−3の間隔を拡大せしめる必要がなく、蛇行細管ヒートパイプ2を挿入して接触充填出来る程度の間隔まで小間隔化出来る。これは本発明の薄形複合プレートヒートパイプ1を飛躍的に薄形化するための必須条件であり、極めて重要な効果である。
【0016】
(4)此の様な本発明の構成は薄形複合プレートヒートパイプの熱輸送及び熱拡
散性能の保持姿勢に対する無依存性を保証する。
通常型プレートヒートパイプは保持姿勢に因って大幅に熱輸送性能及び表面温度均一性が変化する。これはその作動液の相変化サイクルにおける受熱部(蒸発部)に対する作動液の還流(補充)能力が保持姿勢の変化に依存して変化することに因る。これは作動液の還流が重力の補助に依ってなされるその作動原理に起因している。性能の姿勢依存性のもっとも厳しい条件としては蒸発部を上部に保持した垂直姿勢即ちトップヒートモードの場合であり、図7はその状態を示している。図7においては凝縮作動液15−1は還流が極めて困難なことに依り、底部に滞留している。此の場合はウイック14は重力の妨害に依り毛細管としての機能が殆ど失なわれるに至る。即ちヒートパイプとしての作動は殆ど不可能になり、熱量の輸送能力も、温度均一化機能も共に殆ど 失われる。
【0017】
これに対して図1に例示の如く本願発明の薄形複合プレートヒートパイプ1においては蛇行細管ヒートパイプ2がコンテナ内壁面の全面にわたり展開されて接触配設されてあり、蛇行細管ヒートパイプ2はその基本的特性として保持姿勢無依存性であり如何なる姿勢でも良好に作動し、その全表面が蒸発部とほぼ等しい温度になるから、凝縮作動液5を如何なる部分にも滞留せしめること無く、それを完全に蒸発せしめ、その蒸気はコンテナの全内壁面に供給されて凝縮しその潜熱により熱量を放熱側内壁面1−3に伝達せしめる。即ち相変化により熱輸送が行われるプレートヒートパイプと作動液の振動を熱輸送原理とする蛇行細管ヒートパイプ2とが相互に補完しあって、保持姿勢依存性の全く無い優れた機能を薄形複合プレートヒートパイプ1に与える。
【0018】
(5) 蛇行細管ヒートパイプ2とコンテナ1−1内の蛇行細管ヒートパイプ2を配設した余剰空間に作動液を封入したプレートヒートパイプの夫々の作動液の組み合わせにより多様の作動領域の薄形複合プレートヒートパイプ1を構成することが出来る。
純水、純水の組み合わせでは300℃でも適用可能な高温高性能複合プレートヒートパイプを構成することが出来るが50℃では性能が低下し10℃以下では作動困難になる。HCFC−142b、純水の組み合わせは適用温度範囲5℃〜180℃の高感度複合プレートヒートパイプとなり、HFC−134a、HCFC−142bの組み合わせは適用温度範囲−20℃〜100℃の極めて高感度でかつ低温度での適用が可能な複合プレートヒートパイプを提供する。
【0019】
[第一実施例] 図1は本発明の薄形複合プレートヒートパイプ1の第一実施例の説明図であって側面の断面図として示してある。薄形複合プレートヒートパイプ1は幅200mm以下、長さ200mm以下、厚さ3mm以下、コンテナ壁の厚さ0.5mm以下の薄肉薄型の中空金属プレートで構成されてあり、コンテナ内に充填配設される蛇行細管ヒートパイプ2は外形1.4mm以下、内径1.1mm以下、蛇行ターン数40ターン以上に構成され、封入封止される二相凝縮性作動液としては沸点20℃以下、凝固点−60℃以下、臨界温度100℃以上の作動液が適用されてあることを特徴とし、コンテナ内における余剰空間に封入封止される二相凝縮性作動液としては純水作動液が使用されてあり、プレートヒートパイプとしての適用温度はプレート全体の平均温度として100℃以下、5℃以上であることを特徴としている。
【0020】
蛇行細管ヒートパイプ2が如何なる保持姿勢でも良好に作動する必要条件としてはそのターン数が40ターン以上が必要なことは実用化に際しての多数の実験結果で確認されている。実験の結果はでは40ターンではトップヒートモードでも、作動するが僅かな性能低下が認められ、60ターン以上ではトップヒートモードでの性能低下は極めて少なく、80ターン以上ではトップヒートモードにおける性能は極めて良好で完全な保持姿勢無依存性となった。第一実施例の条件である薄形複合プレートヒートパイプ1の外形構造200mm×200mm×3mmでは外形1.4mm、内径1.1mmの細管で125ターンの蛇行細管ヒートパイプ2を形成してこれを内蔵させることが可能である。120mm×120mm×2mmの外形では外径0.8mm、内径0.6mmの細管で120ターンの蛇行細管ヒートパイプ2を形成してこれを内蔵させることが可能である。実験の結果ではこれらは何れも如何なる保持姿勢でも全く性能が悪化しない優れた機能を薄形複合プレートヒートパイプ1に付与することが出来た。またこれらは第一実施例の条件を満足せしめる作動液として蛇行細管ヒートパイプ内にHFC−134aを封入した場合、熱輸送熱量及び熱拡散熱量としてプレート厚さ3mmの前者は500W、プレート厚さ2mmの後者は120Wの熱入力でトップヒートモードでも良好に作動させることが可能であった。
【0021】
本実施例はコンテナ内の作動液としては純水が使用され、蛇行細管ヒートパイプ内には例えばHCFC−134の如き低温用作動液が適用されてある場合は、純水作動液の作動が困難な10℃以下の低温であっても蛇行細管ヒートパイプの補完によって本発明の薄形複合プレートヒートパイプ1は活発に作動する。このような作動温度の相互補完作用も本実施例の有効な作用である。
【0022】
また蛇行細管ヒートパイプは極めて細く形成できることから、薄形複合プレートヒートパイプの厚さを夫々それぞれ3mm以下、2mm以下の如く薄形に構成することを容易ならしめた。またコンテナ内における余剰空間に封入封止される二相凝縮性作動液として純水作動液をが使用することにより、コンテナ内に発生する作動液の飽和蒸気圧は、本実施例における薄形複合プレートヒートパイプ1の適用温度範囲100℃以下においては一気圧を越えることなく、即ち内圧が常に負圧である為コンテナ壁には何等の補強手段を施すことなく、その厚さを0.2mmと薄肉にすることが可能であった。この点も薄形複合プレートヒートパイプの薄形化、及び高感度化に大きく貢献している。また純水作動液は0℃で凍結し、5℃以下では実用上の2相凝縮性作動液としての機能を失うに至る。従って本実施例の薄形複合プレートヒートパイプの適用温度の下限は5℃になり、この状態におけるコンテナ内圧はほぼ−1気圧となる。この負圧に対するコンテナ壁の圧潰の危険は蛇行細管ヒートパイプ2及び補助ウイック4が支柱としての機能を発揮することにより容易に防止することが出来た。この点も薄形複合プレートヒートパイプの薄形化に貢献する。
【0023】
本実施例の実用化に際してはコンテナの構成用金属材料として純銅を適用して極めて良好な結果が得られた。作動液を純水にすることに因りアルミ、ステンレス、鉄等の使用が不可能となるが、純水作動液との適合性の良好な純銅、ニッケル等のメッキまたは薄膜クラッドを施すことに因りこれらの金属材料を適用することが可能になる。
【0024】
[第二実施例] 本発明の薄形複合プレートヒートパイプの構成金属材料がアルミニゥムの如き純水作動液と適合性の悪い金属で構成され純水以外の作動液を適用する必要ある場合、または適用温度範囲が100℃を越える薄形複合プレートヒートパイプを構成する場合は第一実施例とは大幅に異なる構成にする必要がある。即ち密閉コンテナ1−1内における余剰空間に封入封止される二相凝縮性作動液として純水以外の実用的作動液を使用する殆ど全ての場合、及び作動液として純水が用されてあっても適用温度が100℃を越える場合は、コンテナ内の飽和蒸気圧は1気圧を越えることになる。第一実施例の構造はコンテナ内の飽和蒸気圧が負圧であることを前提とする構造であるからその構造は大幅に変更する必要がある。
【0025】
図5はそのような場合に適用されることを前提とした本発明の薄形複合プレートヒートパイプの第二実施例を示す説明図であって側面の断面図として示してある。図5において薄形複合プレートヒートパイプ1は幅200mm以下、長さ200mm以下、厚さ5mm以下、コンテナ壁の厚さ1.0mm以下の薄肉薄形の中空金属プレートで構成されてあり、コンテナ内における受熱側内壁面1−2と放熱側内壁面1−3とは多数のピン群3により連結接続されて、コンテナ内における作動液の飽和蒸気圧の変化による正負の内圧に耐えるよう補強されてあり、コンテナ内に充填配設される蛇行細管ヒートパイプ2はピン群3の間隙に圧入されて充填配設されてあり、蛇行細管ヒートパイプ2は外形1.4mm以下、内径1.1mm以下、蛇行ターン数40ターン以上に構成され、封入封止される二相凝縮性作動液としては沸点−20℃以下、凝固点−60℃以下、臨界温度100℃以上、200℃以下の作動液が適用されてあることを特徴とし、コンテナ内における余剰空間に封入封止される二相凝縮性作動液5としては沸点−20℃以下、凝固点−60℃以下、臨界温度100℃以上200℃以下の作動液が使用されてあり、プレートヒートパイプとしての適用温度はプレート全体の平均温度として200℃以下、−10℃以上であることを特徴としている。
【0026】
本実施例は密閉コンテナ1−1の内圧が1気圧を越える場合、即ち複合プレートヒートパイプ1の適用温度領域の上限が100℃を越える場合の構成であり、適用温度領域の下限が純水の氷点以下である場合の構成である。これは換言すれば密閉コンテナ1−1内における余剰空間に封入封止される二相凝縮性作動液5として純水以外の作動液が適用される場合の構成である。ピン群3により補強された密閉コンテナ1−1はピンの断面積、及び単位面積あたり本数の選択によっては50Kgの内圧にも耐えるよう構成することが出来る。また上述の作動液の必要条件を満足せしめる作動液の例として、密閉コンテナ1−1内における余剰空間に封入封止される二相凝縮性作動液としてHCFC−123、蛇行細管ヒートパイプに封入される二相凝縮性作動液としてHCFC−142bを適用することにより適用温度領域の上限を180℃、下限を−10℃とすることが可能になった。
【0027】
[第三実施例] 図5の複合プレートヒートパイプの耐内圧強度が強化された構造は構成素材を純銅とする場合は純水作動液との適合性が極めて良好であるから、蛇行細管ヒートパイプに封入される二相凝縮性作動液としても、密閉コンテナ1−1内における余剰空間に封入封止される二相凝縮性作動液としても、何れにも純水作動液を適用することが出来る。純水作動液は他の作動液に比較して飽和蒸気圧が低く且つ臨界温度が極めて高いので適用温度領域の上限を充分に高くすることが出来る。しかし低温度における補完作用が少なくなるから下限は若干上昇する。従って適用温度領域の上限を250℃、下限を10℃とする薄形複合プレートヒートパイプを提供することが出来る。
【発明の効果】
プレートヒートパイプと蛇行細管トンネルプレートヒートパイプとの複合化により熱拡散性能が良好で且つ姿勢依存性の極めて少ない薄形複合プレートヒートパイプを提供することが出来るようになった。近来の半導体発熱素子の進歩は極めて大きな熱量を発生する極めて小型な半導体素子が出現しつつある。そのヒートシンクとの接触面は極めて小面積であり、放熱にはプレートヒートパイプを熱拡散手段として適用する以外に適切な手段がなかった。然しこのような小型発熱素子は適用姿勢が各種各様であり従来のプレートヒートパイプでは姿勢依存性が大きく適用出来なかった。本願発明の薄形複合プレートヒートパイプはこのような半導体素子の冷却を如何なる保持姿勢でも可能ならしめて業界の強い要望に応える事が出来るようになった。
【0028】
更に上記のような小型強力な半導体素子の出現により業界ではプレートヒートパイプに対し更なる小形化と薄形化を要望するようになっている。本発明の適用によって、15mm×15mmの如き小面積で120Wの如き大きな発熱量の小型強力な発熱素子を冷却する場合、本願発明を適用することにより僅かに放熱面積100mm×100mm厚さ2mmの如き小形極薄形の薄形複合プレートヒートパイプを構成して冷却することが出来るようになった。
【図面の簡単な説明】
【図1】本願発明の薄形複合プレプレートヒートパイプの基本構造及び第一実施例の断面説明図である。
【図2】本願発明薄形複合プレートヒートパイプ図1の断面の一部拡大図である。
【図3】本願発明薄形複合プレートヒートパイプ図1の直交断面の一部拡大図である。
【図4】本願発明薄形複合プレートヒートパイプの平面略図である。
【図5】本願発明の薄形複合プレプレートヒートパイプの第二実施例、及び第三実施例の断面説明図である。
【図6】従来型構造のプレートヒートパイプの構造を示し、且つ水平姿勢に保持されてある場合の作動状態を示す断面説明図である。
【図7】従来型構造のプレートヒートパイプの構造を示し、且つ垂直姿勢に保持されてある場合の作動状態を示す断面説明図である。
【符号の説明】
1 薄形複合プレートヒートパイプ
1−1 密閉コンテナ
1−2 コンテナ受熱側内壁面
1−3 コンテナ放熱側内壁面
2 蛇行極細管ヒートパイプ
3 ピン群
4 補助ウイック
5 凝縮作動液
6 小型発熱体
7 ヒートシンク
7−1 フィン群
8 冷却対流
11 プレートヒートパイプ
11−1 密閉コンテナ
11−2 受熱面
11−3 放熱面
13 ピン群
14 ウイック
15−1 凝縮作動液
15−2 作動液蒸気流
[0001]
[Industrial application fields]
The present invention relates to the structure of a plate heat pipe, and in particular, the function of a conventional plate heat pipe that diffuses and transports the heat quantity of a small heating element with a small bonding area to a large bonding area of a large radiator with high sensitivity and efficiency. The present invention relates to a structure of a thin composite plate heat pipe that makes it possible to maintain heat transfer performance without any damage and in any application posture.
[0002]
[Prior art]
In the conventional plate heat pipe, as shown in FIG. 6, the plate heat pipe 11 includes a plate-shaped sealed container 11-1, and the inner wall surfaces of the sealed container are connected to each other by a pin group 13. It is reinforced so that it can withstand positive and negative internal pressures due to changes in the saturated vapor pressure of the working fluid in the sealed container by being coupled, and wicks 14 are formed in the pin gaps on both inner wall surfaces of the sealed container. In general, the sealed container is generally configured such that a predetermined amount of the predetermined two-phase condensable hydraulic fluid 5 is sealed and sealed after deaeration to a high vacuum. Such a plate heat pipe 11 exhibits a heat diffusing function with high sensitivity, absorbs heat well from the small-area adhesive surface of the small heating element 6 mounted on the heat receiving surface 11-2, and the heat radiating surface 11 The heat quantity can be efficiently and evenly transported over the wide adhesive surface of the large heat sink 7 attached to -3, and the heat quantity can be transferred from the fin group 7-1 of the heat sink 7 to the cooling convection 8 well. It was a thing. When the plate heat pipe is small, the wick 14 illustrated in FIG. 5 may be omitted. Even in this case, there is not much difference in functional characteristics.
[0003]
The plate heat pipe constructed as described above operates as follows when it is held horizontally with the heat receiving surface as the bottom as shown in FIG. The two-phase condensable hydraulic fluid 15 filled in the wick 14 on the bottom surface of the sealed container 11-1 is small in size on the bottom surface of the sealed container 1-1 corresponding to the bonding surface of the small heat generator 6 by heat input from the small heat generator 6. A part slightly wider than the bonding surface of the heating element 6 is evaporated as an evaporation part. The hydraulic fluid vapor that has absorbed the latent heat of evaporation at this time has a high velocity from the evaporation portion (high-temperature high-vapor pressure portion) toward all low-temperature portions (low-vapor pressure portion) as indicated by arrows in the hydraulic fluid vapor flow 15-2. It is condensed while releasing latent heat of condensation in the low temperature part, and heat is supplied to the low temperature part. Condensed hydraulic fluid condensed in the low temperature part 15-2 moves to the bottom surface of the sealed container 11-1 through the pin group, and further returns to the evaporation part by the action of the wick 14. Due to the circulation accompanied by such a phase change of the hydraulic fluid, the amount of heat supplied by the small heating element 6 is supplied to all portions in the sealed container 11-1 whose temperature is lower than that of the heat receiving portion. In this case, the flow rate of the working fluid vapor flow 15-2 toward the portion having a large temperature difference from the heat receiving portion is faster, that is, a larger amount of heat is supplied to the portion having the larger temperature difference. Accordingly, such a plate heat pipe has the features of diffusing the amount of heat with high sensitivity and efficiency and making the surface temperature uniform in all the portions.
[0004]
Since the plate heat pipe of the prior art illustrated in FIG. 6 operates as described above, it exhibits the best performance when held horizontally with the heat receiving surface as the bottom surface, and the performance decreases as the tilt angle increases. When the thickness of the sealed container 11-1 is as thin as about 4 mm, it operates relatively well even when the heat receiving surface is the top surface and the heat radiating surface is the bottom surface. In this holding posture, the condensed hydraulic fluid 15-1 stagnates on the heat radiating surface, and there is insufficient hydraulic fluid on the heat receiving surface, which makes it difficult to operate. As a result, the working fluid stagnated in the water is boiled, whereby the working fluid is supplied to the heat receiving surface, and the operation as a heat pipe becomes possible.
[0005]
[Problems to be solved by the invention]
As described above, the plate heat pipe of the prior art has excellent features of diffusing the amount of heat with high sensitivity and efficiency and uniforming the surface temperature, but has various problems similar to the conventional cylindrical heat pipe. Therefore, there is a demand in the industry to solve the problem without impairing its excellent function. That is, the plate heat pipe of the present invention aims to improve the holding posture dependency of the heat transport performance and the heat diffusion performance, which are major problems, while maintaining the excellent features of the plate heat pipe of the prior art.
[0006]
The plate heat pipe is not necessarily used only in a horizontal holding posture or a small inclined angle posture corresponding to the horizontal holding posture. When the inclination angle is large and the bonding position of the small heating element 6 is relatively high with respect to the heat radiating portion, that is, in the top heat mode, the performance is significantly lowered. As an extreme case, in the example shown in FIG. 7, the plate heat pipe is held vertically, and the small heating element 6 is bonded to the highest water level. In the case of such a holding posture, the condensed hydraulic fluid 15-1 stagnates at a low position of the sealed container 11-1 as shown in the figure. The condensed hydraulic fluid 15-1 rises along the inner wall of the sealed container 11-1 by the action of the wick 14, but is prevented by gravity and only a very small amount reaches the position where the small heating element 6 is bonded. . Accordingly, since the amount of hydraulic fluid vapor generated is extremely small, the hydraulic fluid vapor flow 15-2 is not shown. This means that there is very little recirculation of the working fluid to be performed through the wick 14 on the heat radiation surface side, and the stagnant condensing working fluid 15-1 has almost no increase or decrease. Eventually, the circulation amount of the hydraulic fluid is extremely small, and the heat dissipation performance of the plate heat pipe in the holding posture as illustrated in FIG. 7 is slightly better than the heat dissipation performance of the pin group 13 due to the heat conduction between the metals. become.
[0007]
In the case of a wickless plate heat pipe in which the wick 14 is omitted, it is more difficult to return the working fluid to the evaporation portion from the stagnation condensing working fluid 15-1, and the operation of the plate heat pipe is completely stopped. For the same reason, the heat dissipation performance of this plate heat pipe is extremely deteriorated even if the inclination angle is small. The heat radiation of such a plate heat pipe is only a heat radiation by heat conduction between metals by the pin group 13, and has a low performance that is difficult to say as a heat pipe.
[0008]
Further, when the thickness of the sealed container 11-1 incorporated in the plate heat pipe having the wickless structure is extremely thin, such as 3 mm or less, the dependency of the thermal performance on the holding posture is further increased. In other words, the condensed hydraulic fluid 15-1 that is unevenly distributed due to the inclination enters a state where the container is filled in the container, the flow of the hydraulic fluid vapor is obstructed, the distribution of the hydraulic fluid vapor becomes uneven, and the maximum of the plate heat pipe The characteristic of temperature uniformity is lost.
[0009]
[Means for solving the problems]
The function of these two types of heat pipes by combining them with a meandering tubule heat pipe with very little holding posture dependency as a means of improving the holding posture dependency of the heat transport and thermal diffusion performance of conventional plate heat pipes Are mutually complemented, and the dependency on the holding posture is resolved.
[0010]
Regarding the composite plate heat pipe, the present inventor previously proposed Japanese Patent Application No. 8-182588 and Japanese Patent Application No. 8-224298, and is currently working on practical application. However, the composite plate heat pipe of this earlier patent application is completely different from the present invention in the structure and the function obtained by the composite. The composite plate heat pipe of the prior patent application mainly consists of a meandering capillary heat pipe with a protrusion formed on one side of a thin plate, and its characteristics are measured by the latent heat of the phase change of the conventional hydraulic fluid. It was configured as a heat pipe for transporting, and the function of this heat pipe and the function of the plate heat pipe of the conventional thin tube heat pipe formed with protrusions complement each other to improve performance. On the other hand, the thin composite plate heat pipe of the present invention improves the heat transport performance of the conventional plate heat pipe by applying a meandering thin tube heat pipe as a wick of the conventional plate heat pipe as will be described later. is there.
[0011]
FIG. 1 is a sectional view of an explanatory view showing a basic structure of a thin composite plate heat pipe of the present invention. The surface on one side is a container heat radiating surface on which a heat sink 7 having a relatively large contact surface with respect to the area is mounted to dissipate the surface, and the surface on the other side is a small size having a contact surface significantly smaller than the heat radiating surface. It is a container heat-receiving surface to which a radiator is attached and is heated by a surface, and the hollow space of the hollow metal plate having such both surfaces is formed as a plate-shaped sealed heat pipe container 1-1 for heat transfer between surfaces. The composite plate heat pipe 1 is filled with a multi-turn meandering capillary heat pipe 2 formed of an ultrafine metal tube having an outer diameter of 1.4 mm or less, and the meandering capillary heat pipe 2 is The straight pipe portions are arranged in close proximity to each other in parallel and parallel to each other, and in contact with the inner wall surfaces 1-2 and 1-3 of the container directly or via the auxiliary wick 4 It is applied as a heat pipe wick that effectively utilizes the capillary action of the minute gaps formed on the inner wall surfaces 1-2, 1-3 of the container and the surface of the meandering capillary heat pipe 2, the mutual proximity surface of the meandering capillary, etc. An auxiliary wick 4 that is not an essential component is disposed in a predetermined portion of the surplus space where the meandering capillary heat pipe 2 is disposed in the container, and a predetermined two-phase condensation is performed after deaeration at a high vacuum level. The characteristic working fluid 5 is sealed and sealed as a heat pipe. In this case, the auxiliary wick 4 increases the gap between the meandering capillary heat pipe 2 and the inner wall surface of the container, the gap between the meandering capillary heat pipes 2 in the production process, and the function as the wick may be reduced. Used to fill the gap and assist the wick function. Therefore, it is not an essential component.
[0012]
[Action]
In such a thin composite plate heat pipe 1, the meandering capillary heat pipe 2 has its entire surface raised to substantially the same temperature as the temperature of the heat receiving portion due to the amount of heat received from the small heating element 6, and the working fluid 5 in contact therewith is It actively evaporates from its entire surface. This steam reaches the container heat radiation side inner wall surface 1-3 with the shortest distance as a flow path and is cooled and condensed. In this case, a large amount of latent heat due to evaporation of the hydraulic fluid takes heat from the small heating element 6 through the container heat receiving side inner wall surface 1-2 and cools it. In addition, a large amount of latent heat due to the condensation of the working fluid vapor is released, and this latent heat conducts heat to the heat sink 7 and its fin group 7-1 through the container heat radiation side inner wall surface 1-3 and discards the heat in the cooling convection 8. . The thin composite plate heat pipe 1 having such a configuration exhibits the following excellent effects as compared with the conventional plate heat pipe.
[0013]
(1) The area of the evaporation part is enlarged, the amount of generated steam is increased, and the heat dissipation performance is greatly improved. The working liquid evaporation area of the conventional plate heat pipe 11 illustrated in FIG. 6 is a container inner wall area approximately equal to the bonding area of the small radiator 6 on the heat receiving surface 11-2, and is an extremely small evaporation surface. On the other hand, the evaporation area of the thin composite plate heat pipe 1 of the present invention is an area obtained by subtracting the contact area from the total surface area of the meandering capillary heat pipe 2 that is contact-filled inside the container. The evaporation area is an order of magnitude larger than This means that a large amount of steam is easily generated even at low input. Changing the viewpoint means that the operation sensitivity of the thin composite plate heat pipe 1 of the present invention becomes extremely sensitive.
[0014]
(2) The moving distance of the steam becomes extremely short, and the heat loss due to the moving steam is extremely small.
In the conventional plate heat pipe 11, as shown in FIG. 6, the steam generated in the evaporation section close to the small heating element 6 travels a long distance as a working liquid vapor flow 15-2 and is a low temperature portion of the heat radiation surface 11-3. It reaches all parts of it and is condensed and liquefied. In order to avoid pressure loss during this period, the sealed container 11-1 requires a sufficient space between the inner wall surfaces on the heat receiving side and the heat radiating side as shown in the figure. The heat loss due to the pressure loss of the pin group or the like provided in the is inevitable. On the other hand, the moving distance of the working fluid vapor in the thin composite plate heat pipe 1 of the present invention illustrated in FIG. 1 is the distance from the surface of the meandering capillary heat pipe 2 to the inner wall surface 1-3 on the heat radiation side of the container. The heat loss due to the movement of steam is so small that it can be ignored.
[0015]
(3) The composite plate heat pipe can be made extremely thin.
As described above, since the moving distance of the steam is very small, the container heat receiving side inner wall surface 1-2 and the container heat radiating side inner wall surface 1-3 are used to prevent an increase in the pressure loss of the steam movement as in the conventional plate heat pipe 11. It is not necessary to increase the interval, and the interval can be reduced to such an extent that the meandering capillary heat pipe 2 can be inserted and contact filled. This is an indispensable condition for dramatically reducing the thickness of the thin composite plate heat pipe 1 of the present invention, and is a very important effect.
[0016]
(4) Such a configuration of the present invention assures the independence of the thin composite plate heat pipe with respect to the holding posture of the heat transport and heat diffusion performance.
The heat transfer performance and surface temperature uniformity of the normal plate heat pipe vary greatly depending on the holding posture. This is due to the fact that the hydraulic fluid recirculation (replenishment) ability with respect to the heat receiving portion (evaporating portion) in the phase change cycle of the hydraulic fluid changes depending on the change in the holding posture. This is due to its working principle in which the working fluid recirculates with the aid of gravity. The most severe condition of the posture dependency of performance is the case of the vertical posture with the evaporation part held at the top, that is, the top heat mode, and FIG. 7 shows this state. In FIG. 7, the condensing hydraulic fluid 15-1 stays at the bottom because it is extremely difficult to reflux. In this case, the function of the wick 14 as a capillary tube is almost lost due to the disturbance of gravity. In other words, operation as a heat pipe is almost impossible, and both the heat transfer capacity and the temperature equalization function are almost lost.
[0017]
On the other hand, as shown in FIG. 1, in the thin composite plate heat pipe 1 of the present invention, a meandering capillary heat pipe 2 is developed and arranged in contact with the entire inner wall surface of the container. As its basic characteristics, it is independent of the holding posture and works well in any posture, and its entire surface is at a temperature almost equal to that of the evaporating part, so that the condensed hydraulic fluid 5 is not retained in any part, The vapor is completely evaporated, and the vapor is supplied to all the inner wall surfaces of the container and condensed, and the amount of heat is transferred to the heat radiation side inner wall surface 1-3 by the latent heat. In other words, the plate heat pipe that transports heat by phase change and the meandering capillary heat pipe 2 that uses vibration of the hydraulic fluid as the heat transport principle complement each other, and has an excellent function that is completely independent of holding posture. Apply to composite plate heat pipe 1.
[0018]
(5) Various working areas are thin by combining the working fluids of the plate heat pipe in which the working fluid is sealed in the surplus space where the meandering capillary heat pipe 2 and the meandering capillary heat pipe 2 in the container 1-1 are disposed. The composite plate heat pipe 1 can be configured.
A combination of pure water and pure water can constitute a high-temperature, high-performance composite plate heat pipe that can be applied even at 300 ° C., but the performance decreases at 50 ° C., and operation at 10 ° C. or less becomes difficult. The combination of HCFC-142b and pure water is a highly sensitive composite plate heat pipe with an application temperature range of 5 ° C to 180 ° C, and the combination of HFC-134a and HCFC-142b is an extremely high sensitivity with an application temperature range of -20 ° C to 100 ° C. A composite plate heat pipe that can be applied at a low temperature is provided.
[0019]
First Embodiment FIG. 1 is an explanatory view of a first embodiment of a thin composite plate heat pipe 1 according to the present invention, and is shown as a side sectional view. The thin composite plate heat pipe 1 is composed of a thin and thin hollow metal plate having a width of 200 mm or less, a length of 200 mm or less, a thickness of 3 mm or less, and a container wall thickness of 0.5 mm or less. The meandering capillary heat pipe 2 is configured to have an outer diameter of 1.4 mm or less, an inner diameter of 1.1 mm or less, and a meandering number of turns of 40 or more. A hydraulic fluid having a critical temperature of 60 ° C. or lower and a critical temperature of 100 ° C. or higher is applied, and a pure water hydraulic fluid is used as a two-phase condensable hydraulic fluid sealed and sealed in an excess space in a container. The application temperature as a plate heat pipe is characterized in that the average temperature of the whole plate is 100 ° C. or lower and 5 ° C. or higher.
[0020]
As a necessary condition for the meandering capillary heat pipe 2 to operate satisfactorily in any holding posture, it has been confirmed by many experimental results in practical use that the number of turns is 40 or more. The result of the experiment is that even with the 40th turn, even in the top heat mode, the operation is observed, but a slight performance degradation is observed, the performance degradation in the top heat mode is extremely small at 60 turns or more, and the performance in the top heat mode is extremely above 80 turns. Good and complete holding posture independence. In the outer structure 200 mm × 200 mm × 3 mm of the thin composite plate heat pipe 1 which is the condition of the first embodiment, a meandering capillary heat pipe 2 of 125 turns is formed by a thin tube having an outer diameter of 1.4 mm and an inner diameter of 1.1 mm. It can be built in. With an external shape of 120 mm × 120 mm × 2 mm, it is possible to form a meandering thin tube heat pipe 2 of 120 turns with a thin tube having an outer diameter of 0.8 mm and an inner diameter of 0.6 mm and incorporate it. As a result of the experiment, it was possible to give the thin composite plate heat pipe 1 an excellent function in which the performance is not deteriorated at all in any holding posture. In addition, when HFC-134a is enclosed in a meandering capillary heat pipe as a working fluid that satisfies the conditions of the first embodiment, the former with a plate thickness of 3 mm is 500 W and the plate thickness is 2 mm as the heat transport heat quantity and heat diffusion heat quantity. The latter was capable of operating well in top heat mode with a heat input of 120W.
[0021]
In this embodiment, pure water is used as the working fluid in the container. When a low temperature working fluid such as HCFC-134 is applied to the meandering capillary heat pipe, it is difficult to operate the pure water working fluid. Even at a low temperature of 10 ° C. or less, the thin composite plate heat pipe 1 of the present invention operates actively by complementing the meandering capillary heat pipe. Such mutual complementing operation temperature is also an effective operation of the present embodiment.
[0022]
In addition, since the meandering capillary heat pipe can be formed very thin, it has been made easy to make the thin composite plate heat pipe thin so that the thickness is 3 mm or less and 2 mm or less, respectively. In addition, by using pure water hydraulic fluid as the two-phase condensable hydraulic fluid sealed and sealed in the surplus space in the container, the saturated vapor pressure of the hydraulic fluid generated in the container is reduced to the thin composite in this embodiment. In the application temperature range of the plate heat pipe 1 of 100 ° C. or less, it does not exceed one atmospheric pressure, that is, the inner pressure is always negative, so that the thickness of the container wall is 0.2 mm without any reinforcing means. It was possible to make it thin. This point also greatly contributes to thinning and high sensitivity of the thin composite plate heat pipe. The pure water working fluid freezes at 0 ° C., and at 5 ° C. or less, the function as a practical two-phase condensable working fluid is lost. Therefore, the lower limit of the application temperature of the thin composite plate heat pipe of this embodiment is 5 ° C., and the container internal pressure in this state is approximately −1 atm. The danger of the container wall being crushed against this negative pressure could be easily prevented by the meandering capillary heat pipe 2 and the auxiliary wick 4 exhibiting the function as a support. This also contributes to the thinning of the thin composite plate heat pipe.
[0023]
When this example was put to practical use, pure copper was applied as the metal material for the container, and very good results were obtained. It is impossible to use aluminum, stainless steel, iron, etc. due to the use of pure water as the hydraulic fluid, but due to the plating or thin film cladding of pure copper, nickel, etc. that have good compatibility with the pure water hydraulic fluid. These metal materials can be applied.
[0024]
[Second Example] The metal material of the thin composite plate heat pipe of the present invention is made of a metal that is not compatible with pure water hydraulic fluid such as aluminum, and it is necessary to apply a hydraulic fluid other than pure water, or When a thin composite plate heat pipe having an application temperature range exceeding 100 ° C. is configured, it is necessary to have a configuration significantly different from that of the first embodiment. That is, in almost all cases where a practical working fluid other than pure water is used as the two-phase condensable working fluid sealed and sealed in the surplus space in the sealed container 1-1, and pure water is used as the working fluid. However, when the application temperature exceeds 100 ° C., the saturated vapor pressure in the container exceeds 1 atm. Since the structure of the first embodiment is based on the premise that the saturated vapor pressure in the container is a negative pressure, the structure needs to be significantly changed.
[0025]
FIG. 5 is an explanatory view showing a second embodiment of the thin composite plate heat pipe of the present invention premised on being applied to such a case, and is shown as a side sectional view. In FIG. 5, the thin composite plate heat pipe 1 is composed of a thin and thin hollow metal plate having a width of 200 mm or less, a length of 200 mm or less, a thickness of 5 mm or less, and a container wall thickness of 1.0 mm or less. The heat receiving side inner wall surface 1-2 and the heat radiating side inner wall surface 1-3 are connected and connected by a large number of pin groups 3, and are reinforced to withstand positive and negative internal pressures due to changes in the saturated vapor pressure of the working fluid in the container. Yes, the meandering capillary heat pipe 2 filled in the container is press-fitted into the gap between the pin groups 3, and the meandering capillary heat pipe 2 has an outer diameter of 1.4 mm or less, an inner diameter of 1.1 mm or less, The two-phase condensable hydraulic fluid having a meandering turn number of 40 or more and encapsulated and sealed has a boiling point of −20 ° C. or lower, a freezing point of −60 ° C. or lower, a critical temperature of 100 ° C. or higher and 200 ° C. or lower. As the two-phase condensable working fluid 5 sealed and sealed in an excess space in the container, the moving fluid is applied. The boiling point is −20 ° C. or lower, the freezing point is −60 ° C. or lower, and the critical temperature is 100 ° C. or higher and 200 ° C. A working fluid having a temperature of not higher than ° C. is used, and the application temperature as a plate heat pipe is 200 ° C. or lower and −10 ° C. or higher as an average temperature of the entire plate.
[0026]
In this embodiment, the internal pressure of the sealed container 1-1 exceeds 1 atm, that is, the upper limit of the application temperature range of the composite plate heat pipe 1 exceeds 100 ° C., and the lower limit of the application temperature range is pure water. This is the configuration when it is below freezing point. In other words, this is a configuration in the case where hydraulic fluid other than pure water is applied as the two-phase condensable hydraulic fluid 5 sealed and sealed in the excess space in the sealed container 1-1. The sealed container 1-1 reinforced by the pin group 3 can be configured to withstand an internal pressure of 50 kg depending on selection of the cross-sectional area of the pins and the number per unit area. In addition, as an example of the working fluid that satisfies the above-described requirements for the working fluid, the two-phase condensable working fluid sealed and sealed in the surplus space in the sealed container 1-1 is sealed in HCFC-123 and a meandering capillary heat pipe. By applying HCFC-142b as the two-phase condensable hydraulic fluid, it became possible to set the upper limit of the application temperature range to 180 ° C. and the lower limit to −10 ° C.
[0027]
[Third embodiment] The structure in which the internal pressure strength of the composite plate heat pipe of Fig. 5 is reinforced is extremely compatible with pure water working fluid when the constituent material is pure copper. As the two-phase condensable hydraulic fluid sealed in the container, the pure water hydraulic fluid can be applied to both the two-phase condensable hydraulic fluid sealed and sealed in the surplus space in the sealed container 1-1. . The pure water hydraulic fluid has a lower saturated vapor pressure and an extremely high critical temperature compared to other hydraulic fluids, so that the upper limit of the application temperature range can be sufficiently increased. However, the lower limit rises slightly because of the less complementary action at low temperatures. Accordingly, it is possible to provide a thin composite plate heat pipe in which the upper limit of the application temperature region is 250 ° C. and the lower limit is 10 ° C.
【The invention's effect】
By combining a plate heat pipe and a meandering narrow tube tunnel plate heat pipe, it has become possible to provide a thin composite plate heat pipe with good thermal diffusion performance and very little posture dependency. Recent advances in semiconductor heating elements have led to the emergence of extremely small semiconductor elements that generate an extremely large amount of heat. The contact surface with the heat sink has an extremely small area, and there was no appropriate means for heat dissipation other than the application of a plate heat pipe as a heat diffusion means. However, such a small heat generating element has various application postures, and the conventional plate heat pipe has a large posture dependency and cannot be applied. The thin composite plate heat pipe of the present invention can respond to the strong demand of the industry by enabling such cooling of the semiconductor element in any holding posture.
[0028]
Furthermore, with the advent of the small and powerful semiconductor elements as described above, the industry demands further downsizing and thinning of the plate heat pipe. In the case of cooling a small and powerful heating element having a large heat generation amount such as 120 W with a small area such as 15 mm × 15 mm by application of the present invention, the heat radiation area of 100 mm × 100 mm thickness 2 mm is slightly applied by applying the present invention. A small ultra-thin thin composite plate heat pipe can be constructed and cooled.
[Brief description of the drawings]
FIG. 1 is a sectional view of a basic structure of a thin composite preplate heat pipe according to the present invention and a first embodiment.
2 is a partially enlarged view of the cross section of FIG. 1 of the present invention thin composite plate heat pipe.
3 is a partially enlarged view of an orthogonal cross section of FIG. 1 of the present invention thin composite plate heat pipe.
FIG. 4 is a schematic plan view of the thin composite plate heat pipe of the present invention.
FIGS. 5A and 5B are cross-sectional explanatory views of a second embodiment and a third embodiment of the thin composite preplate heat pipe of the present invention. FIGS.
FIG. 6 is a cross-sectional explanatory view showing a structure of a plate heat pipe having a conventional structure and showing an operating state when the plate heat pipe is held in a horizontal position.
FIG. 7 is a cross-sectional explanatory view showing a structure of a plate heat pipe having a conventional structure and showing an operating state when the plate heat pipe is held in a vertical posture.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thin composite plate heat pipe 1-1 Sealed container 1-2 Container heat receiving side inner wall surface 1-3 Container heat radiating side inner wall surface 2 Meandering microtubule heat pipe 3 Pin group 4 Auxiliary wick 5 Condensing hydraulic fluid 6 Small heating element 7 Heat sink 7-1 Fin group 8 Cooling convection 11 Plate heat pipe 11-1 Sealed container 11-2 Heat receiving surface 11-3 Heat receiving surface 13 Pin group 14 Wick 15-1 Condensed working fluid 15-2 Working fluid vapor flow

Claims (3)

片側の面は受熱面積に比較して比較的大きな放熱面を有する放熱面であり、
他の片側の面は上記放熱面より大幅に小さな接触面を有する小型発熱体が接着配置されて面受熱せしめられる受熱部と残余の部分が放熱面として適用されることもある部分とからなる受熱面であり、この様な両面を有する中空金属プレートの中空空間がプレート形状の密閉ヒートパイプコンテナとして形成されてある面間熱輸送用のプレートヒートパイプであって、コンテナ内には外径1.4mm以下の極細金属管で形成された多数ターンの蛇行細管ヒートパイプが充填配設されてあり、その蛇行細管ヒートパイプはその直管部が相互に平行並列に相互に近接して配置せしめられ、且つコンテナ内壁面に直接または補助ウイックを介して接触展開して配設され、コンテナ内壁面と蛇行細管表面の近接部、蛇行細管の相互近接面等に形成される微小間隙の毛細管作用を有効利用するヒートパイプウイックとして適用されてあり、コンテナ内における蛇行細管ヒートパイプ配設の余剰空間には、所定の部分に必須構成要素とはしない補助ウイックが配設され更に高真空度に脱気の後に所定の二相凝縮性作動液が封入封止されてヒートパイプ化されてあり、前期薄形複合プレートヒートパイプは幅200mm以下、長さ200mm以下、厚さ5mm以下、コンテナ壁の厚さ1.0mm以下の薄肉薄型の中空金属プレートで構成されてあり、前記コンテナ内における受熱側壁面と放熱側壁面とは多数のピン群により連結接続されて、前記コンテナ内における作動液の飽和蒸気圧の変化による正負の内圧に耐えるよう補強されてあり、前記コンテナ内に充填配設される蛇行細管ヒートパイプはピン群の間隙に圧入されて充填配設されてあり、蛇行細管ヒートパイプは外形1.4mm以下、内径1.1mm以下、蛇行ターン数40ターン以上に構成され、封入封止される二相凝縮性作動液としては沸点−20℃以下、凝固点−60℃以下、臨界温度100℃以上200℃以下の作動液が適用されてあることを特徴とし、コンテナ内における余剰空間内に封入封止される二相凝縮性作動液としては沸点−20℃以下、凝固点−60℃以下、臨界温度100℃以上200℃以下の作動液が使用されてあり、プレートヒートパイプとしての適用温度はプレート全体の平均温度として200℃以下、−10℃以上であることを特徴とする薄形複合プレートヒートパイプ。
One surface is a heat dissipation surface having a relatively large heat dissipation surface compared to the heat receiving area,
The other one surface is a heat receiving portion composed of a heat receiving portion where a small heating element having a contact surface significantly smaller than the heat radiating surface is bonded and arranged to receive the surface, and the remaining portion may be applied as a heat radiating surface. This is a plate heat pipe for inter-surface heat transport in which the hollow space of such a hollow metal plate having both sides is formed as a plate-shaped sealed heat pipe container, and the outer diameter of the plate is 1. A multi-turn meandering capillary heat pipe formed of an ultrafine metal tube of 4 mm or less is filled and arranged, and the meandering capillary heat pipe is arranged so that its straight pipe parts are parallel to each other and close to each other, In addition, it is arranged in contact with the inner wall surface of the container directly or via an auxiliary wick, and is formed in the vicinity of the inner wall surface of the container and the surface of the meandering capillary, the mutual proximity surface of the meandering capillary, etc. It is applied as a heat pipe wick that effectively utilizes the capillary action of a small gap, and an auxiliary wick that is not an essential component is disposed in a predetermined portion in the surplus space of the meandering capillary heat pipe in the container. high predetermined two-phase condensable working fluid after the degree of vacuum degassing is Ri Oh is heat piped to airtightly sealed sealing, year thin type composite plate heat pipe less than the width 200 mm, less the length 200 mm, thickness 5mm Hereinafter, the container wall is formed of a thin and thin hollow metal plate having a thickness of 1.0 mm or less, and the heat receiving side wall surface and the heat radiating side wall surface in the container are connected and connected by a number of pin groups, The meandering capillary heat pipe is reinforced to withstand positive and negative internal pressures due to changes in the saturated vapor pressure of the hydraulic fluid in the container, The two-phase condensing is sealed and sealed with a meandering capillary heat pipe having an outer diameter of 1.4 mm or less, an inner diameter of 1.1 mm or less, and a number of meandering turns of 40 or more. The working fluid has a boiling point of −20 ° C. or lower, a freezing point of −60 ° C. or lower, and a critical temperature of 100 ° C. or higher and 200 ° C. or lower, and is sealed in a surplus space in the container. As the two-phase condensable working fluid, a working fluid having a boiling point of −20 ° C. or lower, a freezing point of −60 ° C. or lower, and a critical temperature of 100 ° C. or higher and 200 ° C. or lower is used. 200 ° C. or less as a, thin composite plate heat pipe, characterized in der Rukoto than -10 ° C..
片側の面は受熱面積に比較して比較的大きな放熱面を有する放熱面であり、
他の片側の面は上記放熱面より大幅に小さな接触面を有する小型発熱体が接着配置されて面受熱せしめられる受熱部と残余の部分が放熱面として適用されることもある部分とからなる受熱面であり、この様な両面を有する中空金属プレートの中空空間がプレート形状の密閉ヒートパイプコンテナとして形成されてある面間熱輸送用のプレートヒートパイプであって、コンテナ内には外径1.4mm以下の極細金属管で形成された多数ターンの蛇行細管ヒートパイプが充填配設されてあり、その蛇行細管ヒートパイプはその直管部が相互に平行並列に相互に近接して配置せしめられ、且つコンテナ内壁面に直接または補助ウイックを介して接触展開して配設され、コンテナ内壁面と蛇行細管表面の近接部、蛇行細管の相互近接面等に形成される微小間隙の毛細管作用を有効利用するヒートパイプウイックとして適用されてあり、コンテナ内における蛇行細管ヒートパイプ配設の余剰空間には、所定の部分に必須構成要素とはしない補助ウイックが配設され更に高真空度に脱気の後に所定の二相凝縮性作動液が封入封止されてヒートパイプ化されてあり、前記薄形複合プレートヒートパイプは幅200mm以下、長さ200mm以下、厚さ5mm以下、前記コンテナ壁の厚さ1.0mm以下の純銅を構成素材とする薄肉薄形の中空金属プレートで構成されてあり、コンテナ内における受熱側壁面と放熱側壁面とは多数のピン群により連結接続されて、前記コンテナ内における作動液の飽和蒸気圧の変化による正負の内圧に耐えるよう補強されてあり、コンテナ内に充填配設される蛇行細管ヒートパイプはピン群の間隙に圧入されて充填配設されてあり、蛇行細管ヒートパイプは外形1.4mm以下、内径1.1mm以下、蛇行ターン数40ターン以上に構成され、細管内に封入封止される二相凝縮性作動液としては純水作動液が適用されてあり、また前記コンテナ内における余剰空間 内に封入封止される二相凝縮性作動液としても純水作動液が適用されてあり、プレートヒートパイプとしての適用温度はプレート全体の平均温度として250℃以下、10℃以上であることを特徴とする薄形複合プレートヒートパイプ。
One surface is a heat dissipation surface having a relatively large heat dissipation surface compared to the heat receiving area,
The other one surface is a heat receiving portion composed of a heat receiving portion where a small heating element having a contact surface significantly smaller than the heat radiating surface is bonded and arranged to receive the surface, and the remaining portion may be applied as a heat radiating surface. This is a plate heat pipe for inter-surface heat transport in which the hollow space of such a hollow metal plate having both sides is formed as a plate-shaped sealed heat pipe container, and the outer diameter of the plate is 1. A multi-turn meandering capillary heat pipe formed of an ultrafine metal tube of 4 mm or less is filled and arranged, and the meandering capillary heat pipe is arranged so that its straight pipe parts are parallel to each other and close to each other, In addition, it is arranged in contact with the inner wall surface of the container directly or via an auxiliary wick, and is formed in the vicinity of the inner wall surface of the container and the surface of the meandering capillary, the mutual proximity surface of the meandering capillary, etc. It is applied as a heat pipe wick that effectively utilizes the capillary action of a small gap, and an auxiliary wick that is not an essential component is disposed in a predetermined portion in the surplus space of the meandering capillary heat pipe in the container. high predetermined two-phase condensable working fluid after the degree of vacuum degassing is Ri Oh is heat piped to airtightly sealed sealing, the thin composite plate heat pipe less than the width 200 mm, less the length 200 mm, thickness 5mm The container wall is composed of a thin and thin hollow metal plate made of pure copper having a thickness of 1.0 mm or less, and the heat receiving side wall surface and the heat radiating side wall surface in the container are connected by a number of pin groups. Connected and reinforced to withstand positive and negative internal pressures due to changes in the saturated vapor pressure of the hydraulic fluid in the container, The heat pipe is press-fitted into the pin group and filled, and the meandering tubule heat pipe has an outer diameter of 1.4 mm or less, an inner diameter of 1.1 mm or less, and a meandering number of turns of 40 or more. Pure water hydraulic fluid is applied as the two-phase condensable hydraulic fluid to be stopped, and pure water hydraulic fluid is also applied as the two-phase condensable hydraulic fluid sealed in the surplus space in the container. Te Yes, the plate application temperature as the heat pipe 250 ° C. or less as the average temperature of the whole plate, thin composite plate heat pipe, characterized in der Rukoto least 10 ° C..
前記薄形複合プレートヒートパイプは幅200mm以下、長さ200mm以下、厚さ3mm以下、前記コンテナ壁の厚さ0.5mm以下の薄肉薄型の中空金属プレートで構成されてあり、前記コンテナ内に充填配設される蛇行細管ヒートパイプは外形1.4mm以下、内径1.1mm以下、蛇行ターン数40ターン以上に構成され、封入封止される二相凝縮性作動液としては沸点20℃以下、凝固点−60℃以下、臨界温度100℃以上の作動液が適用されてあることを特徴とし、前記コンテナ内における余剰空間に封入封止される二相凝縮性作動液としては純水作動液が使用されてあり、プレートヒートパイプとしての適用温度はプレート全体の平均温度として100℃以下、5℃以上であることを特徴とする請求項1または2に記載の薄形複合プレートヒートパイプ。 The thin composite plate heat pipe is composed of a thin and thin hollow metal plate having a width of 200 mm or less, a length of 200 mm or less, a thickness of 3 mm or less, and a thickness of the container wall of 0.5 mm or less. The serpentine capillary heat pipe to be arranged has an outer diameter of 1.4 mm or less, an inner diameter of 1.1 mm or less, and a meandering turn number of 40 or more. A hydraulic fluid having a temperature of −60 ° C. or lower and a critical temperature of 100 ° C. or higher is applied, and a pure water hydraulic fluid is used as the two-phase condensable hydraulic fluid sealed and sealed in the excess space in the container. Te Yes, 100 ° C. or less as the average temperature of the application temperature is entire plate as the plate heat pipe, a thin according to claim 1 or 2, characterized in that at 5 ° C. or higher Composite plate heat pipe.
JP08319397A 1997-02-26 1997-02-26 Thin composite plate heat pipe Expired - Lifetime JP4193188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08319397A JP4193188B2 (en) 1997-02-26 1997-02-26 Thin composite plate heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08319397A JP4193188B2 (en) 1997-02-26 1997-02-26 Thin composite plate heat pipe

Publications (2)

Publication Number Publication Date
JPH10238973A JPH10238973A (en) 1998-09-11
JP4193188B2 true JP4193188B2 (en) 2008-12-10

Family

ID=13795499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08319397A Expired - Lifetime JP4193188B2 (en) 1997-02-26 1997-02-26 Thin composite plate heat pipe

Country Status (1)

Country Link
JP (1) JP4193188B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168575A (en) * 2000-12-05 2002-06-14 Furukawa Electric Co Ltd:The Heat pipe
KR100495699B1 (en) * 2002-10-16 2005-06-16 엘에스전선 주식회사 Flat plate heat transferring apparatus and manufacturing method thereof
KR100633922B1 (en) 2003-11-27 2006-10-16 엘에스전선 주식회사 Flat Plate Heat Transferring Apparatus
CN100352046C (en) * 2004-05-27 2007-11-28 杨洪武 Split integrated heat pipe radiator for heating electronic component
US7677299B2 (en) * 2004-11-10 2010-03-16 Wen-Chun Zheng Nearly isothermal heat pipe heat sink
KR100809587B1 (en) 2007-02-02 2008-03-04 이용덕 Plate heat transfer device
US7832462B2 (en) * 2008-03-31 2010-11-16 Alcatel-Lucent Usa Inc. Thermal energy transfer device
CN102878844A (en) * 2011-07-15 2013-01-16 奇鋐科技股份有限公司 Temperature-uniformizing plate structure and manufacturing method for temperature-uniformizing plate
CN115244353A (en) * 2019-12-24 2022-10-25 全球冷却技术集团有限责任公司 Micro-channel pulsating heat pipe

Also Published As

Publication number Publication date
JPH10238973A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
KR100495699B1 (en) Flat plate heat transferring apparatus and manufacturing method thereof
US4118756A (en) Heat pipe thermal mounting plate for cooling electronic circuit cards
KR950014046B1 (en) Optimized integral heat pipe and electronic circuit module arrangement
JP3651790B2 (en) High density chip mounting equipment
WO2010058520A1 (en) Boiling and cooling device
US6437437B1 (en) Semiconductor package with internal heat spreader
US20120170221A1 (en) Compliant vapor chamber chip packaging
US20130020053A1 (en) Low-profile heat-spreading liquid chamber using boiling
JPH0727999B2 (en) Integrated heat pipe module
TWI801696B (en) Phase change cooling device
US4313492A (en) Micro helix thermo capsule
WO2020215803A1 (en) Heat dissipation apparatus, circuit board, and electronic device
JP4193188B2 (en) Thin composite plate heat pipe
CN110621144A (en) Heat dissipation assembly and electronic equipment
CN109990631A (en) Can Double-side Heating evaporator and plate loop circuit heat pipe based on the evaporator
JP3654323B2 (en) Boiling cooler
JP2009076622A (en) Heat sink and electronic apparatus using the same
KR101260263B1 (en) Heat sink equipped with thin chamber using thick burnt deposits and boiling
CN108917444A (en) A kind of flexible flat heat pipe structure
JPH10220975A (en) Composite plate heat pipe
CN111818756B (en) Heat exchanger with integrated two-phase radiator
CN115151075A (en) Middle frame assembly and electronic equipment
JP3997555B2 (en) Composite plate heat pipe
CN220139999U (en) Radiator
JP2000150749A (en) Heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141003

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term