JP4190837B2 - Organized layered silicate and method for producing the same - Google Patents

Organized layered silicate and method for producing the same Download PDF

Info

Publication number
JP4190837B2
JP4190837B2 JP2002255079A JP2002255079A JP4190837B2 JP 4190837 B2 JP4190837 B2 JP 4190837B2 JP 2002255079 A JP2002255079 A JP 2002255079A JP 2002255079 A JP2002255079 A JP 2002255079A JP 4190837 B2 JP4190837 B2 JP 4190837B2
Authority
JP
Japan
Prior art keywords
layered silicate
washing
organic
product
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002255079A
Other languages
Japanese (ja)
Other versions
JP2004091262A (en
Inventor
俊一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2002255079A priority Critical patent/JP4190837B2/en
Publication of JP2004091262A publication Critical patent/JP2004091262A/en
Application granted granted Critical
Publication of JP4190837B2 publication Critical patent/JP4190837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機化層状ケイ酸およびその製造方法、特に含有副生塩類の低減、反応物から副生塩類を除去する際の洗浄効率および生産性の改良に関する。
【0002】
【従来の技術】
有機化層状ケイ酸塩は、マトリックスとなる色々な化合物に分散し、レオロジー特性を調整したり改良することができる性質をもつ。このため、工業的には、化粧品、塗料、油脂などの粘度調整剤として利用されたり、プラスチックやゴムなどの充填剤や補強材として利用されている。
【0003】
従来、このような有機化層状ケイ酸塩としては、主に層状ケイ酸塩の層間に第四級アンモニウムイオンを導入したものが使用されている。そして、層状ケイ酸塩としては第四級アンモニウムイオンなどの分子量の大きい有機分子を挿入しやすい自由膨潤型の層状ケイ酸塩を用いていた。この理由としては、この自由膨潤型の層状ケイ酸塩は、水中で層間に水分子を取り込んで層間が大きく広がり、ケイ酸塩粒子の基本単位であるほぼ一層にまで解離する性質を持つため、このような分子量の大きい有機分子を挿入しやすい点や、懸濁安定性が高く、水簸により不純物を除去しやすいため、高純度のケイ酸塩が得やすいという点が挙げられる。
【0004】
【発明が解決しようとする課題】
このように膨潤性層状ケイ酸塩を有機化処理する際、副生物として塩類が発生する。すなわち、有機化処理に用いる有機陽イオンで置換されたカリウム等の交換性陽イオンと、置換前に有機陽イオンの相手であった塩素イオン等の陰イオンによる塩が発生する。そして、発生した塩類を含有したままの有機化層状ケイ酸塩を粘度調整剤や充填剤として使用すると、塩類がマトリックスを損なうため長期安定性が失われてしまう。したがって、あらかじめこれを除去した後に使用する必要がある。
【0005】
しかしながら、自由膨潤型の層状ケイ酸塩を用いて有機化層状ケイ酸塩を製造する際、有機陽イオンとの反応時に密度の高いフロック(凝集塊)を形成するため、洗浄による副生塩類の除去が効果的にできないという問題があった。すなわち、通常は洗浄廃液の電気伝導度200μS/cm以下を塩類除去の基準として洗浄を繰り返すが、このとき洗浄に使用する水の量は、フロックを溶解させる必要があり少なくとも20〜30ml/gと多量を要し、排水と時間の負荷が大きかった。また、このように多量の洗浄水を要して塩類を除いたとしても、得られた製品の副生塩類含有量は塩素濃度に換算して0.1〜0.2wt%程度が限界であり、樹脂用充填剤や増粘剤として利用する際の長期安定性の点から、より副生塩類含有量を低減し得る技術が要請されていた。
【0006】
また、自由膨潤型の層状ケイ酸塩は、水中では高い粘性を発現するため、均一な分散が必要な有機イオンの導入反応では懸濁液を高濃度化しにくく、反応効率が悪いという難点があった。
本発明は、前記従来技術の課題に鑑み為されたものであり、その目的は含有副生塩類が低減された有機化層状ケイ酸塩、そして反応物から副生塩類を除去する際の洗浄効率、および反応効率が改善された有機化層状ケイ酸塩の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は前記課題を解決するため鋭意検討した結果、反応に用いる膨潤性層状ケイ酸塩に膨潤力の低い限定膨潤型層状ケイ酸塩を用いることにより、副生塩類の除去を生成物1gあたり洗浄水20ml以下に減らすことができ、反応に用いる懸濁液の濃度を10wt%以上と高濃度化し得ることを見出し、そして得られた有機化層状ケイ酸塩が含有する副生塩類の量が極めて少ないことを見出し本発明を完成するに至った。
すなわち、本発明に係る有機化層状ケイ酸塩の製造方法は、膨潤性層状ケイ酸塩の交換性陽イオンを有機陽イオンで置換する有機化層状ケイ酸塩の製造方法において、以下の工程:
水を主成分とする溶媒に懸濁し膨潤させた層状ケイ酸塩の層間幅が二水層以下である、限定膨潤型の膨潤性層状ケイ酸塩を溶媒へ懸濁し、該懸濁液中で有機陽イオンと反応させて有機化処理を行う工程;
前記懸濁液を固液分離し、回収した反応物を水で洗浄して副生塩類を除去する工程;
を含み、洗浄廃液の電気伝導度が200μS/cm以下となるまで副生塩類を除去するために要する洗浄水の量が回収物1gあたり20ml以下であることを特徴とする。
【0008】
また、前記有機化層状ケイ酸塩の製造方法において、前記限定膨潤型の膨潤性層状ケイ酸塩は、陽イオン交換容量が50meq/100g以上且つ容積法により測定した膨潤力が10ml/2g以下であることが好適である。
また、前記有機化層状ケイ酸塩において、副生塩類の含有量が塩素濃度に換算して0.1%未満であることが好適である。
また、前記有機化層状ケイ酸塩を、樹脂用充填剤に使用することが好適である。
また、前記有機化層状ケイ酸塩を、増粘剤に使用することが好適である。
【0010】
また、前記方法において、反応時における前記懸濁液の濃度が10wt%以上であることが好適である。
【0011】
【発明の実施の形態】
本発明の有機化層状ケイ酸塩の製造には、水を主成分とする溶媒に懸濁し膨潤させた層状ケイ酸塩の層間幅が二水層以下である、限定膨潤型の膨潤性層状ケイ酸塩が使用される。特に、容積法(日本ベントナイト工業会標準試験方法JBAS−104−77)により測定した膨潤力が10ml/2g以下のものが好ましく、その純度は陽イオン交換容量(CEC)で50meq/100g以上、好ましくは80meq/100g以上のものがよい。その具体的な鉱種としては、スメクタイト族、バーミキュライト族、マイカ族の粘土鉱物及び合成粘土鉱物が挙げられ、中でも合成粘土鉱物が特に好ましい。該合成粘土鉱物としては、合成テトラシリシックマイカ、合成ナトリウムテニオライト等が挙げられるが、特に限定されるものではない。
【0012】
これらの膨潤性層状ケイ酸塩の層間に導入される有機陽イオンとしては、炭素数1〜30のアルキル基が1〜4つ窒素と結合したアンモニウム塩が挙げられ、界面活性剤として市販されているアルキルアンモニウム塩を用いることができる。
【0013】
本発明に係る有機化層状ケイ酸塩は、一例として次のように製造される。限定膨潤型の層状ケイ酸塩を水中に分散させ攪拌しながら6時間以上放置し、十分に膨潤させる。このとき懸濁液を加温することが好適である。
一方、上記懸濁液とは別にアルキルアンモニウム塩を水に溶解させる。アルキルアンモニウムの量は反応させる層状ケイ酸塩の陽イオン交換容量の0.5〜1.5倍、好ましくは0.8〜1.2倍である。アルキルアンモニウムが水に溶解しにくいときは液を加温したり、液のpHを4以下に制御するか、或いはアルコールなどの親水性有機溶媒に溶解させた後に混合するなどの方法で溶解させる。この溶液を上記懸濁液に攪拌しながら添加し、反応させる。二液の混合時には液を加温するとより反応が速やかに行われる。ついで反応液を沈降法、吸引濾過、フィルタープレスなどで固液分離した後、水に戻して再分散、洗浄濾過などの方法で副生塩類を洗浄、除去する。以上の方法が代表的な有機化処理方法であるが本発明は以上の方法に限定されるものではない。
【0014】
通常、塩類除去の基準として洗浄廃液の電気伝導度が200μS/cm以下となるまで洗浄を繰り返すが、本発明の製法によれば、上記の洗浄方法によりこの基準に達するまでに使用する水の量は回収物1gあたり20ml以下と少量に抑えることができ、非常に効率よく洗浄可能である。
従来のように自由膨潤型の層状ケイ酸塩を使用して有機化処理を行った場合、反応時に高密度の凝集塊(フロック)が形成される。この場合、洗浄により塩類を除去する際に、フロックの中まで水が浸透しづらいため、その中に存在する塩類の除去を阻害する。本発明はこの点を解決したものであり、懸濁膨潤させた際の層間幅が二水層までしか広がらない、限定膨潤型の膨潤性層状ケイ酸塩を使用することで反応時におけるフロックの形成を抑制することができる。したがって、洗浄効率を向上し、さらには生成物の塩類含有量を低減することが可能となる。
【0015】
このようなフロック形成の抑制は、自由膨潤型と限定膨潤型の、懸濁時の性質の相違に基づくものと考えられる。すなわち、自由膨潤型の層状ケイ酸塩の懸濁液では、ケイ酸塩粒子の基本単位であるほぼ一層にまで解離した状態で分散し、無限膨潤した状態であり、反応時にこれらの解離物が凝集してフロックを生じると考えられる。一方、限定膨潤型の層状ケイ酸塩の懸濁液では、懸濁膨潤させた際の層間幅が二水層までしか広がらず、ケイ酸塩粒子の基本単位まで解離しない層状粒子のままで分散するものと考えられる。したがって、前述の解離物による凝集が起こらず、洗浄水が比較的容易に浸透するため副生塩類の除去が容易になると考えられる。
そして、このように層状粒子のままで分散するため、比較的高濃度の懸濁液であっても粘度上昇が抑えられる。このため高濃度下、例えば10wt%以上においても均一な分散が可能であり有機化処理を行うことができるため、反応効率を向上することができる。
【0016】
従来、自由膨潤型の層状ケイ酸塩は、懸濁安定性が高く、水簸により不純物を除去しやすいため、高純度のケイ酸塩が得やすいという点を一つの理由として使用されていた。しかしながら、近年の合成技術の進歩により水簸などの精製をしなくても十分高純度の膨潤性層状ケイ酸塩を得ることができるようになり、この点からも限定膨潤型の膨潤性層状ケイ酸塩を用いる本発明に係る技術は工業的な利点を有するものである。
【0017】
特に、本発明の製法によれば、副生塩類含有量が塩素濃度に換算して0.1%未満と非常に少ない回収物を得ることができ、この有機化層状ケイ酸塩は樹脂用充填剤や増粘剤として利用した際、残留塩類が少ないためマトリックスを損ないにくく、長期安定性を向上することができる。なお、有機化層状ケイ酸塩のレオロジー特性やマトリックスへの溶解特性は、有機イオンの特性によるため自由膨潤型、限定膨潤型のいずれでも変わりがなく、従来の自由膨潤型によるこのような性質を何ら損なわずに長期安定性を向上することが可能である。
ここで、上記のように副生塩類含有量を塩素濃度に換算して求める場合、有機化処理に用いる有機塩として有機陽イオン、例えば有機アンモニウムイオンと、塩素イオンとの塩を用いることを前提としており、副生塩類として生じた塩素イオンを含む塩に起因する塩素濃度を対象とするものである。
【0018】
限定膨潤型の膨潤性層状ケイ酸塩としては、前記容積法により測定した膨潤力が10ml/2g以下のものが好ましく、その純度はCECで50meq/100g以上、好ましくは80meq/100g以上のものがよい。
自由膨潤型の層状ケイ酸塩は、純粋のものであればCECは100meq/100g以上であり、膨潤力は10ml/2g超である。しかし実際には、副反応による生成物や未反応の原料残渣が混じるため、精製しない、乃至精製不十分ものではCECで50meq/100g未満であり、且つ、副反応生成物が非膨潤性層状ケイ酸塩であったり反応生成率が低い場合には、膨潤力が10ml/2g以下になることがある。このような層状ケイ酸塩は、膨潤力が低いものの、やはり有機陽イオンとの反応時にフロックが形成されてしまうことがあり、本発明に係る効果の点からすれば好ましくない。一方、本発明では、純度が高く層状ケイ酸塩の単位量あたりでの有機陽イオンとの反応量が大きく(50meq/100g以上)、その分副生塩類の発生量が大きいにもかかわらず、規定された基準まで容易に塩類を洗浄除去することができ、さらには副生塩類の含有量が少ない有機化層状ケイ酸塩を提供することができる。
また、以上説明した本発明の製法は、排水低減、生産性向上という点で、工業的製造における利点が非常に大きい。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
なお、膨潤力は、容積法(日本ベントナイト工業会標準試験方法JBAS−104−77)により測定した。すなわち、試料2.0gを精製水100mlを入れた100mlの共栓付メスシリンダーに約10回に分けて加える。ただし、さきに加えた試料がほとんど内壁に付着せず、スムーズにシリンダー底に沈着するように1回の加える量を加減する。さきに加えた試料がほとんど沈着した後次の試料を加える。加え終ってから24時間放置し、容器内に堆積した試料の見掛け容積を読みとる。膨潤力の単位は(ml/2g)である。
【0020】
実施例1
合成ナトリウムテニオライト(膨潤力5ml/2g、CEC246meq/100g)100gを350gの蒸留水に加え、湯せんで80℃に加温してプロペラモーターで攪拌しながら10時間放置し十分に膨潤させた。市販のステアリルトリメチルアンモニウムクロライド(花王(株)製コータミン86Pconc)の、CECに換算して1.0当量(89.6g)を100mlの蒸留水に溶解させた後、湯せんで80℃に加温した合成ナトリウムテニオライト懸濁液にプロペラモーターで攪拌しながら加え、導入反応を行った。反応は4時間かけて十分に進行させた。
【0021】
洗浄効率評価▲1▼
同反応液を遠心分離機で700Gにかけ固液分離し、回収した反応物を500mlの蒸留水で再分散させ洗浄を行い、上澄み液の電気伝導度が200μS/cm以下になるまで洗浄を繰り返した。洗浄に要した蒸留水の量を回収物乾燥固形重量で割った値を洗浄効率として評価した。
評価の結果、洗浄回数が5回で要した蒸留水が2500ml、回収物が161gで、洗浄効率は15.5ml/gであった。
【0022】
洗浄効率評価▲2▼
同反応液を直径18.5cmメッシュサイズ27μmの紙フィルターを敷いた吸引ろ過にかけ固液分離を行った後、蒸留水をさらに注ぎ、ろ液の電気伝導度が200μS/cm以下になるまで洗浄を続けた。洗浄に要した蒸留水の量を回収物乾燥固形重量で割った値を洗浄効率として評価した。加えて洗浄に要したろ過時間についても評価した。
評価の結果、洗浄に要した蒸留水は2300mlで回収物が163gであり、洗浄効率は14.1ml/gであった。洗浄に要した時間は45分であった。また、回収物の塩素濃度をイオンクロマト法で測定したところ0.01wt%以下であった。
【0023】
実施例2
合成Al含有ナトリウムテトラシルシックマイカ(膨潤力5ml/2g、CEC102meq/100g)100gと、ステアリルトリメチルアンモニウムクロライドの、CECに換算して1.0当量(35.7g)を用いて実施例1と同様にして有機化処理を行った。
同反応液について洗浄効率評価▲1▼により評価を行ったところ、洗浄回数が3回で要した蒸留水が1500ml、回収物が126gであり、洗浄効率は11.9ml/gであった。
また、同反応液について洗浄効率評価▲2▼により評価を行ったところ、洗浄に要した蒸留水は1500mlで回収物が130gであり、洗浄効率は11.5ml/gでであった。洗浄に要した時間は30分であった。また、回収物の塩素濃度は0.07wt%であった。
【0024】
実施例3
市販のNa型モンモリロナイトをCaでイオン交換したCa型モンモリロナイト(膨潤力5ml/2g、CEC96meq/100g)100gとステアリルトリメチルアンモニウムクロライドの、CECに換算して1.0当量(33.6g)を用いて実施例1と同様にして有機化処理を行った。
同反応液について洗浄効率評価▲1▼により評価を行ったところ、洗浄回数が4回で要した蒸留水が2000ml、回収物が120gで、洗浄効率は16.7ml/gであった。
また、同反応液について洗浄効率評価▲2▼により評価を行ったところ、洗浄に要した蒸留水は2000mlで回収物が126gで、洗浄効率は15.9ml/gであった。洗浄に要した時間は75分であった。また、回収物の塩素濃度は0.09wt%であった。
【0025】
実施例4
実施例1と同じ合成ナトリウムテニオライト(膨潤力5ml/2g、CEC246meq/100g)100gと市販のポリオキシエチレンアルキルメチルアンモニウムクロライド(ライオン・アクゾ(株)製エソカードC/25)の、CECに換算して0.7当量(181.3g)を用いて実施例1と同様にして有機化処理を行った。
同反応液について洗浄効率評価▲1▼により評価を行ったところ、洗浄回数が3回で要した蒸留水が1500ml、回収物が154gで、洗浄効率は9.7ml/gであった。
また、同反応液について洗浄効率評価▲2▼により評価を行ったところ、洗浄に要した蒸留水は1500mlで回収物が149gで、洗浄効率は10.1ml/gであった。洗浄に要した時間は45分であった。また、回収物の塩素濃度は0.01wt%であった。
【0026】
比較例1
合成リチウムテニオライト(膨潤力26ml/2g、CEC176meq/100g)100gを実施例1と同じように350gの蒸留水に加え攪拌しようとしたが流動性に欠け、継粉が発生してしまい均一に混ぜることができなかった。そこで、実施例の粘度と同等となるよう更に蒸留水を1550g加え、濃度約5wt%の懸濁液を調整し、湯せんで80℃に加温してプロペラモーターで攪拌しながら10時間放置し十分に膨潤させた。実施例1と同じステアリルトリメチルアンモニウムクロライドの、CECに換算して1.0(61.6g)を用いて実施例1と同様にして有機化処理を行った。
同反応液について洗浄効率評価▲1▼により評価を行ったところ、洗浄回数が8回で要した蒸留水が4000ml、回収物が152gであり、洗浄効率は26.3ml/gであった。
また、同反応液について洗浄効率評価▲2▼により評価を行ったところ、洗浄に要した蒸留水は3600mlで回収物が154gであり、洗浄効率は23.4ml/gであった。洗浄に要した時間は90分であった。また、回収物の塩素濃度は0.15wt%であった。
【0027】
比較例2
合成ナトリウムテトラシルシックマイカ(膨潤力36ml/2g、CEC102meq/100g)100gを実施例2と同じように350gの蒸留水に加え攪拌しようとしたが流動性に欠け、継粉が発生してしまい均一に混ぜることができなかった。そこで実施例の粘度と同等となるようさらに蒸留水を1550g加え濃度約5wt%の懸濁液を調整し、湯せんで80℃に加温してプロペラモーターで攪拌しながら10時間放置し十分に膨潤させた。実施例1と同じステアリルトリメチルアンモニウムクロライドの、CECに換算して1.0当量(37.1g)を用いて実施例1と同様にして有機化処理を行った。
同反応液について洗浄効率評価▲1▼により評価を行ったところ、洗浄回数が7回で要した蒸留水が3500ml、回収物が125gであり、洗浄効率は28.0ml/gであった。また、同反応液について洗浄効率評価▲2▼により評価を行ったところ、洗浄に要した蒸留水は3200mlで回収物が129gであり、洗浄効率は24.8ml/gであった。洗浄に要した時間は120分であった。また、回収物の塩素濃度は0.16wt%であった。
【0028】
比較例3
市販のNa型モンモリロナイト(膨潤力60ml/2g、CEC106meq/100g)100gを実施例3と同じように350gの蒸留水に加え攪拌しようとしたが流動性に欠け、継粉が発生してしまい均一に混ぜることができなかった。そこで実施例の粘度と同等となるようさらに蒸留水を4550g加え濃度約2wt%の懸濁液を調整し、湯せんで80℃に加温してプロペラモーターで攪拌しながら10時間放置し十分に膨潤させた。実施例1と同じステアリルトリメチルアンモニウムクロライドの、CECに換算して1.0当量(35.7g)を用いて実施例1と同様にして有機化処理を行った。
同反応液について洗浄効率評価▲1▼により評価を行ったところ、洗浄回数が7回で要した蒸留水が3500ml、回収物が120gであり、洗浄効率は29.2ml/gであった。
また、同反応液について洗浄効率評価▲2▼により評価を行ったところ、洗浄に要した蒸留水は4000mlで回収物が127gであり、洗浄効率は31.5ml/gであった。洗浄に要した時間は300分であった。また、回収物の塩素濃度は0.19wt%であった。
【0029】
比較例4
合成リチウムテニオライト(膨潤力26ml/2g、CEC176meq/100g)100gを実施例4と同じように350gの蒸留水に加え攪拌しようとしたが流動性に欠け、継粉が発生してしまい均一に混ぜることができなかった。そこで実施例の粘度と同等となるようさらに蒸留水を1550g加え濃度約5wt%の懸濁液を調整し、湯せんで80℃に加温してプロペラモーターで攪拌しながら10時間放置し十分に膨潤させた。実施例4と同じポリオキシエチレンアルキルメチルアンモニウムクロライドの、CECに換算して1.0当量(160.0g)を用いて実施例4と同様にして有機化処理を行った。
同反応液について洗浄効率評価▲1▼により評価を行ったところ、洗浄回数が7回で要した蒸留水が3500ml、回収物が149gであり、洗浄効率は23.5ml/gであった。
また、同反応液について洗浄効率評価▲2▼により評価を行ったところ、洗浄に要した蒸留水は3200mlで回収物が150gであり、洗浄効率は21.3ml/gであった。洗浄に要した時間は120分であった。また、回収物の塩素濃度は0.16wt%であった。
上記実施例および比較例に用いた鉱種、有機物とその反応量を表1に、前記洗浄効率評価▲1▼および▲2▼の結果を表2および表3に示す。
【0030】
【表1】

Figure 0004190837
【0031】
【表2】
Figure 0004190837
【0032】
【表3】
Figure 0004190837
【0033】
表2に示した結果から、遠心分離機を用いた沈降法による洗浄では実施例1〜4では洗浄効率がいずれも20ml/g以下であるのに対して、比較例5〜8では20ml/g以上と大きな差が見られる。
また、表3に示した吸引ろ過法による洗浄効率評価でも、実施例1〜4では洗浄効率がいずれも20ml/g以下であるのに対して、比較例5〜8では20ml/g以上と大きな差が見られる。洗浄時間を見ても実施例1〜4は30〜75分と短いのに対して比較例5〜8では90〜180分と長くなっている。これは、比較例で用いた自由膨潤型の膨潤性層状ケイ酸塩は限定膨潤型のものと比較して有機化反応時に密度の高いフロックを形成するため水の浸透が悪く洗浄効果があがらないためと考えられる。
【0034】
また、比較例と異なり、実施例では高濃度下でも層状ケイ酸塩が均一に分散し、効率の高い製造が可能であった。
【0035】
さらに、実施例の製法で得られた有機化層状ケイ酸塩は、その副生塩類の含有量が、残存塩素濃度に換算して0.1wt%未満と非常に少なかった。したがって、樹脂用充填剤や増粘剤として利用した際に、長期安定性のよい組成物を提供することができる。
【0036】
【発明の効果】
以上説明したように、本発明の製造方法によれば、限定膨潤型の膨潤性層状ケイ酸塩を用いることとしたので、反応物の洗浄効率が向上し、排水量の削減を図ることができ、さらには反応濃度を高めることで生産性を向上させることができる。
そして、本発明によれば、副生塩類の含有量が少ない有機化層状ケイ酸塩が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organically modified layered silicic acid and a method for producing the same, and particularly to reduction of contained by-product salts and improvement of washing efficiency and productivity when removing by-product salts from a reaction product.
[0002]
[Prior art]
Organized layered silicates are dispersed in various compounds as a matrix, and have the property of adjusting or improving rheological properties. For this reason, it is used industrially as a viscosity modifier for cosmetics, paints, fats and oils, and as a filler or reinforcing material for plastics, rubbers and the like.
[0003]
Conventionally, as such an organically modified layered silicate, those in which quaternary ammonium ions are introduced mainly between layers of the layered silicate are used. As the layered silicate, a free swellable layered silicate in which an organic molecule having a large molecular weight such as a quaternary ammonium ion can be easily inserted is used. The reason for this is that this free-swelling layered silicate has the property of taking water molecules between layers in water and spreading the layers greatly, and dissociating to almost the basic unit of silicate particles. These include the point that it is easy to insert organic molecules having such a large molecular weight, and the point that suspension stability is high and impurities are easily removed by elutriation, so that high-purity silicate can be easily obtained.
[0004]
[Problems to be solved by the invention]
Thus, when organically treating the swellable layered silicate, salts are generated as by-products. That is, a salt is generated by an exchangeable cation such as potassium substituted with an organic cation used for the organic treatment and an anion such as chlorine ion which was the partner of the organic cation before substitution. If the organically modified layered silicate containing the generated salt is used as a viscosity modifier or filler, the salt will damage the matrix and long-term stability will be lost. Therefore, it is necessary to use it after removing it beforehand.
[0005]
However, when producing an organically modified layered silicate using a free-swelling layered silicate, a dense floc (aggregate) is formed upon reaction with an organic cation. There was a problem that it could not be removed effectively. That is, usually, washing is repeated with the electric conductivity of the washing waste liquid being 200 μS / cm or less as a criterion for salt removal. At this time, the amount of water used for washing needs to dissolve floc and is at least 20 to 30 ml / g. A large amount was required, and the load of drainage and time was large. Moreover, even if a large amount of washing water is required and salts are removed, the by-product salt content of the obtained product is limited to about 0.1 to 0.2 wt% in terms of chlorine concentration. From the viewpoint of long-term stability when used as a filler for resin or as a thickener, a technique capable of further reducing the content of by-products is required.
[0006]
In addition, free-swelling layered silicates exhibit a high viscosity in water, so that it is difficult to increase the concentration of the suspension in the introduction reaction of organic ions that require uniform dispersion, resulting in poor reaction efficiency. It was.
The present invention has been made in view of the above-mentioned problems of the prior art, and the object thereof is an organic layered silicate with reduced content of by-product salts, and washing efficiency when removing the by-product salts from the reaction product. And providing a process for producing an organically modified layered silicate with improved reaction efficiency.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor removed 1 g of by-product salts by using limited swollen layered silicate having low swelling power as the swollen layered silicate used in the reaction. It was found that the concentration of the suspension used in the reaction can be increased to 10 wt% or more, and the amount of by-product salts contained in the obtained organically modified layered silicate As a result, the present invention was completed.
That is, the method for producing an organized layered silicate according to the present invention includes the following steps in the method for producing an organized layered silicate in which the exchangeable cation of the swellable layered silicate is replaced with an organic cation:
A layered silicate suspended in a solvent containing water as a main component and swelled is suspended in a solvent in a swellable layered silicate of limited swelling type in which the interlayer width is two water layers or less. A step of performing an organic treatment by reacting with an organic cation;
Separating the suspension into solid and liquid and washing the recovered reaction product with water to remove by-product salts;
The amount of washing water required to remove by-product salts until the electrical conductivity of the washing waste liquid is 200 μS / cm or less is 20 ml or less per 1 g of the recovered material .
[0008]
In the method for producing an organically modified layered silicate, the limited swelling type swellable layered silicate has a cation exchange capacity of 50 meq / 100 g or more and a swelling force measured by a volumetric method of 10 ml / 2 g or less. Preferably it is.
In the organically modified layered silicate, the content of by-product salts is preferably less than 0.1% in terms of chlorine concentration.
Further, it is preferable to use the organically modified layered silicate as a resin filler.
In addition, it is preferable to use the organically modified layered silicate as a thickener.
[0010]
Moreover , in the said method, it is suitable that the density | concentration of the said suspension at the time of reaction is 10 wt% or more.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the production of the organically modified layered silicate of the present invention, the swellable layered silicate of limited swelling type in which the interlayer width of the layered silicate suspended and swollen in a solvent containing water as a main component is not more than two water layers. Acid salts are used. In particular, a swelling power measured by volumetric method (Japan Bentonite Industry Association Standard Test Method JBAS-104-77) is preferably 10 ml / 2 g or less, and its purity is 50 meq / 100 g or more, preferably by cation exchange capacity (CEC). Is preferably 80 meq / 100 g or more. Specific mineral species include smectite group, vermiculite group and mica group clay minerals and synthetic clay minerals, among which synthetic clay minerals are particularly preferred. Examples of the synthetic clay mineral include, but are not particularly limited to, synthetic tetralithic mica and synthetic sodium teniolite.
[0012]
Examples of organic cations introduced between the layers of these swellable layered silicates include ammonium salts having 1 to 4 carbon atoms having 1 to 4 carbon atoms bonded to nitrogen, and are commercially available as surfactants. Alkyl ammonium salts can be used.
[0013]
The organically modified layered silicate according to the present invention is produced as follows as an example. The limited swollen layered silicate is dispersed in water and allowed to stand for 6 hours or more with stirring to swell sufficiently. At this time, it is preferable to warm the suspension.
On the other hand, an alkyl ammonium salt is dissolved in water separately from the suspension. The amount of alkylammonium is 0.5 to 1.5 times, preferably 0.8 to 1.2 times the cation exchange capacity of the layered silicate to be reacted. When alkylammonium is difficult to dissolve in water, the solution is heated, the pH of the solution is controlled to 4 or less, or dissolved in a hydrophilic organic solvent such as alcohol and then mixed. This solution is added to the suspension with stirring and allowed to react. When the two liquids are mixed, the reaction is carried out more quickly by warming the liquid. Next, the reaction solution is subjected to solid-liquid separation by sedimentation, suction filtration, filter press, etc., then returned to water, and by-product salts are washed and removed by methods such as redispersion and washing filtration. The above method is a typical organic treatment method, but the present invention is not limited to the above method.
[0014]
Usually, the cleaning is repeated until the electrical conductivity of the cleaning waste liquid becomes 200 μS / cm or less as a standard for removing salts, but according to the manufacturing method of the present invention, the amount of water used to reach this standard by the cleaning method described above. Can be suppressed to a small amount of 20 ml or less per gram of recovered material, and can be washed very efficiently.
When the organic treatment is performed using a free swellable layered silicate as in the prior art, a high-density aggregate (floc) is formed during the reaction. In this case, when removing the salts by washing, it is difficult for water to penetrate into the flocs, thus inhibiting the removal of the salts present therein. The present invention solves this point and uses a limited swelling type swellable layered silicate that has a width of only two water layers when suspended and swollen. Formation can be suppressed. Therefore, it is possible to improve the cleaning efficiency and further reduce the salt content of the product.
[0015]
Such suppression of floc formation is considered to be based on the difference in properties during suspension between the free swelling type and the limited swelling type. That is, in the free-swelling layered silicate suspension, it is dispersed in a dissociated state to almost one layer, which is the basic unit of silicate particles, and is in an infinitely swollen state. It is considered that the flocs are formed by aggregation. On the other hand, in the layered silicate suspension of limited swelling type, the interlayer width when suspended and swollen only spreads to the two water layers and is dispersed as the layered particles that do not dissociate to the basic unit of the silicate particles. It is thought to do. Accordingly, it is considered that aggregation due to the aforementioned dissociation does not occur and the by-product salts can be easily removed because the washing water penetrates relatively easily.
Since the layered particles are dispersed as described above, an increase in viscosity can be suppressed even with a relatively high concentration suspension. Therefore, even at a high concentration, for example, 10 wt% or more, uniform dispersion is possible and organic treatment can be performed, so that reaction efficiency can be improved.
[0016]
Conventionally, free-swelling layered silicates have been used as one of the reasons that high-suspension silicates can be easily obtained because the suspension stability is high and impurities are easily removed by elutriation. However, due to recent advances in synthetic technology, it has become possible to obtain a swellable layered silicate of sufficiently high purity without purification of starch syrup or the like. The technology according to the present invention using an acid salt has industrial advantages.
[0017]
In particular, according to the production method of the present invention, it is possible to obtain a recovered material with a by-product salt content of less than 0.1% in terms of chlorine concentration. When used as an agent or thickener, the residual salt is low, so that the matrix is not easily damaged and long-term stability can be improved. The rheological properties and solubility in the matrix of the organically modified layered silicate depend on the properties of the organic ions, so there is no difference between the free swelling type and the limited swelling type. It is possible to improve long-term stability without any loss.
Here, when the content of by-product salts is calculated in terms of chlorine concentration as described above, it is assumed that an organic cation, for example, a salt of organic ammonium ion and chlorine ion is used as the organic salt used in the organic treatment. It is intended for the chlorine concentration resulting from salts containing chlorine ions generated as by-product salts.
[0018]
The limited swelling type swellable layered silicate preferably has a swelling power measured by the volumetric method of 10 ml / 2 g or less, and its purity is 50 meq / 100 g or more, preferably 80 meq / 100 g or more by CEC. Good.
If the free swellable layered silicate is pure, the CEC is 100 meq / 100 g or more, and the swelling power is more than 10 ml / 2 g. However, in actuality, the product from the side reaction and the unreacted raw material residue are mixed, so if the product is not purified or is not sufficiently purified, the CEC is less than 50 meq / 100 g, and the side reaction product is non-swellable layered silica. In the case of an acid salt or a low reaction production rate, the swelling power may be 10 ml / 2 g or less. Although such a layered silicate has low swelling power, flocs may still be formed upon reaction with an organic cation, which is not preferable from the viewpoint of the effect according to the present invention. On the other hand, in the present invention, the amount of reaction with the organic cation per unit amount of the layered silicate having a high purity is large (50 meq / 100 g or more), and the generation amount of by-product salts is large accordingly. It is possible to provide an organically modified layered silicate in which salts can be easily removed by washing up to a defined standard and the content of by-product salts is low.
Further, the production method of the present invention described above has a great advantage in industrial production in terms of reduction of waste water and improvement of productivity.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples at all.
The swelling force was measured by a volume method (Japan Bentonite Industry Association Standard Test Method JBAS-104-77). That is, 2.0 g of a sample is added in about 10 times to a 100 ml measuring cylinder with a stopper containing 100 ml of purified water. However, the amount added once is adjusted so that the sample added before hardly adheres to the inner wall and deposits smoothly on the bottom of the cylinder. After the sample added before is almost deposited, the next sample is added. The sample is allowed to stand for 24 hours after the addition, and the apparent volume of the sample accumulated in the container is read. The unit of swelling force is (ml / 2g).
[0020]
Example 1
100 g of synthetic sodium teniolite (swelling power 5 ml / 2 g, CEC 246 meq / 100 g) was added to 350 g of distilled water, heated to 80 ° C. with a hot water bath and allowed to stand for 10 hours while stirring with a propeller motor to swell sufficiently. 1.0 equivalent (89.6 g) of a commercially available stearyltrimethylammonium chloride (Coatamine 86Pconc manufactured by Kao Corporation) in terms of CEC was dissolved in 100 ml of distilled water, and then heated to 80 ° C. with a hot water bath. The mixture was added to the synthetic sodium teniolite suspension while stirring with a propeller motor to carry out an introduction reaction. The reaction was allowed to proceed sufficiently over 4 hours.
[0021]
Cleaning efficiency evaluation (1)
The reaction solution was subjected to solid-liquid separation by centrifuge at 700 G, and the recovered reaction product was redispersed with 500 ml of distilled water and washed, and washing was repeated until the electrical conductivity of the supernatant was 200 μS / cm or less. . The value obtained by dividing the amount of distilled water required for washing by the dry solid weight of the recovered product was evaluated as the washing efficiency.
As a result of the evaluation, the number of washings was 5 and the required distilled water was 2500 ml, the recovered product was 161 g, and the washing efficiency was 15.5 ml / g.
[0022]
Cleaning efficiency evaluation (2)
The reaction solution was subjected to suction filtration with a paper filter having a diameter of 18.5 cm and a mesh size of 27 μm, followed by solid-liquid separation. Then, distilled water was further poured, and the filtrate was washed until the electric conductivity of the filtrate reached 200 μS / cm or less. Continued. The value obtained by dividing the amount of distilled water required for washing by the dry solid weight of the recovered product was evaluated as the washing efficiency. In addition, the filtration time required for washing was also evaluated.
As a result of the evaluation, the distilled water required for washing was 2300 ml, the recovered product was 163 g, and the washing efficiency was 14.1 ml / g. The time required for washing was 45 minutes. The chlorine concentration of the recovered product was measured by ion chromatography and found to be 0.01 wt% or less.
[0023]
Example 2
Similar to Example 1 using 100 equivalents of synthetic Al-containing sodium tetrasyl thick mica (swelling power 5 ml / 2 g, CEC 102 meq / 100 g) and stearyltrimethylammonium chloride in terms of CEC, 1.0 equivalent (35.7 g). Then, an organic treatment was performed.
The reaction solution was evaluated according to the washing efficiency evaluation (1). As a result, the number of washings was 3, and the required distilled water was 1500 ml, the recovered product was 126 g, and the washing efficiency was 11.9 ml / g.
Further, when the reaction solution was evaluated by the washing efficiency evaluation (2), the distilled water required for washing was 1500 ml, the recovered product was 130 g, and the washing efficiency was 11.5 ml / g. The time required for washing was 30 minutes. Moreover, the chlorine concentration of the recovered material was 0.07 wt%.
[0024]
Example 3
Using 100 equivalents of Ca-type montmorillonite (swelling power 5 ml / 2 g, CEC 96 meq / 100 g) obtained by ion exchange of commercially available Na-type montmorillonite with Ca and stearyltrimethylammonium chloride in terms of CEC, 1.0 equivalent (33.6 g) was used. The organic treatment was performed in the same manner as in Example 1.
The reaction solution was evaluated according to the washing efficiency evaluation (1). As a result, the number of washings was 4, and the amount of distilled water required was 2000 ml, the recovered product was 120 g, and the washing efficiency was 16.7 ml / g.
Further, when the reaction solution was evaluated by washing efficiency evaluation (2), the distilled water required for washing was 2000 ml, the recovered product was 126 g, and the washing efficiency was 15.9 ml / g. The time required for washing was 75 minutes. Moreover, the chlorine concentration of the recovered material was 0.09 wt%.
[0025]
Example 4
The same synthetic sodium teniolite as in Example 1 (swelling power 5 ml / 2 g, CEC246 meq / 100 g) and commercially available polyoxyethylene alkylmethylammonium chloride (Esocard C / 25 manufactured by Lion Akzo Co., Ltd.) converted to CEC. The organic treatment was carried out in the same manner as in Example 1 using 0.7 equivalent (181.3 g).
The reaction solution was evaluated according to the washing efficiency evaluation (1). As a result, the number of washings was 3, and the required distilled water was 1500 ml, the recovered product was 154 g, and the washing efficiency was 9.7 ml / g.
Further, when the reaction solution was evaluated by washing efficiency evaluation (2), the distilled water required for washing was 1500 ml, the recovered product was 149 g, and the washing efficiency was 10.1 ml / g. The time required for washing was 45 minutes. Moreover, the chlorine concentration of the recovered material was 0.01 wt%.
[0026]
Comparative Example 1
Synthetic lithium teniolite (swelling power 26 ml / 2 g, CEC 176 meq / 100 g) was added to 350 g of distilled water and stirred as in Example 1, but it lacked fluidity and spatter was generated and mixed uniformly. I couldn't. Therefore, 1550 g of distilled water was further added so as to be equivalent to the viscosity of the example, a suspension with a concentration of about 5 wt% was prepared, heated to 80 ° C. with a hot water bath and allowed to stand for 10 hours while stirring with a propeller motor. Swollen. An organic treatment was performed in the same manner as in Example 1 using 1.0 (61.6 g) of stearyltrimethylammonium chloride, which was the same as in Example 1, in terms of CEC.
The reaction solution was evaluated according to the washing efficiency evaluation (1). As a result, the number of washings was 8, the distilled water required was 4000 ml, the recovered product was 152 g, and the washing efficiency was 26.3 ml / g.
Further, when the reaction solution was evaluated by the washing efficiency evaluation (2), the distilled water required for washing was 3600 ml, the recovered product was 154 g, and the washing efficiency was 23.4 ml / g. The time required for washing was 90 minutes. Moreover, the chlorine concentration of the recovered material was 0.15 wt%.
[0027]
Comparative Example 2
Synthetic sodium tetrasilic mica (swelling force 36 ml / 2 g, CEC 102 meq / 100 g) was added to 350 g of distilled water and stirred as in Example 2, but it lacked fluidity and spatter was generated uniformly. Could not be mixed. Therefore, 1550g of distilled water was further added so as to be equivalent to the viscosity of the example, a suspension with a concentration of about 5 wt% was prepared, heated to 80 ° C. with a hot water bath and allowed to stand for 10 hours while stirring with a propeller motor to swell sufficiently. I let you. Organic treatment was performed in the same manner as in Example 1 using 1.0 equivalent (37.1 g) of stearyltrimethylammonium chloride as in Example 1 in terms of CEC.
The reaction solution was evaluated according to washing efficiency evaluation (1). As a result, the number of washings was 7, the distilled water required was 3500 ml, the recovered product was 125 g, and the washing efficiency was 28.0 ml / g. Further, when the reaction solution was evaluated by the washing efficiency evaluation (2), the distilled water required for washing was 3200 ml, the recovered product was 129 g, and the washing efficiency was 24.8 ml / g. The time required for washing was 120 minutes. Moreover, the chlorine concentration of the recovered material was 0.16 wt%.
[0028]
Comparative Example 3
100 g of commercially available Na-type montmorillonite (swelling power 60 ml / 2 g, CEC 106 meq / 100 g) was added to 350 g of distilled water in the same manner as in Example 3, but the fluidity was lacking and spatter was generated uniformly. I could n’t mix it. Therefore, 4550g of distilled water was further added so as to be equivalent to the viscosity of the example, a suspension having a concentration of about 2 wt% was prepared, heated to 80 ° C. with a hot water bath, and allowed to stand for 10 hours while stirring with a propeller motor to swell sufficiently. I let you. An organic treatment was performed in the same manner as in Example 1 using 1.0 equivalent (35.7 g) of stearyltrimethylammonium chloride as in Example 1 in terms of CEC.
The reaction solution was evaluated according to the washing efficiency evaluation (1). As a result, the number of washings was 7, the distilled water required was 3500 ml, the recovered product was 120 g, and the washing efficiency was 29.2 ml / g.
Further, when the reaction solution was evaluated by the washing efficiency evaluation (2), the distilled water required for washing was 4000 ml, the recovered product was 127 g, and the washing efficiency was 31.5 ml / g. The time required for washing was 300 minutes. Moreover, the chlorine concentration of the recovered material was 0.19 wt%.
[0029]
Comparative Example 4
Synthetic lithium teniolite (swelling power 26 ml / 2 g, CEC 176 meq / 100 g) was added to 350 g of distilled water and stirred as in Example 4, but lacked fluidity and spatter was generated and mixed uniformly. I couldn't. Therefore, 1550g of distilled water was further added so as to be equivalent to the viscosity of the example, a suspension with a concentration of about 5 wt% was prepared, heated to 80 ° C. with a hot water bath and allowed to stand for 10 hours while stirring with a propeller motor to swell sufficiently. I let you. An organic treatment was carried out in the same manner as in Example 4 using 1.0 equivalent (160.0 g) of the same polyoxyethylene alkylmethyl ammonium chloride as in Example 4 in terms of CEC.
The reaction solution was evaluated according to the washing efficiency evaluation (1). As a result, the number of washings was 7, the distilled water required was 3500 ml, the recovered product was 149 g, and the washing efficiency was 23.5 ml / g.
Further, when the reaction solution was evaluated by the washing efficiency evaluation (2), the distilled water required for washing was 3200 ml, the recovered product was 150 g, and the washing efficiency was 21.3 ml / g. The time required for washing was 120 minutes. Moreover, the chlorine concentration of the recovered material was 0.16 wt%.
Table 1 shows the mineral species and organic substances used in the above Examples and Comparative Examples and their reaction amounts, and Tables 2 and 3 show the results of the cleaning efficiency evaluations (1) and (2).
[0030]
[Table 1]
Figure 0004190837
[0031]
[Table 2]
Figure 0004190837
[0032]
[Table 3]
Figure 0004190837
[0033]
From the results shown in Table 2, the washing efficiency by the sedimentation method using a centrifuge is 20 ml / g or less in each of Examples 1 to 4, whereas 20 ml / g in Comparative Examples 5 to 8. A big difference is seen.
Moreover, also in the cleaning efficiency evaluation by the suction filtration method shown in Table 3, in Examples 1-4, the cleaning efficiency is 20 ml / g or less, whereas in Comparative Examples 5-8, it is as large as 20 ml / g or more. There is a difference. Even if it looks at washing | cleaning time, Examples 1-4 are as short as 30-75 minutes, In comparison examples 5-8, it is as long as 90-180 minutes. This is because the free-swelling swellable layered silicate used in the comparative example forms a dense flock during the organic reaction compared to the limited-swelling type, so water penetration is poor and the cleaning effect does not increase This is probably because of this.
[0034]
Further, unlike the comparative example, in the example, the layered silicate was uniformly dispersed even under a high concentration, and high-efficiency production was possible.
[0035]
Furthermore, the organically modified layered silicate obtained by the production method of the example had a very low content of by-product salts of less than 0.1 wt% in terms of residual chlorine concentration. Therefore, a composition having good long-term stability can be provided when used as a resin filler or thickener.
[0036]
【The invention's effect】
As described above, according to the production method of the present invention, since the limited swelling type swellable layered silicate is used, the cleaning efficiency of the reactant is improved, and the amount of drainage can be reduced. Furthermore, productivity can be improved by raising the reaction concentration.
And according to this invention, the organically modified layered silicate with little content of by-product salt is provided.

Claims (3)

膨潤性層状ケイ酸塩の交換性陽イオンを有機陽イオンで置換する有機化層状ケイ酸塩の製造方法において、以下の工程:
水を主成分とする溶媒に懸濁し膨潤させた層状ケイ酸塩の層間幅が二水層以下である、限定膨潤型の膨潤性層状ケイ酸塩を溶媒へ懸濁し、該懸濁液中で有機陽イオンと反応させて有機化処理を行う工程;
前記懸濁液を固液分離し、回収した反応物を水で洗浄して副生塩類を除去する工程;
を含み、洗浄廃液の電気伝導度が200μS/cm以下となるまで副生塩類を除去するために要する洗浄水の量が回収物1gあたり20ml以下であることを特徴とする有機化層状ケイ酸塩の製造方法。
In the method for producing an organically modified layered silicate in which the exchangeable cation of the swellable layered silicate is replaced with an organic cation, the following steps are performed:
A layered silicate suspended in a solvent containing water as a main component and swelled is suspended in a solvent with a swellable layered silicate of limited swelling type in which the interlayer width is two water layers or less. A step of performing an organic treatment by reacting with an organic cation;
Separating the suspension into solid and liquid and washing the recovered reaction product with water to remove by-product salts;
And the amount of washing water required to remove by-product salts until the electrical conductivity of the washing waste liquid is 200 μS / cm or less is 20 ml or less per 1 g of the recovered material. Manufacturing method.
請求項1記載の方法において、前記限定膨潤型の膨潤性層状ケイ酸塩は、陽イオン交換容量が50meq/100g以上且つ容積法により測定した膨潤力が10ml/2g以下であることを特徴とする有機化層状ケイ酸塩の製造方法。  2. The method according to claim 1, wherein the limited swelling type swellable layered silicate has a cation exchange capacity of 50 meq / 100 g or more and a swelling force measured by a volumetric method of 10 ml / 2 g or less. A method for producing an organic layered silicate. 請求項1又は2記載の方法において、反応時における前記懸濁液の濃度が10wt%以上であることを特徴とする有機化層状ケイ酸塩の製造方法。  The method according to claim 1 or 2, wherein the concentration of the suspension during the reaction is 10 wt% or more.
JP2002255079A 2002-08-30 2002-08-30 Organized layered silicate and method for producing the same Expired - Fee Related JP4190837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255079A JP4190837B2 (en) 2002-08-30 2002-08-30 Organized layered silicate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255079A JP4190837B2 (en) 2002-08-30 2002-08-30 Organized layered silicate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004091262A JP2004091262A (en) 2004-03-25
JP4190837B2 true JP4190837B2 (en) 2008-12-03

Family

ID=32060694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255079A Expired - Fee Related JP4190837B2 (en) 2002-08-30 2002-08-30 Organized layered silicate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4190837B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320366A (en) * 2004-05-06 2005-11-17 Teijin Chem Ltd Method for producing resin composition
JP4718146B2 (en) * 2004-09-01 2011-07-06 株式会社Shindo Emulsion-type silicone pressure-sensitive adhesive composition for porous sheet and releasable pressure-sensitive adhesive sheet
KR101030008B1 (en) 2004-12-31 2011-04-20 삼성모바일디스플레이주식회사 Organic electroluminescent device
JP5129448B2 (en) 2005-12-28 2013-01-30 富士フイルム株式会社 Organized layered silicate, method for producing the same, and resin composition

Also Published As

Publication number Publication date
JP2004091262A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
CN102219231B (en) Cationic-nonionic composite organic montmorillonite and preparation method thereof
DE60011514T2 (en) Smectite clay / organic compounds containing polymer compositions which are useful as nanocomposites
HU218020B (en) Gel composition containing carbonaceous compound
CN102241403A (en) Anionic-cationic composite intercalation type organic montmorillonite material and preparation method thereof
CN104760968A (en) Preparation method of nanoscale organobentonite
WO2006062531A1 (en) An organoclay composition containing quat mixtures
JPS5914273B2 (en) Method of using grit-free zeolite molecular sieve for water softening
CN1267682A (en) Composite nanometer-level polypropylene/montmorillonoid material and its preparation
CN102249255A (en) Anionic-nonionic composite organic montmorillonite and preparation method thereof
JP4190837B2 (en) Organized layered silicate and method for producing the same
CN101443271A (en) Compositions useful to make nanocomposite polymers
FR2547826A1 (en) MODIFIED ORGANOPHILIC CLAYS
TWI564315B (en) Process for the removal of the solvent from a polymeric solution
DE1667502A1 (en) Synthetic clay-like mineral and process for its production
US20060147367A1 (en) Process for the produciton of synthetic magnesium silicate compositons
CN107555445B (en) Aluminum magnesium silicate inorganic gel and preparation method thereof
CN1295187C (en) Process for preparing organic pillared interlayer clay with high stabilization
CN1257103C (en) Method for preparing inorganic gel of aluminium magnesium silicate in high purity
CN1160424C (en) Preparation of organic bentone
JP3075709B2 (en) Composite material
JP2005001946A (en) Production method for organized mica
JP4584561B2 (en) Organoclay complex
JP3283987B2 (en) Nail polish
JPH05279012A (en) Production of synthetic swelling silicate by cross-flow filtration
GB2169274A (en) Silicate complexes and materials containing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees