JP4191848B2 - Elastic fiber with excellent low-temperature covering - Google Patents

Elastic fiber with excellent low-temperature covering Download PDF

Info

Publication number
JP4191848B2
JP4191848B2 JP14856599A JP14856599A JP4191848B2 JP 4191848 B2 JP4191848 B2 JP 4191848B2 JP 14856599 A JP14856599 A JP 14856599A JP 14856599 A JP14856599 A JP 14856599A JP 4191848 B2 JP4191848 B2 JP 4191848B2
Authority
JP
Japan
Prior art keywords
elastic fiber
weight
ptmg
covering
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14856599A
Other languages
Japanese (ja)
Other versions
JP2000336522A (en
Inventor
豊 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP14856599A priority Critical patent/JP4191848B2/en
Publication of JP2000336522A publication Critical patent/JP2000336522A/en
Application granted granted Critical
Publication of JP4191848B2 publication Critical patent/JP4191848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、伸長回復性の優れて改良されたポリウレタンウレア弾性繊維に係り、詳しくは弾性繊維が低温下で加工されるにおいても、逆巻きによる糸切断が低減した弾性繊維チーズ巻体の解舒、弛み糸切れの低減した被覆加工弾性糸のチーズ巻きなどを可能にしたポリウレタンウレア弾性繊維に関するものである。
【0002】
【従来の技術】
弾性繊維は伸長回復性を要求されるレッグ、パンテイ・ストッキング、おむつカバーなどに用いられている。これらの製品では、弾性繊維は通常他の繊維との複合された糸が用いられている。
弾性繊維と他の繊維との複合は、弾性繊維の周りに他の糸を単層に被覆するシングルカバードヤーン(以下、SCYという)、2層で被覆するダブルカバードヤーン、弾性繊維を短繊維で被覆するコアスパンヤーンなどがある。そして、弾性繊維のカバリング乃至被覆加工(以下、カバリング加工という)は、弾性繊維を延伸した状態で被覆し、次いで加工糸たるカバリング糸もしくは被覆糸は一定比率で収縮させられた後にチーズに巻き取れている。これらのカバリング加工は、通常高速で行われており、特に、短時間での伸長回復性に優れた弾性繊維が恒常的に求められている。
【0003】
特開平7−278983号公報には、伸長回復性に優れた弾性繊維を得る目的で、低分子量のポリテトラメチレンエーテルグリコールを用いたり、高分子量部分を除去したポリテトラメチレンエーテルグリコールを用いる弾性繊維糸の製造法が記載されている。特開平1−284518号公報は、テトラヒドロフランの開環重合に際し、ヘキサメチレングリコールを共重合し、側鎖にメチル基をもたせることで弾性繊維に伸長回復性を付与するの技術について開示している。
【0004】
弾性繊維の利用が増加するのにともなって、カバリング加工における弾性繊維のカバリング加工における糸切れの問題がクローズアップされている。特に、寒冷期の朝にカバリング加工が行われる場合の加工の始動期に発生する弾性繊維チーズの逆巻きによる弾性繊維糸の糸切れの多発とカバリング糸のチーズ巻き取り工程でのカバリング糸の弛みの発生によるカバリング糸の糸切れ多発の問題が深刻である。
【0005】
ここで「逆巻き」とは、よく知られているように、弾性繊維糸がチーズから解舒されるとき、チーズの表面からの糸離れが悪くなり糸が逆方向に巻き取られる現象である。一方、弛みによる糸切れは、寒冷期下の加工のスタートアップ期での弾性繊維の短時間内における伸長回復特性の低下に起因する。
汎用のポリウレタン弾性糸の伸長回復速度の温度依存性を観測すると、以下に例示するように、0〜20℃の室温の下でも、伸長後10秒以内の期間中に観測される弾性回復速度が弾性繊維の温度が低温側にシフトするにしたがって劇的に低下することが判明した。
【0006】
例えば、20dの弾性繊維を初期長100mm採取し、これを200mmに伸ばした状態で所定温度下で16時間放置した後に張力を解き、10秒後の長さ(L)を測定し(L−100)(mm)の値(以下、伸長回復率という:数値が小さい程回復速度特性が大きい)を比較すると、20℃で伸長回復率が10mmである数平均分子量1900、多分散度2.4であるポリテトラメチレンエーテルグリコールを、ジオール成分とし4−4’ジフェニルメタンジイソシアネートをソフトセグメントとし、鎖延長剤としてエチレンジアミンを用い、乾式紡糸したポリウレタンウレア弾性繊維は、高分子量PTMG含量が多く、10℃で53.4mm、0℃では81mmと急激に大きくなり、温度の低下とともに伸長回復性が急激に低下する。
【0007】
このように、弾性繊維の伸長回復性は温度の低下によって急激に低下することとの知見から、問題点は以下のように推察される。
寒冷時の夜間気温によって弾性チーズは温度低下をきたし、弾性繊維の伸長回復性は大幅に低下している。また弾性繊維チーズは、カバリング開始時の暖房でチーズ表面の弾性糸は暖まるものの、内部は依然として冷えており、かかる部分がカバリング糸のチーズ巻き取り工程で低収縮となり、瞬く間にたるみを生じ、隣接する突起物に引っかかったり、たるみ部が絡まってガイドに引っかかったり、弛み部が一度にローラに取り込まれカバリング糸を切断してしまう。
【0008】
【発明が解決しようとする課題】
本発明は、弾性繊維のカバリング加工が寒冷期に遭遇する低温の下で行われても、チーズ巻体が解舒時に坂巻を起さず、かつ被覆後に弛み糸切を起こさないで巻上チーズ上に安定して引取ことができるポリウレタンウレア弾性繊維の提供を課題とするものである。
【0009】
本発明の具体的な課題は、弾性繊維の温度低下に伴う、急激な伸長回復性、特に伸長回復速度の低下を改善し、粘着にともなうチーズでの逆巻きが少ないポリウレタンウレア系弾性繊維を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、重量平均分子量/数平均分子量の比である多分散度dが1.3〜2.0、数平均分子量が1600〜2200、繰り返し単位9以下の環状オリゴマー含有量が3重量%以下であるポリテトラメチレンエーテルグリコールをジオール成分として構成されたポリウレタンウレアからなるる低温カバリング性に優れたポリウレタンウレア弾性繊維である。
【0011】
本発明の弾性繊維を構成するポリウレタンウレアは、ポリテトラメチレンエーテルグリコール(以下、PTMGという)と有機ジイソシアネートとのウレタン結合を有するソフトセグメントと、ソフトセグメント両末端のイソシアネートと2官能有機ジアミンとのウレア結合よりなるハードセグメントとからなる。
このハードセグメントは、相互に水素結合を形成し、分子相互結合点、ゴムでいう架橋点を形成して、弾性性能を繊維に発現せしめている。
【0012】
ポリウレタンウレア弾性繊維は、これを形成する重合体のソフトセグメントを構成するPTMGの分子量が大きくなるにつれ伸度が大きくなるものの、伸長時に結晶を形成して、繊維の伸長回復性が阻害される。よって、弾性繊維の伸長回復性を改善するためには、高分子量のPTMGの含有が極力排除されくることが望ましい。一方、PTMGの分子量が小さいと、伸長回復性を向上させる効果が有るものの環状オリゴマーの含有量が増加し、弾性繊維の粘着性が上昇して、粘着によるチーズでの逆巻きによる糸切れが起こり易くなる。
【0013】
寒冷時の低温度下において、カバリング性の良好な弾性繊維を得るためには、用いられるPTMGの重合度が低温伸長時に結晶形成する重合度以下であり、また弾性繊維の粘着性が大きくならない環状オリゴマー含有量が増加しない重合度に設定することが重要であることが判明した。すなわち本発明でポリウレタンウレア重合体の調製に用いられるPTMGは、多分散度dが1.3以上2.0以下であり、数平均分子量が1600〜2200であり、かつ繰り返し単位が9以下の環状オリゴマーが3重量%を超えないものであることが肝要で、好ましくは2重量%以下更に好ましくは0.5重量%以下である。
【0014】
本発明でのPTMGの多分散度dの範囲は1.3〜2.0の範囲が好ましく、2.0以上では、高分子量のPTMGが多くなり、低温時の伸長回復性が低下する。また1.3以下ではPTMGの分離収率が低くなり、経済性を損ねる。同様にPTMGの数平均分子量は1600〜2200の範囲が好ましく、1600以下ではチーズでの逆巻きによる糸切れが大きくなり、2200以上では低温伸長回復性が低下し、低温時のカバリング糸のチーズ巻き取り工程でのたるみが生じやすい。
【0015】
さらにPTMGの環状オリゴマー含有量は少ないほど弾性繊維粘着性は少なくなるが、繰り返し単位9以下の環状オリゴマー含有量が3重量%以下では、逆巻きによる糸切れが少なくなり本発明が所望する効果を達成することができる。
本発明の弾性繊維は、数平均分子量1600〜2200、多分散度1.3〜2.0、繰り返し単位9以下の環状オリゴマー含有量が3重量%を超えないPTMGをジオール成分とし、これに過剰の有機ジイソシアネート、例えば4、4’−ジフェニルメタンジイソシアネートを反応させ両末端イソシアネートプレポリマーを常法によって合成する。ジオールとジイソシアネートのモル比は1.2〜1.8であり、ソフトセグメントの分子量は4000〜6000の範囲に調整できる。環状オリゴマーはジイソシアネートと反応せず、そのままプレポリマーの中に取り込まれる。次いで、両末端イソシアネートプレポリマーと2官能有機ジアミンを適当量の1官能有機アミンの存在下に反応せしめることによってポリウレタンウレアを得る。プレポリマー、ジアミンは溶剤に溶かし、混合する事でポリウレタンウレア紡糸原液とする事ができ、汎用の乾式もしくは湿式紡糸を適用することでポリウレタンウレア弾性繊維を得ることができる。
【0016】
上述のポリウレタンウレア重合体の調製において、用いられるPTMGは、いかなる方法で製造されてものであってもよい。特開昭58−95036公報に開示されているヘテロポリ酸を触媒とし、テトラヒドロフラン(以下、THFという)の開環重合を行う方法、また特開平07ー228685号公報に開示されているフルオロスルホン酸を触媒とし、THFの開環重合後末端基を加水分解する方法などを例示までに挙げることができる。原料として用いられるPTMGは、その重合度および分子量分布の程度を示す多分散度並びに不純物の含有量が前記した本発明の領域の範囲内にある場合には、精製処理を加えないでそのまま使用することができる。原料のPTMGの多分散度が本発明所定の領域ににない場合には、多分散度と分子量とは、次に例示する特開昭50−75697号公報に開示れる方法を適用して所定の範囲に調製される。
【0017】
(1)原料のPTMGをメタノールまたはエタノールに溶かし、これに水を白濁が生ずる量以上加えて、高分子量のPTMGを沈降させ、分離して高分子量部分を除いたPTMGを得る。
(2)しかる後、水をメタノール使用量の1.7倍重量以下またはエタノール使用量の3.0倍重量以下となるよう調整し、充分時間をかけて相分離させた後、下層部分を取り出しアルコールと水を除去して精製PTMGを調製する。
【0018】
本発明のポリウレタンウレア重合体の合成に使用される有機ジイソシアネート化合物は、4、4’−ジフェニルメタンジイソシアネート、2、4−トルエンジイソシアネート、1、4−フェニレンジイソシアネート、4,4’−シクロヘキシルメタンジイソシアネ−ト等が挙げられる。
2官能有機ジアミンとしては、ヒドラジン、エチレンジアミン、1、2−プロピレンジアミン、1、4−ブチルジアミン、1、6−ヘキサメチレンジアミン、1、3−シクロヘキシルジアミン、4、4’ジアミノジフェニルメタン、4、4’−ジアミノジシクロヘキシルメタンがあげられる。これらジアミンのうち、良好な物性を与える好ましいジアミンは、エチレンジアミン、1,2− プロピレンジアミン、1、6−ヘキサメチレンジアミン、またはこれらの混合物である。
【0019】
本発明で用いられる1官能有機アミンとしては、ジエチルアミン、ジメチルアミン、ジブチルアミン、ジエタノールアミンなどを用いることができる。
ポリウレタンウレア重合体の合成に用いられる不活性極性溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどが挙げられる。
【0020】
以上のようにして調製された紡糸原液には、酸化防止剤、紫外線吸収剤、黄変防止剤などが添加される。各種添加剤を混合した紡糸原液はフィルターで異物を除去した後、一定量を送液し、加熱した空気、あるいは不活性ガスなどの気流中に、ノズルを通し押し出す。紡糸原液が押し出され形成されフィラメント(繊維)は、紡口下熱気流で極性溶媒が蒸散して、糸条となった後、仮撚の適用をうけて収束させられた後、油剤が付与され所定の特性を有する弾性繊維が得られる。
【0021】
【実施例】
以下に実施例等に基づいて本発明をより具体的に説明するが、本発明はこれら実施例等により何ら制限を受けるものではない。なお、実施例における測定値は、以下に説明する測定方法による求められたものである。
(1)重量平均分子量、数平均分子量、及びその比である多分散度dの測定:
ゲルパーミッションクロマトグラフィー(GPC)により以下の条件で測定した。PTMG固体を3mLのTHFに溶解し、その溶液1mLをGPCに注入し、測定した。GPC測定条件及び装置概要は以下の通りである。溶媒はTHF、溶媒流速1mL/min、カラム温度40℃でおこなった。装置はシステムコントローラーとしてSCL−6B(島津製)カラムオーブンとしてCTO−6A(島津製)、検出器は示差屈折計RID−6A(島津製)、カラムはTSK−gelG3000HXL×2本(東ソー製)を用いて計測し、データ処理を行って平均分子量、多分散度を算出した。
(2)弾性繊維のカバリング加工時の糸切性評価:
オゼキテクノ(株)製カバリングマシンON−741Sに、20デニールの2フィラメントの弾性繊維を85mmφ、幅50mmの紙管に巻き取とった弾性繊維チーズ、ポリアミド繊維(旭化成工業(株)製、レオナ10d/5f)のチーズを取り付け、16時間10℃に放置した。しかる後15℃に外気温を上げ、5分後に弾性繊維のカバリングを開始する。カバリング条件はドラフト率2.7、撚り数1600T/m、シングルカバーS撚り、Z撚りとする。カバリングされたSCYの巻き取り比率は、カバリング出ロール速度に対し、0.95倍とした。合計10鐘のカバリング機にチーズを仕掛け、カバリング開始後10分間運転させ、逆巻きや弛みなどで糸が切れて、加工機が停止する鐘数を数え停止鐘数が10%を超える弾性繊維を不適当であると判定する。なお、評価試験に使用する弾性繊維は紡糸後1ヵ月放置したものを用いた。
(3)環状オリゴマーの測定:
PTMGを2倍量のクロロホルムで希釈し、ガスクロ{カラム:シリコンSE−30 10重量%/クロモソルブWHP×1m(ガラス)カラム温度295℃}で行った。
【0022】
〔実施例1〕
(ポリウレタンウレア弾性繊維の製造)
PTMG1.0Kg(Mn=2000、d=2.0)をメタノール45Kgに溶かす。つぎに水を1.50Kg添加して充分に攪拌した後、23℃で3時間静置して相分離をさせ、下相の高分子量体部分を相分離して除いた。上相に水を2.50Kg加えて充分に攪拌した後、25℃で20時間放置して、相分離させ下相のPTMG相を回収した。回収した相を脱溶媒し、数平均分子量が2200でd=1.4、環状オリゴマー含有量0.4重量%のPTMGが得られた。
【0023】
得られたPTMG100重量部と4、4’−ジフェニルメタンジイソシアネート8.43重量部とをチッソガス雰囲気中65℃で1時間攪拌しつつ反応させ、末端イソシアネートを有する中間重合体を得た。この重合体を乾燥したジメチルアセトアミドに溶解し、濃度を60重量%とした。ついでエチレンジアミンを、1.51重量部とジエチルアミンを0.31部とを含むジメチルアセトアミド溶液を、激しく攪拌された中間重合体溶液に加え、濃度約35重量%のポリウレタンウレア溶液を得た。この溶液に、酸化防止剤、黄変防止剤、等の添加剤を所定量添加、混合して乾式紡糸原液とした。紡糸原液全体の固形分濃度は、約35%重量とした。
【0024】
この紡糸原液を乾式紡糸機に供給し、800m/分の巻き取り速度で、20デニールの2フィラメント弾性繊維を85mmφ、幅50mmの紙管に450g巻き取った。
(カバリング加工)
カバリング加工機の停止台数は0%であった。カバリング加工時の糸切れ性評価試験を10回繰り返したが、10回ともスタート後10分以内は糸切れが生じなかった。本実施例では、高分子量のPTMG含有量が少ないため結晶化が小さく、低温度での伸長回復性が阻害されなかったと思われる。また環状オリゴマーの含有量も、原料ジオールで0. 4重量%と低く、弾性繊維表面へのブリードが少なく、粘着性が極めて弱くなり逆巻きが起こらなかったと思われる。
【0025】
〔実施例2〕
(ポリウレタンウレア弾性繊維の製造)
PTMG1.0Kg(Mn=1300、d=2.0)をメタノール40Kgに溶かし、実施例1と同様の操作で分離操作を行い、数平均重合度1600、多分散度1.5、環状オリゴマー含有量0.5重量%のPTMGを得た。
【0026】
得られたPTMG100部と4、4’−ジフェニルメタンジイソシアネート22.68部とを窒素ガス雰囲気中65℃で1時間攪拌しつつ反応させ、末端イソシアネートを有する中間重合体を得た。この重合体を乾燥したジメチルアセトアミドに溶解し、濃度を60重量%とした。ついでエチレンジアミンを、1.56部とジエチルアミンを0.344部とを含むジメチルアセトアミド溶液を、激しく攪拌された中間重合体溶液に加え、濃度約35重量%のポリウレタンウレア溶液を得、実施例1と同様に添加剤を加え、乾式紡糸を行い所定量を紙管に巻き取った。
(カバリング加工)
カバリング加工時の糸切れ評価試験を10回繰返して行った。何れの試験においてもスタート後10分間の糸切れは0であった。
【0027】
〔比較例1〕
(ポリウレタンウレア弾性繊維の製造)
PTMG1.0Kg(Mn=2000、d=2.5)をメタノール45Kgに溶した。次に、水を1.20Kg添加して充分に攪拌した後、23℃で3時間静置して相分離させ、下相の高分子量体部分を相分離して除いた。上相に水を2.20Kg加えて充分に攪拌した後、25℃で20時間放置して、相分離させ下相のPTMG相を回収した。回収した相を脱溶媒し、数平均分子量が2400でd=2.3、環状オリゴマー含有量0.3重量%のPTMGが得られた。
【0028】
得られたPTMG100部と4、4’−ジフェニルメタンジイソシアネート16.89部とをチッソガス雰囲気中65℃で1時間攪拌しつつ反応させ、末端イソシアネートを有する中間重合体を得た。この重合体を乾燥したジメチルアセトアミドに溶解し、濃度を60%とした。ついでエチレンジアミンを、1.38部とジエチルアミンを0.312部とを含むジメチルアセトアミド溶液を、激しく攪拌された中間重合体溶液に加え、濃度約32重量%のポリウレタンウレア溶液を得た。この溶液に、酸化防止剤、黄変防止剤、等の添加剤を所定量添加、混合して乾式紡糸原液とした。紡糸原液全体の固形分濃度は、約32%とした。この紡糸原液を実施例1と同様に乾式紡糸を適用して、ポリウレタン弾性糸巻体を得た。
(カバリング加工)
このポリウレタン弾性糸巻体を用いて、カバリング加工時の糸切れ評価試験を10回繰返し行った。加工開始後、10分間での糸切れ率は40%と高かった。10回の試験のうち、カバリング糸の弛みによる糸切れは40%であった。
【0029】
〔比較例2〕
(ポリウレタンウレア弾性繊維の製造)
PTMG1.0Kg(Mn=1300、d=2.0)をメタノール37Kgに溶かす。つぎに水を1.55Kg添加して充分に攪拌した後、23℃で3時間静置して相分離をさせ、下相の高分子量体部分を相分離して除いた。上相に水を2.60Kg加えて充分に攪拌した後、25℃で20時間放置して、相分離させ下相のPTMG相を回収した。回収した相を脱溶媒し、数平均分子量が1500でd=1.8、オリゴマー含有量2.5重量%のPTMGが得られた。
【0030】
得られたPTMG100重量部と4、4’−ジフェニルメタンジイソシアネート24.19部とをチッソガス雰囲気中65℃で1時間攪拌しつつ反応させ、末端イソシアネートを有する中間重合体を得た。この重合体を乾燥したジメチルアセトアミドに溶解し、濃度を60重量%とした。ついでエチレンジアミンを、1.59重量部とジエチルアミンを0.324重量部とを含むジメチルアセトアミド溶液を、激しく攪拌された中間重合体溶液に加え、濃度約35重量%のポリウレタンウレア溶液を得た。この溶液に、酸化防止剤、黄変防止剤、等の添加剤を所定量添加混合して乾式紡糸原液とした。紡糸原液全体の固形分濃度は、約32重量%とした。この紡糸原液を実施例1と同様に乾式紡糸機して、弾性繊維糸巻体を得た。
(カバリング加工)
この弾性繊維糸を用いて、カバリング加工の糸切れ評価試験を行った。10回の試験のうち繊維の粘着性増加で生じた逆巻きによる糸切れ率は60%と高かった。
【0031】
〔比較例3〕
(ポリウレタンウレア弾性繊維の製造)
配位水数3.3のリンタングステン酸を用いて、0.3重量%の水分を含むTHFの開環連続重合を60℃で行った。重合槽より流出する上相液に等量の水を加え攪拌後静置し、上相液を分離し、蒸留によって未反応THFと残存水を、除去した。得られたPTMGは(Mn=1830、d=1.6)で、成分分析の結果、オリゴマー含有量3.7重量%であった。
【0032】
このPTMGを用い実施例1と同様の方法で、重合させた。重合反応における各種反応薬剤比は、MDI21.2重量部、EDA1.66重量部、DEA0.328重量部とした。得られたポリウレタンウレアを実施例1と同様の方法で紡糸し、弾性繊維を得た。
(カバリング加工)
この繊維のカバリング加工時の糸切れ評価試験を行った。試験を繰返した結果、スタート後10分以内で発生した糸切れは40%で、そのうち繊維の粘着による逆巻きによるものが30%、伸度回復性の低下によるものが10%であった。10分間での糸切れは40%であった。
【0033】
【発明の効果】
本発明のポリウレタンウレア弾性繊維は、冬季の寒冷室温の下においても、伸長回復性、特に伸長回復速度が著しく改善され、繊維の粘着性が軽減されており、解舒性の改善された弾性繊維糸の巻体がえられる。本発明のポリウレタンウレア弾性繊維を用いることによって、冬季の冷えきったカバリング加工工場におけるカバリング加工始動期のチーズの逆巻きによる弾性繊維糸の切断や被覆糸の弛みの発生によりカバリング糸の切断を低減することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyurethane urea elastic fiber that is excellent in stretch recovery and improved. Specifically, even when the elastic fiber is processed at a low temperature, the elastic fiber cheese wound body with reduced yarn cutting by reverse winding, The present invention relates to a polyurethane urea elastic fiber that enables cheese-wrapping of a coated elastic yarn with reduced loose yarn breakage.
[0002]
[Prior art]
Elastic fibers are used for legs, pantyhose, stockings, diaper covers, etc. that require stretch recovery. In these products, elastic fibers are usually used in combination with other fibers.
A composite of elastic fibers and other fibers is composed of a single covered yarn (hereinafter referred to as SCY) in which other yarns are covered in a single layer around the elastic fibers, a double covered yarn in which two layers are covered, and elastic fibers are short fibers. There are core spun yarns to coat. The elastic fiber is covered or covered (hereinafter referred to as covering process) by covering the elastic fiber in a stretched state, and then the covered yarn or coated yarn as the processed yarn is contracted at a certain ratio and wound around the cheese. ing. These covering processes are usually performed at high speed, and in particular, there is a constant demand for elastic fibers that are particularly excellent in stretch recovery in a short time.
[0003]
Japanese Patent Application Laid-Open No. 7-289883 discloses an elastic fiber using a low molecular weight polytetramethylene ether glycol or a polytetramethylene ether glycol from which a high molecular weight portion is removed for the purpose of obtaining an elastic fiber excellent in stretch recovery. A method for producing yarn is described. JP-A-1-284518 discloses a technique for imparting stretch recovery to an elastic fiber by copolymerizing hexamethylene glycol and providing a side chain with a methyl group in the ring-opening polymerization of tetrahydrofuran.
[0004]
As the use of elastic fibers increases, the problem of thread breakage in the covering process of elastic fibers in the covering process has been highlighted. In particular, when the covering process is performed in the morning of the cold season, the occurrence of thread breakage of the elastic fiber yarn due to the reverse winding of the elastic fiber cheese that occurs during the start of the processing and the loosening of the covering thread in the cheese winding process of the covering thread The problem of frequent breakage of covering yarn due to occurrence is serious.
[0005]
Here, as is well known, “reverse winding” is a phenomenon in which when the elastic fiber yarn is unwound from the cheese, the yarn is separated from the surface of the cheese and the yarn is wound in the reverse direction. On the other hand, yarn breakage due to loosening is caused by a decrease in elongation recovery characteristics of elastic fibers in a short time in the start-up period of processing under a cold period.
Observing the temperature dependence of the elongation recovery rate of a general-purpose polyurethane elastic yarn, as exemplified below, the elastic recovery rate observed during a period of 10 seconds or less even at room temperature of 0 to 20 ° C. It was found that the temperature of the elastic fiber decreased dramatically as the temperature shifted to the lower temperature side.
[0006]
For example, an elastic fiber of 20d is sampled with an initial length of 100 mm, and is stretched to 200 mm and left at a predetermined temperature for 16 hours, then the tension is released and the length (L) after 10 seconds is measured (L-100 ) (Mm) (hereinafter referred to as elongation recovery rate: the smaller the numerical value, the higher the recovery rate characteristic), the number average molecular weight is 1900, the elongation recovery rate is 10 mm at 20 ° C., and the polydispersity is 2.4. A polyurethane urea elastic fiber obtained by dry spinning using a polytetramethylene ether glycol as a diol component and 4-4′diphenylmethane diisocyanate as a soft segment and ethylenediamine as a chain extender has a high high molecular weight PTMG content. At 4 mm and 0 ° C., it suddenly increases to 81 mm, and the elongation recovery property decreases rapidly as the temperature decreases.
[0007]
Thus, the problem is inferred from the knowledge that the stretch recovery property of the elastic fiber is abruptly lowered as the temperature is lowered.
Elastic cheese has a temperature drop due to the cold nighttime air temperature, and the stretch recovery of elastic fibers is greatly reduced. In addition, the elastic fiber cheese is heated at the start of covering, but the elastic yarn on the cheese surface is warmed, but the inside is still cold, and this part becomes low shrinkage in the cheese winding process of the covering yarn, causing slack in an instant, The hook is caught by an adjacent protrusion, the slack portion is tangled and caught by the guide, or the slack portion is taken into the roller at a time and the covering yarn is cut.
[0008]
[Problems to be solved by the invention]
Even if the covering process of elastic fibers is carried out under a low temperature encountered in the cold season, the cheese roll does not cause sakamaki when unwinding, and does not cause loosening after cutting, An object of the present invention is to provide a polyurethane urea elastic fiber that can be stably taken up.
[0009]
A specific problem of the present invention is to provide a polyurethane urea-based elastic fiber that improves a rapid elongation recovery property, particularly a decrease in the elongation recovery rate accompanying a temperature decrease of the elastic fiber, and has less reverse winding with cheese accompanying adhesion. There is.
[0010]
[Means for Solving the Problems]
In the present invention, the polydispersity d, which is the ratio of weight average molecular weight / number average molecular weight, is 1.3 to 2.0, the number average molecular weight is 1600 to 2200, and the cyclic oligomer content of 9 or less repeating units is 3% by weight or less. It is a polyurethane urea elastic fiber excellent in low temperature covering property which consists of a polyurethane urea comprised by using polytetramethylene ether glycol which is a diol component.
[0011]
The polyurethane urea constituting the elastic fiber of the present invention is a urea of a soft segment having a urethane bond between polytetramethylene ether glycol (hereinafter referred to as PTMG) and an organic diisocyanate, an isocyanate at both ends of the soft segment and a bifunctional organic diamine. It consists of hard segments consisting of bonds.
This hard segment forms a hydrogen bond with each other, forms a molecular mutual bond point, and a cross-linking point called rubber, and exhibits elastic performance in the fiber.
[0012]
Polyurethane urea elastic fibers increase in elongation as the molecular weight of PTMG constituting the soft segment of the polymer forming the polyurethane urea fibers increases, but form crystals at the time of elongation, and the elongation recovery property of the fibers is hindered. Therefore, in order to improve the stretch recovery property of the elastic fiber, it is desirable to eliminate the inclusion of high molecular weight PTMG as much as possible. On the other hand, when the molecular weight of PTMG is small, the content of the cyclic oligomer increases although the effect of improving the elongation recovery property is increased, the adhesiveness of the elastic fiber is increased, and the yarn breakage due to the reverse winding in the cheese due to the adhesion is likely to occur. Become.
[0013]
In order to obtain elastic fibers with good covering properties at low temperatures during cold, the degree of polymerization of the PTMG used is less than the degree of polymerization that forms crystals when stretched at low temperatures, and the elastic fibers do not increase in tackiness It has been found that it is important to set the degree of polymerization so that the oligomer content does not increase. That is, PTMG used for the preparation of the polyurethaneurea polymer in the present invention has a polydispersity d of 1.3 or more and 2.0 or less, a number average molecular weight of 1600 to 2200, and a cyclic unit of 9 or less. It is important that the oligomer does not exceed 3% by weight, preferably 2% by weight or less, more preferably 0.5% by weight or less.
[0014]
The range of polydispersity d of PTMG in the present invention is preferably in the range of 1.3 to 2.0. If the polydispersity d is 2.0 or more, high molecular weight PTMG is increased, and elongation recovery at low temperatures is lowered. On the other hand, if it is 1.3 or less, the separation yield of PTMG becomes low and the economic efficiency is impaired. Similarly, the number average molecular weight of PTMG is preferably in the range of 1600 to 2200, and if it is 1600 or less, yarn breakage due to reverse winding with cheese becomes large, and if it is 2200 or more, the low-temperature elongation recovery property decreases, and the covering yarn at the low temperature is wound on the cheese. Slack in the process is likely to occur.
[0015]
Further, the smaller the PTMG cyclic oligomer content, the less the elastic fiber tackiness. However, when the cyclic oligomer content of the repeating unit 9 or less is 3% by weight or less, yarn breakage due to reverse winding is reduced and the desired effect of the present invention is achieved. can do.
The elastic fiber of the present invention contains PTMG having a number average molecular weight of 1600 to 2200, a polydispersity of 1.3 to 2.0, and a cyclic oligomer content of 9 or less repeating units of less than 3% by weight as a diol component. An organic diisocyanate such as 4,4′-diphenylmethane diisocyanate is reacted to synthesize an isocyanate prepolymer at both ends by a conventional method. The molar ratio of diol to diisocyanate is 1.2 to 1.8, and the molecular weight of the soft segment can be adjusted in the range of 4000 to 6000. The cyclic oligomer does not react with the diisocyanate and is directly incorporated into the prepolymer. Next, a polyurethane urea is obtained by reacting both terminal isocyanate prepolymers with a bifunctional organic diamine in the presence of an appropriate amount of a monofunctional organic amine. The prepolymer and diamine can be dissolved in a solvent and mixed to form a polyurethane urea spinning stock solution, and a polyurethane urea elastic fiber can be obtained by applying general-purpose dry or wet spinning.
[0016]
In the preparation of the above-described polyurethane urea polymer, PTMG used may be produced by any method. A method of ring-opening polymerization of tetrahydrofuran (hereinafter referred to as THF) using a heteropolyacid disclosed in JP-A-58-95036 as a catalyst, and fluorosulfonic acid disclosed in JP-A-07-228865 are also disclosed. A method of hydrolyzing a terminal group after ring-opening polymerization of THF as a catalyst can be mentioned as an example. PTMG used as a raw material is used as it is without adding a purification treatment when the degree of polymerization and the polydispersity indicating the degree of molecular weight distribution and the content of impurities are within the above-mentioned range of the present invention. be able to. When the polydispersity of the raw material PTMG is not within the predetermined range of the present invention, the polydispersity and the molecular weight are determined by applying the method disclosed in JP-A-50-75697 exemplified below. Prepared to range.
[0017]
(1) Dissolve PTMG as a raw material in methanol or ethanol, add water in an amount that causes white turbidity or more to precipitate high molecular weight PTMG, separate it, and obtain PTMG from which the high molecular weight portion has been removed.
(2) After that, water is adjusted to 1.7 times the weight of methanol or 3.0 times the weight of ethanol, and after phase separation for a sufficient amount of time, the lower layer part is taken out. Prepare purified PTMG by removing alcohol and water.
[0018]
The organic diisocyanate compound used for the synthesis of the polyurethane urea polymer of the present invention is 4,4′-diphenylmethane diisocyanate, 2,4-toluene diisocyanate, 1,4-phenylene diisocyanate, 4,4′-cyclohexylmethane diisocyanate. -G and the like.
Examples of the bifunctional organic diamine include hydrazine, ethylenediamine, 1,2-propylenediamine, 1,4-butyldiamine, 1,6-hexamethylenediamine, 1,3-cyclohexyldiamine, 4,4′diaminodiphenylmethane, 4,4. And '-diaminodicyclohexylmethane. Among these diamines, preferred diamines that give good physical properties are ethylenediamine, 1,2-propylenediamine, 1,6-hexamethylenediamine, or a mixture thereof.
[0019]
As the monofunctional organic amine used in the present invention, diethylamine, dimethylamine, dibutylamine, diethanolamine and the like can be used.
Examples of the inert polar solvent used for the synthesis of the polyurethaneurea polymer include dimethylformamide, dimethylacetamide, and dimethylsulfoxide.
[0020]
Antioxidants, ultraviolet absorbers, yellowing inhibitors and the like are added to the spinning dope prepared as described above. The spinning solution mixed with various additives removes foreign matters with a filter, and then sends a fixed amount, and pushes it through a nozzle in heated air or an air stream such as an inert gas. The spinning stock solution is extruded and formed into filaments (fibers). After the polar solvent evaporates in the hot air stream under the spinning nozzle to form yarns, they are converged by application of false twisting, and then an oil agent is applied. An elastic fiber having predetermined characteristics is obtained.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically based on examples and the like, but the present invention is not limited by these examples and the like. In addition, the measured value in an Example is calculated | required by the measuring method demonstrated below.
(1) Measurement of polydispersity d which is a weight average molecular weight, a number average molecular weight, and a ratio thereof:
The measurement was performed by gel permeation chromatography (GPC) under the following conditions. The PTMG solid was dissolved in 3 mL of THF, and 1 mL of the solution was injected into GPC and measured. The GPC measurement conditions and the outline of the apparatus are as follows. The solvent was THF, the solvent flow rate was 1 mL / min, and the column temperature was 40 ° C. The system is SCL-6B (manufactured by Shimadzu) as a system controller, CTO-6A (manufactured by Shimadzu) as a column oven, the detector is a differential refractometer RID-6A (manufactured by Shimadzu), and the column is TSK-gelG3000HXL x 2 (manufactured by Tosoh). The average molecular weight and polydispersity were calculated by data processing.
(2) Evaluation of thread trimming during covering process of elastic fiber:
Elastic fiber cheese, polyamide fiber (manufactured by Asahi Kasei Kogyo Co., Ltd., Leona 10d /) 5f) cheese was attached and left at 10 ° C. for 16 hours. Thereafter, the outside air temperature is increased to 15 ° C., and covering of the elastic fiber is started after 5 minutes. The covering conditions are a draft rate of 2.7, a twist number of 1600 T / m, a single cover S twist, and a Z twist. The winding ratio of the covered SCY was 0.95 times the covering roll speed. Put a total of 10 bells on the covering machine and let the cheese run for 10 minutes after the start of covering. Count the number of bells that the processing machine stops when the yarn breaks due to reverse winding or loosening. Judge that it is appropriate. The elastic fiber used in the evaluation test was left for one month after spinning.
(3) Measurement of cyclic oligomer:
PTMG was diluted with twice the amount of chloroform and gas chromatography {column: silicon SE-30 10% by weight / chromosolve WHP × 1 m (glass) column temperature 295 ° C.} was performed.
[0022]
[Example 1]
(Manufacture of polyurethane urea elastic fiber)
PTMG1.0Kg (Mn = 2000, d = 2.0) is dissolved in methanol 45Kg. Next, 1.50 Kg of water was added and stirred sufficiently, and then allowed to stand at 23 ° C. for 3 hours for phase separation, and the lower molecular weight portion was phase-separated and removed. After 2.50 kg of water was added to the upper phase and sufficiently stirred, the mixture was allowed to stand at 25 ° C. for 20 hours for phase separation to recover the lower PTMG phase. The recovered phase was desolvated to obtain PTMG having a number average molecular weight of 2200, d = 1.4, and a cyclic oligomer content of 0.4% by weight.
[0023]
100 parts by weight of the obtained PTMG and 8.43 parts by weight of 4,4′-diphenylmethane diisocyanate were reacted in a nitrogen gas atmosphere while stirring at 65 ° C. for 1 hour to obtain an intermediate polymer having a terminal isocyanate. This polymer was dissolved in dried dimethylacetamide to a concentration of 60% by weight. Next, a dimethylacetamide solution containing 1.51 parts by weight of ethylenediamine and 0.31 parts of diethylamine was added to the vigorously stirred intermediate polymer solution to obtain a polyurethane urea solution having a concentration of about 35% by weight. To this solution, a predetermined amount of additives such as an antioxidant and an anti-yellowing agent were added and mixed to obtain a dry spinning dope. The solid content concentration of the entire spinning dope was about 35% by weight.
[0024]
This spinning stock solution was supplied to a dry spinning machine, and 450 g of 20 denier 2-filament elastic fiber was wound on a paper tube having a diameter of 85 mm and a width of 50 mm at a winding speed of 800 m / min.
(Covering process)
The number of covering machines stopped was 0%. The thread breakage evaluation test at the time of covering was repeated 10 times, but no thread breakage occurred within 10 minutes after starting. In this example, since the high-molecular-weight PTMG content is small, crystallization is small, and it seems that elongation recovery at low temperatures was not inhibited. The cyclic oligomer content was as low as 0.4% by weight with the raw material diol, and there was little bleeding on the surface of the elastic fiber, the tackiness was extremely weak, and reverse winding did not occur.
[0025]
[Example 2]
(Manufacture of polyurethane urea elastic fiber)
PTMG1.0Kg (Mn = 1300, d = 2.0) was dissolved in 40Kg of methanol, and the separation operation was performed in the same manner as in Example 1. The number average degree of polymerization was 1600, the polydispersity was 1.5, and the cyclic oligomer content was 0.5 wt% PTMG was obtained.
[0026]
The obtained PTMG (100 parts) and 4,4′-diphenylmethane diisocyanate (22.68 parts) were reacted with stirring in a nitrogen gas atmosphere at 65 ° C. for 1 hour to obtain an intermediate polymer having a terminal isocyanate. This polymer was dissolved in dried dimethylacetamide to a concentration of 60% by weight. Next, a dimethylacetamide solution containing 1.56 parts of ethylenediamine and 0.344 parts of diethylamine was added to the vigorously stirred intermediate polymer solution to obtain a polyurethane urea solution having a concentration of about 35% by weight. Similarly, an additive was added, dry spinning was performed, and a predetermined amount was wound around a paper tube.
(Covering process)
The yarn breakage evaluation test during covering processing was repeated 10 times. In any test, the yarn breakage for 10 minutes after the start was zero.
[0027]
[Comparative Example 1]
(Manufacture of polyurethane urea elastic fiber)
PTMG 1.0 kg (Mn = 2000, d = 2.5) was dissolved in methanol 45 kg. Next, after adding 1.20 kg of water and stirring sufficiently, the mixture was allowed to stand at 23 ° C. for 3 hours for phase separation, and the lower molecular weight portion was phase separated and removed. After adding 2.20 kg of water to the upper phase and stirring sufficiently, the mixture was allowed to stand at 25 ° C. for 20 hours to separate the phases and recover the lower PTMG phase. The recovered phase was desolvated to obtain PTMG having a number average molecular weight of 2400, d = 2.3, and a cyclic oligomer content of 0.3% by weight.
[0028]
The obtained PTMG (100 parts) and 4,4′-diphenylmethane diisocyanate (16.89 parts) were reacted with stirring in a nitrogen gas atmosphere at 65 ° C. for 1 hour to obtain an intermediate polymer having a terminal isocyanate. This polymer was dissolved in dried dimethylacetamide to a concentration of 60%. Next, a dimethylacetamide solution containing 1.38 parts of ethylenediamine and 0.312 parts of diethylamine was added to the vigorously stirred intermediate polymer solution to obtain a polyurethane urea solution having a concentration of about 32% by weight. To this solution, a predetermined amount of additives such as an antioxidant and an anti-yellowing agent were added and mixed to obtain a dry spinning dope. The solid content concentration of the entire spinning dope was about 32%. This spinning dope was applied to dry spinning in the same manner as in Example 1 to obtain a polyurethane elastic bobbin.
(Covering process)
Using this polyurethane elastic bobbin, the yarn breakage evaluation test during covering processing was repeated 10 times. After the start of processing, the yarn breakage rate in 10 minutes was as high as 40%. Of the 10 tests, the yarn breakage due to loosening of the covering yarn was 40%.
[0029]
[Comparative Example 2]
(Manufacture of polyurethane urea elastic fiber)
PTMG1.0Kg (Mn = 1300, d = 2.0) is dissolved in methanol 37Kg. Next, 1.55 kg of water was added and sufficiently stirred, and then allowed to stand at 23 ° C. for 3 hours for phase separation, and the lower molecular weight portion was phase-separated and removed. After 2.60 kg of water was added to the upper phase and sufficiently stirred, the mixture was allowed to stand at 25 ° C. for 20 hours for phase separation, and the lower PTMG phase was recovered. The recovered phase was desolvated to obtain PTMG having a number average molecular weight of 1500, d = 1.8 and an oligomer content of 2.5% by weight.
[0030]
100 parts by weight of the obtained PTMG and 24.19 parts of 4,4′-diphenylmethane diisocyanate were reacted with stirring in a nitrogen atmosphere at 65 ° C. for 1 hour to obtain an intermediate polymer having a terminal isocyanate. This polymer was dissolved in dried dimethylacetamide to a concentration of 60% by weight. Next, a dimethylacetamide solution containing 1.59 parts by weight of ethylenediamine and 0.324 parts by weight of diethylamine was added to the vigorously stirred intermediate polymer solution to obtain a polyurethane urea solution having a concentration of about 35% by weight. To this solution, a predetermined amount of additives such as an antioxidant and an anti-yellowing agent was added and mixed to obtain a dry spinning dope. The total solid concentration of the spinning dope was about 32% by weight. This spinning dope was dry-spun in the same manner as in Example 1 to obtain an elastic fiber wound body.
(Covering process)
Using this elastic fiber yarn, a thread breakage evaluation test for covering processing was performed. Of the 10 tests, the yarn breakage rate due to reverse winding caused by an increase in the stickiness of the fiber was as high as 60%.
[0031]
[Comparative Example 3]
(Manufacture of polyurethane urea elastic fiber)
Ring-opening continuous polymerization of THF containing 0.3% by weight of water was carried out at 60 ° C. using phosphotungstic acid having a coordination water number of 3.3. An equal amount of water was added to the upper phase liquid flowing out from the polymerization tank, and the mixture was stirred and allowed to stand. The upper phase liquid was separated, and unreacted THF and residual water were removed by distillation. The obtained PTMG was (Mn = 1830, d = 1.6). As a result of component analysis, the oligomer content was 3.7% by weight.
[0032]
This PTMG was used for polymerization in the same manner as in Example 1. The ratio of various reactants in the polymerization reaction was 21.2 parts by weight of MDI, 1.66 parts by weight of EDA, and 0.328 parts by weight of DEA. The obtained polyurethane urea was spun in the same manner as in Example 1 to obtain elastic fibers.
(Covering process)
A thread breakage evaluation test at the time of covering processing of this fiber was performed. As a result of repeating the test, the yarn breakage occurring within 10 minutes after the start was 40%, of which 30% was due to reverse winding due to fiber adhesion, and 10% was due to a decrease in elongation recovery. The yarn breakage in 10 minutes was 40%.
[0033]
【The invention's effect】
The polyurethaneurea elastic fiber of the present invention is an elastic fiber having improved elongation recovery property, particularly elongation recovery rate, and reduced fiber tackiness even under cold and room temperature in winter. A thread roll is obtained. By using the polyurethaneurea elastic fiber of the present invention, cutting of the covering yarn is reduced by cutting the elastic fiber yarn due to the reverse winding of the cheese at the start of the covering processing in the cold winter covering processing plant and the occurrence of loosening of the coated yarn. be able to.

Claims (1)

重量平均分子量/数平均分子量の比である多分散度dが1.3〜2.0、数平均分子量が1600〜2200、繰り返し単位9以下の環状オリゴマー含有量が3重量%を超えないポリテトラメチレンエーテルグリコールをジオール成分としてなるポリウレタンウレアで構成された低温カバリング性に優れたポリウレタンウレア弾性繊維。The polydispersity d, which is the ratio of weight average molecular weight / number average molecular weight, is 1.3 to 2.0, the number average molecular weight is 1600 to 2200, and the content of cyclic oligomers having 9 or less repeating units does not exceed 3% by weight. Polyurethane urea elastic fiber excellent in low-temperature covering property composed of polyurethane urea containing methylene ether glycol as a diol component.
JP14856599A 1999-05-27 1999-05-27 Elastic fiber with excellent low-temperature covering Expired - Lifetime JP4191848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14856599A JP4191848B2 (en) 1999-05-27 1999-05-27 Elastic fiber with excellent low-temperature covering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14856599A JP4191848B2 (en) 1999-05-27 1999-05-27 Elastic fiber with excellent low-temperature covering

Publications (2)

Publication Number Publication Date
JP2000336522A JP2000336522A (en) 2000-12-05
JP4191848B2 true JP4191848B2 (en) 2008-12-03

Family

ID=15455600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14856599A Expired - Lifetime JP4191848B2 (en) 1999-05-27 1999-05-27 Elastic fiber with excellent low-temperature covering

Country Status (1)

Country Link
JP (1) JP4191848B2 (en)

Also Published As

Publication number Publication date
JP2000336522A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
KR100942359B1 (en) Method for preparing polyurethaneurea elastic fiber with improved heat settability
WO1997000982A1 (en) Elastic polyurethane fibers and process for the production thereof
JP2006176772A (en) Spandex having low heat set temperature and material for its production
JP2006176772A5 (en)
JPH0742610B2 (en) Polyurethane elastic fiber
JP2003531309A (en) Spandex with high heat setting efficiency
JP6093090B2 (en) Polyurethane urea elastic yarn with excellent uniformity and thermosetting
KR101148583B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation
JP2003155624A (en) High-uniformity spandex and method for producing the same
JP4191848B2 (en) Elastic fiber with excellent low-temperature covering
JP4343351B2 (en) Polyurethane fiber
JP5853065B1 (en) Gather material
JPH01190717A (en) Spandex molded product having soft segment of polycarbonate
US6399003B1 (en) Process for making melt-spun spandex
JP3826375B2 (en) Polyurethane yarn and process for producing the same
JP4270655B2 (en) Copolymer elastic fiber with good low-temperature covering properties
KR101180508B1 (en) Polyurethane composition for high tenacity spandex fiber, and spandex fiber prepared using the polyurethane composition
KR101578156B1 (en) Polyurethanurea elastic fiber having an excellent indexes of evenness and power and method of manufacturing the same
KR101167377B1 (en) Process for Preparing polyurethaneurea elastic fiber with improved heat settable properties
KR101086744B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber with Excellent Heat Settable Property at Low Temperature
JP2729853B2 (en) Method for producing polyurethane elastic yarn insoluble in organic solvents
KR100807041B1 (en) Elastic Fiber with Easy Setting Property
KR100615780B1 (en) Spandex fiber having a high tension maintenance
KR20180044532A (en) polyurethanurea elastic fiber and a manufacturing method having high elongation
KR101255453B1 (en) A Process for Preparing Polyurethaneurea Elastic Fiber having high Power and elongation

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term