JP4189806B2 - Thermal shock heat exchanger - Google Patents

Thermal shock heat exchanger Download PDF

Info

Publication number
JP4189806B2
JP4189806B2 JP2003164933A JP2003164933A JP4189806B2 JP 4189806 B2 JP4189806 B2 JP 4189806B2 JP 2003164933 A JP2003164933 A JP 2003164933A JP 2003164933 A JP2003164933 A JP 2003164933A JP 4189806 B2 JP4189806 B2 JP 4189806B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
gas
temperature
temperature gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164933A
Other languages
Japanese (ja)
Other versions
JP2005002819A (en
Inventor
勝規 伊藤
亮 秋吉
政義 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003164933A priority Critical patent/JP4189806B2/en
Publication of JP2005002819A publication Critical patent/JP2005002819A/en
Application granted granted Critical
Publication of JP4189806B2 publication Critical patent/JP4189806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、温度変化率が高く、急激な温度変化を受けても、発生する熱応力が小さく、高い伝熱性能を維持する耐熱衝撃熱交換器に関する。
【0002】
【従来の技術】
図6は、再生ガスタ−ビンサイクルの構成図である。なお本発明の熱交換器は、ガスタービン専用の用途にあらず、高温流体と低温流体の熱交換に用い、高温流体側の著しい温度・流量変化を伴うプロセス部に汎用として用いるものである。
再生ガスタ−ビンサイクルは、熱交換器5を用いて燃焼器4に供給する空気を予熱するものであり、圧縮機1で加圧した空気8を熱交換器5においてタービン2の排気ガス12と熱交換することで、空気11を予熱して燃焼器4に導き燃料7を燃焼させるものである。再生ガスタ−ビンサイクルは、熱交換器5を用いない単純サイクルよりも熱効率が上昇することが知られている。
【0003】
図7は、実際のガスタービンの起動から停止までのタービン回転数と熱交換器ガス入口温度を模式的に示したものである。この図において、タービン回転数を右側の縦軸、熱交換器ガス入口温度を左側の縦軸で示す。横軸は起動から停止までの時間経過である。以下、再生ガスタ−ビンサイクルの起動・停止手順を説明する。
【0004】
起動時において、連結する電動機兼用発電機3に電力を供給し、タービン2を回転駆動し、燃料7を噴射して着火する(13)。次いで、電動機兼用発電機3のアシストなく自立運転しアイドリング状態(14)になった後、燃料流量を増加し出力を上昇させる(15)。
また、停止時には、タービン回転数をアイドリング回転数まで低下させ(17)、回転数、温度、流量、圧力などの諸量が安定したところで、燃料の供給を停止し、消火して運転を停止する(18)。
【0005】
上述したガスタービンの起動・停止サイクルにおいて、着火に必要な空気は、別系統の空気源より起動・自立に足る流量圧力の空気6を圧縮機1の入口部から供給し、燃焼器4の燃料着火に用いる。この着火の際の、燃焼器出口温度の温度上昇の速さは極めて大きく、タービン2を介した熱交換器ガス入口部9の温度上昇も、非常に大きなものとなる。仮にタービン2が回転していれば、その仕事によってタービン出口温度すなわち熱交換器ガス入口温度は低下するが、着火時であるため、タービン2は回転しておらず、その効果は望めない。その結果、図2の実例によると、その熱交換器ガス入口温度の温度変化(16)は100℃/秒以上に達している。
【0006】
また、停止時、特に消火時に、燃料供給パイプのコーキングによる詰まりを防ぐために、消火と同時に燃料パイプ内に不活性ガスを注入しパージすることが一般的に行われる。こうすることで、19のように温度が急降下し、温度変化率としては起動着火時より大きい場合が多い。
【0007】
また、例えばエンジンにトラブルが発生した場合、急激に出力・回転数を低減する必要がある。この場合にも、熱交換器入口部でのガス温度は極めて大きく動揺するため、熱交換器5は大きな温度変化を受ける。例えば、仮に100℃/秒の温度変化があった場合、熱交換器における熱膨張差は、激しい箇所では15〜20mm/秒に達し、通常の金属製熱交換器の場合、熱膨張差を吸収しきれずに破損に至るおそれもある。
【0008】
そのため、従来は、熱交換器の強度設計時のマージンを大きくとるか、タービン側の運転方法を、再生サイクルガスタービン用として、試行錯誤して、燃焼着火手順や構造、制御を含めてその運転プロファイルを作り直していた。
また、同様の問題を解決するため、特許文献1、特許文献2、等が提案されている。
【0009】
特許文献1の「熱交換器の保護装置」は、図8に示すように、低温流体配管系51及び高温流体配管系52に接続し、前記配管内を流れる流体間で熱交換をさせる熱交換器53と、低温流体配管系に接続し熱交換不要時には熱交換器53に流す低温流体を迂回させるバイパス弁54と、熱交換器53の出口側の高温流体配管系に接続して熱交換不要時には熱交換器に高温流体を流さないようにする調節弁55と、調節弁の前後に接続し熱交換不要時にも所定量の高温流体を流す開閉弁56と、熱負荷状態を監視し、熱交換不要時にはバイパス弁及び開閉弁を開放すると共に調節弁の開閉を制御する制御回路57とを備えたものである。なお、図5において、58はボイラ、59はタービンである。この構成により、熱交換器を熱交換不要時にも暖機するようになっている。
【0010】
特許文献2の「バイパス付き熱交換器とこれを用いたガスタービン装置」は、図9に示すように、筒形のケーシング61の内方に低温の第1流体Aと高温の第2流体Eの間の熱交換を行うコア62が収納され、第1流体Aはコアの側面から導入および導出され、第2流体はコアにその前端面から導入されて後端面から導出され、コアの中心部に第2流体を通過させるバイパス通路63が設けられ、さらに、バイパス通路の開度を調整する調整弁64を備え、熱交換器出口での高温の流体の温度を調整するものである。
【0011】
【特許文献1】
特公昭60−17997号公報
【特許文献2】
特開2002−98001号公報
【0012】
【発明が解決しようとする課題】
熱交換器の性能設計として、一般的には、限られたスペースに収まり、かつ排気ガスの圧力損失及び空気圧力損失を許容範囲内に収めつつ、与えられた空気及びガス入口条件から、それぞれの要求仕様に適合する出口条件を見い出す計算を行う。また、強度設計として、定常運転条件で構造強度計算を行い、破壊に至らない構造及び許容応力以下の部材を適用すると共に、起動停止時の非定常温度変化および流量・圧力変化をしている際の強度評価をする必要がある。
熱交換器の強度計算において設計マージンを大きく採ると、ガスタービンなどの熱機関や各種プラントの起動停止をより急激に行っても熱交換器が破壊しないことになるが、強度補強による重量増、コスト高、製造の困難さ、加えて例えば伝熱管の厚さ増加は伝熱性能の低下につながり熱交換器の大型化など悪循環となる。そのため、プラント運転制御への温度変化の緩和を求めなければならないが、着火時などの燃焼温度制御は極めて難しく、特に、圧縮機・タービンなどの高速回転体への負担を要求することは、高速回転体破壊の危険性と、技術的困難さが伴う。
【0013】
本発明は、かかる問題点を解決するために創案されたものである。すなわち本発明の目的は、温度変化率が高く、急激な温度変化を受けても、発生する熱応力が小さく、高い伝熱性能を維持することができる耐熱衝撃熱交換器を提供することにある。
【0014】
【課題を解決するための手段】
本発明によれば、高温ガスが通過するガス流路と、該ガス流路内に設置され前記高温ガスと内部を流れる低温ガスとで熱交換する主熱交換器と、該主熱交換器の上流側のガス流路内に設置され前記高温ガスと内部を流れる低温ガスとで熱交換する補助熱交換器と、前記主熱交換器と前記補助熱交換器に供給する低温ガスの流量比を調整する流量調整バルブと、を備えたことを特徴とする耐熱衝撃熱交換器が提供される。
【0015】
上記本発明の構成によれば、補助熱交換器が主熱交換器の上流側に設置され、高温ガスと内部を流れる低温ガスとで熱交換するので、主熱交換器に流入する高温ガスのピ−ク温度を緩和することができる。
【0016】
本発明の好ましい実施形態によれば、空気を圧縮する圧縮機と、圧縮した空気で燃料を燃焼させる燃焼器と、燃焼ガスで回転駆動するタービンとを有するガスタ−ビン設備に用いる耐熱衝撃熱交換器であって、
前記高温ガスはタービン排ガスであり、前記低温ガスは圧縮した空気であり、前記主熱交換器は、タービン排ガスと圧縮空気との間で熱交換する熱交換器であり、前記補助熱交換器は主熱交換器より上流側のタービン排ガスと圧縮空気との間で熱交換する熱交換器である。
【0017】
この構成により、主熱交換器に流入するタービン排ガスのピ−ク温度を緩和することができる。
【0018】
前記補助熱交換器は、伝熱管の許容熱膨張量が大きく、耐熱性能の高い管型熱交換器である、ことが好ましい。
この構成により、補助熱交換器に生じる熱応力を小さく抑え、かつ主熱交換器に流入する高温ガスのピ−ク温度を緩和することができる。
【0019】
本発明の好ましい第1実施形態によれば、低温ガスが補助熱交換器と主熱交換器に並行して流れるように低温ガスの配管が並列に配置される。
この構成により、補助熱交換器と主熱交換器に流す低温ガスの流量比を自由に調整でき、それぞれ最適化が可能となる。
【0020】
本発明の好ましい第2実施形態によれば、低温ガスが補助熱交換器、主熱交換器の順で流れるように低温ガスの配管が直列に配置される。
この構成により、補助熱交換器に最も低温の低温ガスが流れるため、補助熱交換器における高温側と低温側の温度差が大きく、小さい伝熱面積で大きな熱交換を行うことができる。
【0021】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0022】
図1は、本発明の耐熱衝撃熱交換器を備えたガスタービン設備の第1実施形態図であり、図2は図1のフロー図である。
図1及び図2において、本発明の耐熱衝撃熱交換器は、高温ガス(タービン排ガス10)が通過するガス流路22と、このガス流路内に設置され高温ガスと内部を流れる低温ガス(空気)とで熱交換する主熱交換器5と、主熱交換器5の上流側のガス流路内に設置され高温ガスと内部を流れる低温ガスとで熱交換する補助熱交換器20とを備える。
【0023】
図1及び図2において、このガスタービン設備は、圧縮機1、タービン2、発電機3(電動機兼用発電機)、燃焼器4、及び再生熱交換器5(主熱交換器)を備えた再生サイクルガスタービン装置である。この再生サイクルガスタービン装置は、再生熱交換器5の高温排気ガス入口上流に補助的な熱交換器20を先に設置し、主にガスタービンの起動時および停止時の急激な温度流量変化時において、その変化を緩和させる役目をになわせる。なお、以下、温度変化を緩和させることを主目的に設置した熱交換器を「補助熱交換器20」、これまでの再生熱交換器を「主熱交換器5」と呼称する。
【0024】
図3は図1及び図2の再生サイクルガスタービン装置におけるガスタービンの起動から停止までのタービン回転数と熱交換器各部の温度を示したものである。この図において、Aはタービン回転数(右側の縦軸)、Bはタービン出口温度、Cは補助熱交換器出口排ガス温度、Dは補助熱交換器表面温度である。各温度は左側の縦軸で示す。横軸は起動から停止までの時間経過である。
図3に示すように、起動時には、一般的には圧縮機1、タービン2、主熱交換器5、補助熱交換器20、およびケーシングや配管などは外気温前後の温度で静定している。燃焼器の点火によってきわめて短い時間の間に急激に温度上昇する排気ガス10はタービン2を出た後、主熱交換器5に達する前に、配置した補助熱交換器20を通過しなくてはならない。そのため、補助熱交換器20を通過する排気ガス21は、補助熱交換器20に熱を取られ、ピーク温度が低下する。補助熱交換器の目的は高温ガスの温度ピークカットであり、それにより破壊して信頼性を落としてはならないから、熱膨張の吸収構造など伝熱性能より耐熱構造に重点を置く。
【0025】
停止時には、一般的にはタービン2、熱交換器5、およびケーシング、配管などは定常運転時の温度で静定しているが、ここからアイドリング回転数に落とし、燃焼器4の消火を行うと、タービン出口の急激なピーク温度変化が起こる。しかし、補助熱交換器20があるため、温度低下した排気ガス10は補助熱交換器20を冷やすために費やされ、結果として主熱交換器5へ入る排気ガス温度21のピーク温度は緩和される。
【0026】
補助熱交換器20の配置方法であるが、主熱交換器5へ流入する排気ガスの急激な温度変化の緩和を最も効果的に実施するためには、排気ガス流路を補助熱交換器でできるだけ覆いきることによる排気ガスのバイパス防止が効果的である。また補助熱交換器の温度ピークの低減という目的から、急速な熱交換能力を要求されるので、高い熱伝達率で小さい熱容量が望ましい。そうなると補助熱交換器の構造は複雑になるため、信頼性とコストの面から、適当な設計点を選択する必要がある。また補助熱交換器の圧力損失は予熱空気側排気ガス側とも小さい方がエンジン全体の効率低下になるため、やはり適当な設計点を決めなければならない。
【0027】
図1及び図2の第1実施形態において、エンジン起動時、燃焼器4が着火し、タービン2から高温のタービン排ガス10が流量と同時に温度も急激に増加して排気されてくる。それらのタービン排ガス10は、主熱交換器5に直接流入する前に、補助熱交換器20に衝突する。高温のタービン排ガス10は、補助熱交換器20に強制対流熱伝達によって熱を奪われ、温度の急激なピークを平坦化させられる。そのため補助熱交換器20から排気されるガス温度21は、入口温度の変化に比べて、図3のCで示すように緩やかな温度上昇カーブを描くことになる。したがって主熱交換器5に流入する際には、主熱交換器に急激な熱膨張を起こさせることなく起動を完了させることができる。
【0028】
停止時および何らかのトラブルによって燃焼器4が停止した際には、これとはまったく別の現象が起こる。すなわち、主熱交換器5および補助熱交換器20が定常あるいはアイドリングによって十分加熱されている状態で、流量と温度が停止シーケンスを始める。特に流量はタービンなどの回転体で慣性で回転しているので急激には減少しない。一方温度も、タービンなどの持つ熱容量により、急に下がり続けないものの失火の衝撃により一時的に急激な温度変化を生じる。しかしながら補助熱交換器20に温度低下したタービン排ガス10が当ると、熱伝達により補助熱交換器20は熱交換し、温度変化の初期には自らの熱容量、内部空気より周囲排ガス温度が下がると熱交換によって、排ガス温度の変化の急激な低下を抑える。
【0029】
図4に補助熱交換器の構成例を示す。(A)はU字管を伝熱管とする熱交換器であり、(B)は二重管を伝熱管とする熱交換器である。(C)は(B)の二重管の模式図である。
図4AのU字管(U字チューブ式)では、熱膨張をU字方向に自由に逃すことができる。また安価に製作できる。必要に応じて層状に重ねたり、対向あるいは交互に配置することができる。
図4B、Cの二重管(バヨネット式)では、内管23から冷却空気が外管24内に流れ熱交換を行う。この二重管(バヨネット式)も熱膨張を長さ方向に自由にとることができる。また積層も交互から設置することで排気ガスのバイパスを小さくすることができる。
【0030】
図2の第1実施形態では、低温ガス(空気6)が補助熱交換器20と主熱交換器5に並行して流れるように低温ガスの配管が並列に配置されている。また、2つの空気流量調整バルブ25を備え、補助熱交換器20と主熱交換器5のそれぞれに供給する空気流量を調節できるようになっている。
この構成により、空気フローは、主熱交換器とパラレル配置になっているため、主熱交換器5と補助熱交換器20に流す空気流量比を各空気流量調整バルブ25を調整することで、性能低下を防ぐことができる。また温度ピークが過ぎた後に、補助熱交換器への空気の導入を停止させることができるため、主熱交換器に伝熱性能を任せ、補助熱交換器に温度ピークカットの役目を徹底させることができることになり、それぞれの熱交換器の役割の応じた最適設計が可能となる。
【0031】
図5は、本発明の第2実施形態を示す図2と同様の図である。この第2実施形態では、低温ガス(空気6)が補助熱交換器20、主熱交換器5の順で流れるように低温ガスの配管が直列に配置される。また、補助熱交換器20をバイパスするラインを備え、このバイパスラインに空気流量調整バルブ25を備えている。この構成により、補助熱交換器20に最も低温の低温ガスが流れるため、補助熱交換器における高温側と低温側の温度差が大きく、小さい伝熱面積で大きな熱交換を行うことができる。
【0032】
上述したように、本発明の耐熱衝撃熱交換器を備えたガスタービン設備では、ガスタービン起動、停止、トラブル時の、熱交換器への急激な過熱冷却が低減でき、熱交換器の信頼性が向上する。また、熱交換器設計時の安全係数を小さくできるため、伝熱部も薄くでき、熱交換性能の向上が望める。更に、熱交換器設計時に構造強度の基準を緩めることができ、材料の低減、製作時間の減少、などコストダウンができる。また、熱交換器の寿命が延び、メンテナンス期間を長くとることができる。従って、従来のガスタービンの運転制御方法に大幅な変更を加えることなく、再生サイクル式に適用することができ、信頼性の維持とコストダウンを図ることができる。
【0033】
なお本発明は上述した実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。例えば、上述した実施形態では、本発明の耐熱衝撃熱交換器を備えたガスタービン設備について詳述したが、本発明はガスタービン設備に限定されず、高温ガスと低温ガスの間で熱交換するあらゆる熱交換器に適用することができる。
【0034】
【発明の効果】
上述したように、本発明の耐熱衝撃熱交換器は、温度変化率が高く、急激な温度変化を受けても、発生する熱応力が小さく、高い伝熱性能を維持することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の耐熱衝撃熱交換器を備えたガスタービン設備の第1実施形態図である。
【図2】図1のフロー図である。
【図3】図1及び図2の再生サイクルガスタービン装置におけるガスタービンの起動から停止までのタービン回転数と熱交換器各部の温度を示す図である。
【図4】補助熱交換器の構成例を示す図である。
【図5】本発明の第2実施形態を示す図2と同様の図である。
【図6】再生ガスタ−ビンサイクルの構成図である。
【図7】実際のガスタービンの起動から停止までのタービン回転数と熱交換器ガス入口温度を模式的に示す図である。
【図8】特許文献1の「熱交換器の保護装置」の模式図である。
【図9】特許文献2の「バイパス付き熱交換器とこれを用いたガスタービン装置」の模式図である。
【符号の説明】
1 圧縮機、2 タービン、3 発電機(電動機兼用発電機)、
4 燃焼器、5 主熱交換器(再生熱交換器)、7 燃料、
6,8,11 空気、9 燃焼ガス、10 タービン排ガス、
12 排気ガス、20 補助熱交換器、21 排気ガス、
22 ガス流路、23 内管、24 外管、
25 空気流量調整バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant shock heat exchanger that has a high rate of temperature change and generates a small thermal stress even when subjected to a sudden temperature change, and maintains high heat transfer performance.
[0002]
[Prior art]
FIG. 6 is a configuration diagram of the regeneration gas turbine cycle. Note that the heat exchanger of the present invention is not used exclusively for gas turbines, but is used for heat exchange between a high-temperature fluid and a low-temperature fluid, and is used as a general purpose in a process section that involves significant temperature / flow rate changes on the high-temperature fluid side.
The regeneration gas turbine cycle preheats the air supplied to the combustor 4 using the heat exchanger 5, and the air 8 pressurized by the compressor 1 is combined with the exhaust gas 12 of the turbine 2 in the heat exchanger 5. By exchanging heat, the air 11 is preheated and led to the combustor 4 to burn the fuel 7. It is known that the regeneration gas turbine cycle has higher thermal efficiency than a simple cycle that does not use the heat exchanger 5.
[0003]
FIG. 7 schematically shows the turbine rotational speed and the heat exchanger gas inlet temperature from the start to the stop of the actual gas turbine. In this figure, the turbine rotational speed is indicated on the right vertical axis, and the heat exchanger gas inlet temperature is indicated on the left vertical axis. The horizontal axis is the time elapsed from start to stop. Hereinafter, the start / stop procedure of the regeneration gas turbine cycle will be described.
[0004]
At startup, electric power is supplied to the motor / generator 3 to be connected, the turbine 2 is rotationally driven, fuel 7 is injected, and ignition is performed (13). Next, the motor-cum-generator 3 operates independently without assistance and enters an idling state (14), and then the fuel flow rate is increased to increase the output (15).
When the engine is stopped, the turbine speed is reduced to the idling speed (17), and when various values such as the speed, temperature, flow rate, and pressure are stabilized, the fuel supply is stopped, the fire is extinguished, and the operation is stopped. (18).
[0005]
In the gas turbine start / stop cycle described above, the air required for ignition is supplied from the inlet of the compressor 1 with air 6 having a flow rate pressure sufficient to start and self-support from an air source of another system. Used for ignition. During this ignition, the speed of the temperature rise of the combustor outlet temperature is extremely high, and the temperature rise of the heat exchanger gas inlet 9 via the turbine 2 is also very large. If the turbine 2 is rotating, the turbine outlet temperature, that is, the heat exchanger gas inlet temperature is lowered by the work, but the turbine 2 is not rotating because of ignition, and the effect cannot be expected. As a result, according to the example of FIG. 2, the temperature change (16) of the heat exchanger gas inlet temperature reaches 100 ° C./second or more.
[0006]
Further, in order to prevent clogging of the fuel supply pipe due to coking at the time of stoppage, particularly when the fire is extinguished, it is generally performed to inject and purge the inert gas into the fuel pipe simultaneously with the extinction. By doing so, the temperature drops rapidly as in 19 and the temperature change rate is often larger than that at the start ignition.
[0007]
Further, for example, when trouble occurs in the engine, it is necessary to rapidly reduce the output and the rotational speed. In this case as well, the gas temperature at the inlet of the heat exchanger fluctuates extremely greatly, so that the heat exchanger 5 undergoes a large temperature change. For example, if there is a temperature change of 100 ° C./second, the thermal expansion difference in the heat exchanger reaches 15 to 20 mm / second in a severe place, and in the case of a normal metal heat exchanger, the thermal expansion difference is absorbed. There is also a risk of breakage without being able to fill.
[0008]
Therefore, in the past, it was necessary to increase the margin when designing the strength of the heat exchanger, or to use the turbine side operation method for the regenerative cycle gas turbine by trial and error, including the combustion ignition procedure, structure, and control. I was re-creating my profile.
In order to solve the same problem, Patent Document 1, Patent Document 2, and the like have been proposed.
[0009]
As shown in FIG. 8, the “heat exchanger protection device” of Patent Document 1 is connected to a low-temperature fluid piping system 51 and a high-temperature fluid piping system 52, and performs heat exchange between fluids flowing in the piping. The heat exchanger 53 is connected to a low-temperature fluid piping system and bypasses the low-temperature fluid flowing through the heat exchanger 53 when heat exchange is unnecessary, and is connected to the high-temperature fluid piping system on the outlet side of the heat exchanger 53 to eliminate heat exchange. Sometimes a control valve 55 that prevents high-temperature fluid from flowing through the heat exchanger, an open / close valve 56 that is connected before and after the control valve and allows a predetermined amount of high-temperature fluid to flow even when heat exchange is unnecessary, and monitors the heat load state, A control circuit 57 is provided for opening and closing the bypass valve and the on-off valve when switching is unnecessary and for controlling the opening and closing of the control valve. In FIG. 5, 58 is a boiler and 59 is a turbine. With this configuration, the heat exchanger is warmed up even when heat exchange is unnecessary.
[0010]
As shown in FIG. 9, a “heat exchanger with a bypass and a gas turbine device using the same” in Patent Document 2 includes a low-temperature first fluid A and a high-temperature second fluid E inside a cylindrical casing 61. The core 62 that performs heat exchange between the first fluid A and the second fluid is introduced and led out from the side surface of the core, and the second fluid is introduced into the core from the front end surface and led out from the rear end surface. A bypass passage 63 for allowing the second fluid to pass therethrough is provided, and an adjustment valve 64 for adjusting the opening degree of the bypass passage is further provided to adjust the temperature of the high-temperature fluid at the outlet of the heat exchanger.
[0011]
[Patent Document 1]
Japanese Patent Publication No. 60-17997 [Patent Document 2]
JP 2002-98001 A
[Problems to be solved by the invention]
The performance design of a heat exchanger is generally limited to a limited space, and the exhaust gas pressure loss and the air pressure loss are within the allowable range. Perform calculations to find exit conditions that meet the required specifications. In addition, as a strength design, structural strength calculation is performed under steady operating conditions, a structure that does not lead to failure and a member with allowable stress or less are applied, and an unsteady temperature change and flow / pressure change at start and stop It is necessary to evaluate the strength.
If a large design margin is taken in calculating the strength of the heat exchanger, the heat exchanger will not be destroyed even if the heat engine such as a gas turbine or various plants are started and stopped more rapidly. High cost, difficulty in production, and, for example, an increase in the thickness of the heat transfer tube lead to a decrease in the heat transfer performance, which causes a vicious circle such as an increase in the size of the heat exchanger. For this reason, it is necessary to mitigate temperature changes in plant operation control, but it is extremely difficult to control the combustion temperature during ignition, and it is particularly difficult to demand a burden on high-speed rotating bodies such as compressors and turbines. There is a risk of rotating body destruction and technical difficulties.
[0013]
The present invention has been developed to solve such problems. That is, an object of the present invention is to provide a heat-resistant shock heat exchanger that has a high temperature change rate, generates a small thermal stress even when subjected to a sudden temperature change, and can maintain high heat transfer performance. .
[0014]
[Means for Solving the Problems]
According to the present invention, a gas flow path through which a high-temperature gas passes, a main heat exchanger that is installed in the gas flow path and exchanges heat between the high-temperature gas and the low-temperature gas flowing inside, and the main heat exchanger An auxiliary heat exchanger installed in the upstream gas flow path and exchanging heat between the high temperature gas and the low temperature gas flowing inside, and a flow rate ratio of the low temperature gas supplied to the main heat exchanger and the auxiliary heat exchanger There is provided a thermal shock heat exchanger characterized by comprising a flow rate adjusting valve for adjusting .
[0015]
According to the configuration of the present invention, the auxiliary heat exchanger is installed on the upstream side of the main heat exchanger, and heat exchange is performed between the high temperature gas and the low temperature gas flowing therein, so that the high temperature gas flowing into the main heat exchanger The peak temperature can be relaxed.
[0016]
According to a preferred embodiment of the present invention, a thermal shock heat exchange for use in a gas turbine facility having a compressor that compresses air, a combustor that burns fuel with the compressed air, and a turbine that is rotationally driven by combustion gas. A vessel,
The high temperature gas is turbine exhaust gas, the low temperature gas is compressed air, the main heat exchanger is a heat exchanger that exchanges heat between turbine exhaust gas and compressed air, and the auxiliary heat exchanger is This is a heat exchanger that exchanges heat between the turbine exhaust gas upstream of the main heat exchanger and the compressed air.
[0017]
With this configuration, the peak temperature of the turbine exhaust gas flowing into the main heat exchanger can be relaxed.
[0018]
The auxiliary heat exchanger is preferably a tube heat exchanger having a large allowable heat expansion amount of the heat transfer tube and high heat resistance.
With this configuration, it is possible to reduce the thermal stress generated in the auxiliary heat exchanger and reduce the peak temperature of the hot gas flowing into the main heat exchanger.
[0019]
According to the first preferred embodiment of the present invention, the piping for the low temperature gas is arranged in parallel so that the low temperature gas flows in parallel to the auxiliary heat exchanger and the main heat exchanger.
With this configuration, the flow rate ratio of the low-temperature gas flowing through the auxiliary heat exchanger and the main heat exchanger can be freely adjusted, and each can be optimized.
[0020]
According to the second preferred embodiment of the present invention, the piping of the low temperature gas is arranged in series so that the low temperature gas flows in the order of the auxiliary heat exchanger and the main heat exchanger.
With this configuration, since the coldest low temperature gas flows through the auxiliary heat exchanger, the temperature difference between the high temperature side and the low temperature side in the auxiliary heat exchanger is large, and large heat exchange can be performed with a small heat transfer area.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0022]
FIG. 1 is a diagram showing a first embodiment of a gas turbine facility equipped with a thermal shock heat exchanger according to the present invention, and FIG. 2 is a flowchart of FIG.
1 and 2, the thermal shock heat exchanger according to the present invention includes a gas flow path 22 through which a high-temperature gas (turbine exhaust gas 10) passes, and a high-temperature gas and a low-temperature gas (inside this gas flow path) that flows inside the gas flow path. A main heat exchanger 5 that exchanges heat with the air) and an auxiliary heat exchanger 20 that is installed in a gas flow channel upstream of the main heat exchanger 5 and exchanges heat between the high-temperature gas and the low-temperature gas flowing inside. Prepare.
[0023]
1 and 2, this gas turbine equipment includes a compressor 1, a turbine 2, a generator 3 (electric generator / generator), a combustor 4, and a regeneration heat exchanger 5 (main heat exchanger). It is a cycle gas turbine device. In this regeneration cycle gas turbine apparatus, an auxiliary heat exchanger 20 is first installed upstream of the high-temperature exhaust gas inlet of the regeneration heat exchanger 5, mainly when a sudden temperature flow rate change occurs when the gas turbine starts and stops. In the role of alleviating that change. Hereinafter, the heat exchanger installed mainly for the purpose of relaxing the temperature change is referred to as “auxiliary heat exchanger 20”, and the regenerative heat exchanger so far is referred to as “main heat exchanger 5”.
[0024]
FIG. 3 shows the turbine rotation speed and the temperature of each part of the heat exchanger from the start to the stop of the gas turbine in the regeneration cycle gas turbine apparatus of FIGS. 1 and 2. In this figure, A is the turbine speed (right vertical axis), B is the turbine outlet temperature, C is the auxiliary heat exchanger outlet exhaust gas temperature, and D is the auxiliary heat exchanger surface temperature. Each temperature is shown on the left vertical axis. The horizontal axis is the time elapsed from start to stop.
As shown in FIG. 3, at the time of start-up, generally, the compressor 1, the turbine 2, the main heat exchanger 5, the auxiliary heat exchanger 20, the casing, the piping, and the like are settled at temperatures around the outside air temperature. . Exhaust gas 10 whose temperature rises abruptly in a very short time due to the ignition of the combustor must pass through the auxiliary heat exchanger 20 arranged after leaving the turbine 2 and before reaching the main heat exchanger 5. Don't be. Therefore, the exhaust gas 21 passing through the auxiliary heat exchanger 20 is heated by the auxiliary heat exchanger 20, and the peak temperature is lowered. The purpose of the auxiliary heat exchanger is to cut the temperature peak of the hot gas, and it should not be destroyed to reduce the reliability. Therefore, the heat-resistant structure such as the heat expansion absorbing structure is emphasized.
[0025]
When the engine is stopped, generally, the turbine 2, the heat exchanger 5, the casing, the piping, and the like are settled at the temperature during steady operation, but when the idling speed is reduced from here, the combustor 4 is extinguished. A sudden peak temperature change occurs at the turbine outlet. However, since the auxiliary heat exchanger 20 is present, the exhaust gas 10 whose temperature has decreased is consumed to cool the auxiliary heat exchanger 20, and as a result, the peak temperature of the exhaust gas temperature 21 entering the main heat exchanger 5 is relaxed. The
[0026]
Although the auxiliary heat exchanger 20 is arranged, in order to most effectively reduce the sudden temperature change of the exhaust gas flowing into the main heat exchanger 5, the exhaust gas flow path is formed by an auxiliary heat exchanger. It is effective to prevent exhaust gas bypass by covering as much as possible. Moreover, since a rapid heat exchange capability is required for the purpose of reducing the temperature peak of the auxiliary heat exchanger, a small heat capacity with a high heat transfer rate is desirable. If so, the structure of the auxiliary heat exchanger becomes complicated, and it is necessary to select an appropriate design point from the viewpoint of reliability and cost. Also, if the pressure loss of the auxiliary heat exchanger is smaller on both the preheated air side and the exhaust gas side, the efficiency of the entire engine will be reduced, so an appropriate design point must also be determined.
[0027]
In the first embodiment of FIGS. 1 and 2, when the engine is started, the combustor 4 is ignited, and the high-temperature turbine exhaust gas 10 is exhausted from the turbine 2 at a rapid increase in temperature at the same time as the flow rate. These turbine exhaust gases 10 collide with the auxiliary heat exchanger 20 before flowing directly into the main heat exchanger 5. The high-temperature turbine exhaust gas 10 is deprived of heat by forced convection heat transfer to the auxiliary heat exchanger 20, and the rapid peak of the temperature is flattened. Therefore, the gas temperature 21 exhausted from the auxiliary heat exchanger 20 draws a gradual temperature rise curve as shown by C in FIG. 3 compared to the change in the inlet temperature. Therefore, when flowing into the main heat exchanger 5, the start-up can be completed without causing rapid thermal expansion of the main heat exchanger.
[0028]
When the combustor 4 is stopped due to a stoppage or some trouble, a completely different phenomenon occurs. That is, the flow rate and temperature start a stop sequence in a state where the main heat exchanger 5 and the auxiliary heat exchanger 20 are sufficiently heated by steady or idling. In particular, the flow rate does not decrease abruptly because it rotates with inertia in a rotating body such as a turbine. On the other hand, the temperature also temporarily changes suddenly due to the shock of misfire, although it does not continue to drop suddenly due to the heat capacity of the turbine or the like. However, when the turbine exhaust gas 10 whose temperature has decreased hits the auxiliary heat exchanger 20, the auxiliary heat exchanger 20 exchanges heat by heat transfer, and heat is generated when the ambient exhaust gas temperature falls below its own heat capacity and internal air at the beginning of the temperature change. By exchanging, the rapid decrease of the exhaust gas temperature is suppressed.
[0029]
FIG. 4 shows a configuration example of the auxiliary heat exchanger. (A) is a heat exchanger having a U-shaped tube as a heat transfer tube, and (B) is a heat exchanger having a double tube as a heat transfer tube. (C) is a schematic diagram of the double pipe of (B).
In the U-shaped tube (U-shaped tube type) in FIG. 4A, thermal expansion can be freely released in the U-shaped direction. It can also be manufactured at low cost. If necessary, they can be stacked in layers or opposed or alternately arranged.
4B and 4C, the cooling air flows from the inner tube 23 into the outer tube 24 to exchange heat. This double tube (bayonet type) can also take thermal expansion freely in the length direction. Further, by stacking the layers alternately, the exhaust gas bypass can be reduced.
[0030]
In the first embodiment of FIG. 2, the low temperature gas pipes are arranged in parallel so that the low temperature gas (air 6) flows in parallel to the auxiliary heat exchanger 20 and the main heat exchanger 5. In addition, two air flow rate adjusting valves 25 are provided so that the flow rate of air supplied to each of the auxiliary heat exchanger 20 and the main heat exchanger 5 can be adjusted.
With this configuration, since the air flow is arranged in parallel with the main heat exchanger, by adjusting each air flow rate adjustment valve 25 to adjust the air flow rate flowing through the main heat exchanger 5 and the auxiliary heat exchanger 20, Performance degradation can be prevented. In addition, since the introduction of air to the auxiliary heat exchanger can be stopped after the temperature peak has passed, the main heat exchanger should be responsible for heat transfer performance, and the auxiliary heat exchanger should be fully responsible for cutting the temperature peak. Therefore, the optimum design according to the role of each heat exchanger becomes possible.
[0031]
FIG. 5 is a view similar to FIG. 2 showing the second embodiment of the present invention. In the second embodiment, the low-temperature gas pipes are arranged in series so that the low-temperature gas (air 6) flows in the order of the auxiliary heat exchanger 20 and the main heat exchanger 5. Moreover, the line which bypasses the auxiliary heat exchanger 20 is provided, and the air flow rate adjustment valve 25 is provided in this bypass line. With this configuration, since the coldest low-temperature gas flows through the auxiliary heat exchanger 20, the temperature difference between the high temperature side and the low temperature side in the auxiliary heat exchanger is large, and large heat exchange can be performed with a small heat transfer area.
[0032]
As described above, in the gas turbine equipment equipped with the thermal shock heat exchanger of the present invention, the rapid overheating cooling to the heat exchanger at the time of starting, stopping and trouble of the gas turbine can be reduced, and the reliability of the heat exchanger Will improve. In addition, since the safety factor at the time of designing the heat exchanger can be reduced, the heat transfer section can also be made thinner, and improvement in heat exchange performance can be expected. Furthermore, the structural strength criteria can be relaxed when designing the heat exchanger, and the cost can be reduced by reducing materials and manufacturing time. In addition, the life of the heat exchanger is extended and the maintenance period can be extended. Therefore, the present invention can be applied to the regeneration cycle type without significantly changing the operation control method of the conventional gas turbine, and the reliability can be maintained and the cost can be reduced.
[0033]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the above-described embodiment, the gas turbine equipment provided with the thermal shock heat exchanger of the present invention has been described in detail. However, the present invention is not limited to the gas turbine equipment, and heat is exchanged between the high temperature gas and the low temperature gas. Can be applied to any heat exchanger.
[0034]
【The invention's effect】
As described above, the thermal shock heat exchanger of the present invention has a high rate of temperature change, and even when subjected to an abrupt temperature change, the generated thermal stress is small and high heat transfer performance can be maintained. Has an excellent effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of a gas turbine facility equipped with a thermal shock heat exchanger according to the present invention.
FIG. 2 is a flowchart of FIG.
FIG. 3 is a diagram showing the turbine rotation speed from the start to the stop of the gas turbine and the temperature of each part of the heat exchanger in the regeneration cycle gas turbine apparatus of FIGS. 1 and 2;
FIG. 4 is a diagram illustrating a configuration example of an auxiliary heat exchanger.
FIG. 5 is a view similar to FIG. 2 showing a second embodiment of the present invention.
FIG. 6 is a configuration diagram of a regeneration gas turbine cycle.
FIG. 7 is a diagram schematically showing the turbine rotational speed and heat exchanger gas inlet temperature from start to stop of an actual gas turbine.
FIG. 8 is a schematic diagram of a “heat exchanger protection device” in Patent Document 1.
FIG. 9 is a schematic diagram of “a heat exchanger with a bypass and a gas turbine device using the same” in Patent Document 2.
[Explanation of symbols]
1 Compressor, 2 Turbine, 3 Generator (motor / generator),
4 combustors, 5 main heat exchangers (regenerative heat exchangers), 7 fuel,
6, 8, 11 Air, 9 Combustion gas, 10 Turbine exhaust gas,
12 exhaust gas, 20 auxiliary heat exchanger, 21 exhaust gas,
22 gas flow path, 23 inner pipe, 24 outer pipe,
25 Air flow control valve

Claims (6)

高温ガスが通過するガス流路と、該ガス流路内に設置され前記高温ガスと内部を流れる低温ガスとで熱交換する主熱交換器と、該主熱交換器の上流側のガス流路内に設置され前記高温ガスと内部を流れる低温ガスとで熱交換する補助熱交換器と、前記主熱交換器と前記補助熱交換器に供給する低温ガスの流量比を調整する流量調整バルブと、を備えたことを特徴とする耐熱衝撃熱交換器。A gas flow path through which the high-temperature gas passes, a main heat exchanger installed in the gas flow path to exchange heat between the high-temperature gas and the low-temperature gas flowing inside, and a gas flow path upstream of the main heat exchanger an auxiliary heat exchanger for exchanging heat between the low temperature gas is provided through the inside and the hot gas within the flow rate adjusting valve for adjusting the flow rate of the low-temperature gas supplied to the auxiliary heat exchanger and the main heat exchanger , heat shock heat exchanger comprising the. 工業炉などに用いる空気を予熱し、その空気によって効率を高めるための耐熱衝撃熱交換器であって、
前記低温ガスは空気であり、前記主熱交換器は、高温ガスと空気との間で熱交換する熱交換器であり、前記補助熱交換器は主熱交換器より上流側の高温ガスと空気との間で熱交換する熱交換器である、ことを特徴とする請求項1に記載の耐熱衝撃熱交換器。
A heat shock heat exchanger for preheating air used for industrial furnaces, etc.
The low temperature gas is air, the main heat exchanger is a heat exchanger that exchanges heat between the high temperature gas and air, and the auxiliary heat exchanger is a high temperature gas and air upstream of the main heat exchanger. The heat-resistant shock heat exchanger according to claim 1, wherein the heat-shock heat exchanger exchanges heat with each other.
空気を圧縮する圧縮機と、圧縮した空気で燃料を燃焼させる燃焼器と、燃焼ガスで回転駆動するタービンとを有するガスタ−ビン設備に用いる耐熱衝撃熱交換器であって、
前記高温ガスはタービン排ガスであり、前記低温ガスは圧縮した空気であり、前記主熱交換器は、タービン排ガスと圧縮空気との間で熱交換する熱交換器であり、前記補助熱交換器は主熱交換器より上流側のタービン排ガスと圧縮空気との間で熱交換する熱交換器である、ことを特徴とする請求項1に記載の耐熱衝撃熱交換器。
A heat-resistant shock heat exchanger for use in a gas turbine facility having a compressor that compresses air, a combustor that burns fuel with the compressed air, and a turbine that is rotationally driven by combustion gas,
The high temperature gas is turbine exhaust gas, the low temperature gas is compressed air, the main heat exchanger is a heat exchanger that exchanges heat between turbine exhaust gas and compressed air, and the auxiliary heat exchanger is The heat-resistant shock heat exchanger according to claim 1, wherein the heat-shock heat exchanger is a heat exchanger that exchanges heat between turbine exhaust gas upstream of the main heat exchanger and compressed air.
前記補助熱交換器は、伝熱管の許容熱膨張量が大きく、耐熱性能の高い管型熱交換器である、ことを特徴とする請求項1に記載の耐熱衝撃熱交換器。  The heat-resistant shock heat exchanger according to claim 1, wherein the auxiliary heat exchanger is a tubular heat exchanger having a large allowable heat expansion amount of a heat transfer tube and high heat resistance. 低温ガスが補助熱交換器と主熱交換器に並行して流れるように低温ガスの配管が並列に配置される、ことを特徴とする請求項1に記載の耐熱衝撃熱交換器。  The heat-resistant shock heat exchanger according to claim 1, wherein the low-temperature gas pipes are arranged in parallel so that the low-temperature gas flows in parallel to the auxiliary heat exchanger and the main heat exchanger. 低温ガスが補助熱交換器、主熱交換器の順で流れるように低温ガスの配管が直列に配置される、ことを特徴とする請求項1に記載の耐熱衝撃熱交換器。  The heat-resistant shock heat exchanger according to claim 1, wherein the low-temperature gas pipes are arranged in series so that the low-temperature gas flows in the order of the auxiliary heat exchanger and the main heat exchanger.
JP2003164933A 2003-06-10 2003-06-10 Thermal shock heat exchanger Expired - Fee Related JP4189806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164933A JP4189806B2 (en) 2003-06-10 2003-06-10 Thermal shock heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164933A JP4189806B2 (en) 2003-06-10 2003-06-10 Thermal shock heat exchanger

Publications (2)

Publication Number Publication Date
JP2005002819A JP2005002819A (en) 2005-01-06
JP4189806B2 true JP4189806B2 (en) 2008-12-03

Family

ID=34091570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164933A Expired - Fee Related JP4189806B2 (en) 2003-06-10 2003-06-10 Thermal shock heat exchanger

Country Status (1)

Country Link
JP (1) JP4189806B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479086B (en) 2006-08-18 2012-02-01 福井县 Multiaxially reinforced laminated moldings and process for production thereof
WO2008062818A1 (en) 2006-11-22 2008-05-29 Fukui Prefectural Government Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material

Also Published As

Publication number Publication date
JP2005002819A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4627907B2 (en) Method and apparatus for supplying cooling air to a turbine engine
EP3075957B1 (en) Heat pipe temperature management system for a turbomachine
US8127547B2 (en) Gas turbine engine with air and fuel cooling system
EP3075985A1 (en) Heat pipe cooled turbine casing system for clearance management
US6393822B2 (en) Cooling steam supply method of a combined cycle power generation plant
US4291754A (en) Thermal management of heat exchanger structure
JP2004510096A (en) Compressed air steam generator used in combustion turbine transition
JP2006183666A (en) Control method for steam turbine thrust pressure
JPS61237802A (en) Warming-up method for steam turbine
JP5665621B2 (en) Waste heat recovery boiler and power plant
BRPI0613011A2 (en) Method for starting a steam turbine installation
JP4241239B2 (en) gas turbine
KR950006874B1 (en) Gas turbine apparatus with a tube-nested combustion chamber type combustor
JP4189806B2 (en) Thermal shock heat exchanger
JP4787715B2 (en) Gas turbine equipment
TWI695117B (en) Plant control device, plant control method and power plant
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
JP4457339B2 (en) Thermal shock heat exchanger
US7954324B2 (en) Gas turbine engine
JP3964709B2 (en) Gas turbine fuel gas supply system and operation method thereof
JP3268295B1 (en) gas turbine
US8635876B2 (en) Gas turbine for a thermal power plant, and method for operating such a gas turbine
JP2016186240A (en) Gas turbine and its operational method thereof, and combined cycle plant
US11927116B2 (en) Methods and systems for starting and stopping a closed-cycle turbomachine
EP2995801B1 (en) Heat storage mechanism of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees