JP4189133B2 - High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same - Google Patents

High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same Download PDF

Info

Publication number
JP4189133B2
JP4189133B2 JP2001090731A JP2001090731A JP4189133B2 JP 4189133 B2 JP4189133 B2 JP 4189133B2 JP 2001090731 A JP2001090731 A JP 2001090731A JP 2001090731 A JP2001090731 A JP 2001090731A JP 4189133 B2 JP4189133 B2 JP 4189133B2
Authority
JP
Japan
Prior art keywords
carbon steel
less
low carbon
annealing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001090731A
Other languages
Japanese (ja)
Other versions
JP2002285278A (en
Inventor
好弘 齋藤
伸泰 辻
林太郎 上路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001090731A priority Critical patent/JP4189133B2/en
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to PCT/JP2002/002848 priority patent/WO2002077310A1/en
Priority to CNB028073398A priority patent/CN1279203C/en
Priority to EP02713191A priority patent/EP1394279B1/en
Priority to US10/471,545 priority patent/US20040112484A1/en
Priority to KR10-2003-7012534A priority patent/KR20030080101A/en
Priority to DE60205744T priority patent/DE60205744T2/en
Publication of JP2002285278A publication Critical patent/JP2002285278A/en
Priority to US11/548,532 priority patent/US20070084529A1/en
Application granted granted Critical
Publication of JP4189133B2 publication Critical patent/JP4189133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Description

【0001】
【発明の属する技術分野】
本発明は、普通低炭素鋼または0.01%以下でマルテンサイト変態促進に有効な量のBを添加した普通低炭素鋼を加工・熱処理しオーステナイト結晶粒を100μm以上に粗大化させた後に水冷することによりマルテンサイト相が90%以上である鋼材を得、該鋼材を全圧下率20%以上80%未満で冷間圧延し,500℃以上600℃未満で焼鈍するような低ひずみ加工・焼鈍により得られた引張強さが800MPa以上であり、均一伸びが5%以上、破断伸びが20%以上である高強度・高延性低炭素鋼材、および該高強度・高延性低炭素鋼材の製造方法に関する。本明細書において、普通低炭素鋼とは、炭素含有量が0.2%以下(本明細書では特にことわらない限り重量%を意味する。)、Mnが1.6%以下、Siが0.5%以下、Pが0.05%以下、そしてSが0.05%以下の鋼材である。微量(0.01%以下)のBを添加した普通低炭素鋼とは、前記普通低炭素鋼に焼入れ性を向上させるために0.01%以下でマルテンサイト変態促進に有効な量のBを添加したものである。
【0002】
【従来の技術】
建築物の高層化による空間の利用性の向上、自動車、船舶などの省エネルギー化、また、資源のリサイクル性の向上は、鉄鋼材料にも要求されている。前二者の要求を満たすためには鉄鋼材料を高強度・高延性のものとする必要があり、資源のリサイクル性は、前記高強度・高延性を合金元素の添加によることなく、普通低炭素鋼を用いて達成することが望ましい。前記鋼材に要求される高度な特性を満たすために、いくつかのプロジェクトが設立されている。これらのプロジェクトでは、スーパーメタル(または超鉄鋼)プロジェクトと称して、現在の「400MPa級組成鋼」を結晶粒径1μm以下の超微細結晶粒化を実現して、前記2倍の強度「800MPa」を持ち、延性があり,かつ溶接し易いフェライト組織鋼を作ろう、というものである。当該分野において、鋼のフェライト結晶粒径の微細化による強度の向上にはホールペッチ(Hall−Petch)の関係が成り立つこと、すなわち、鋼のフェライト結晶径を細かくすることにより降伏応力と引張強さが上昇すること、またこれと同時に靱性が向上することが知られている。しかし、一般に引張試験における伸びが低下するという問題がある。
【0003】
CAMP−ISIJ Vol.11(1998)1031−1034には、溶接容易な400MPa級の組成鋼から、強度を800MPa級に上昇させた鋼を得ることの検討の中で、フェライト−炭化物組織で粒径1μm以下を達成することを目標とすることが記載されている。そして、その目標を達成するための具体的手段として、厚さ8mmの試料をオーステナイト化処理(1100℃、60秒)後、水冷してマルテンサイト組織を得、これに640℃で2軸熱間圧延(全圧下率90%)を施した鋼材のフェライト組織は等軸微細化して、公称粒径が0.77μmとなり、引張強さが760MPaに相当するビッカース硬さ245のものが得られたことを報告している。しかしながら、そのバルク鋼材から強度試験用の試験片を作って、直接引張り強度を測定したことの報告はないし、更に伸びについては全く言及していない。また、ここで使用されている鋼材は、焼入性確保のためMn含有量を2.03%に高めたものである上、マルテンサイト化した鋼材の圧延を640℃の熱間で行っている。
【0004】
更に、前記高強度、高靱性、高延性化の要求を満足する鋼材の開発においては、合金元素を添加する固溶強化法、析出強化法,変態強化法などが研究されているが、合金元素を多量に含むため高価であるし、リサイクル性を悪くする問題がある。そこで合金元素の添加によらない結晶粒の微細化による強化法が研究され報告もあるが、いずれも大ひずみ加工によるものであり、特殊な加工設備を必要とするという問題がある。本発明者等も、出発鋼材組織がフェライト−パーライトのものを用いて、大ひずみ加工である室温ARB(繰り返し重ね接合圧延:Accumulative Roll-Bonding)と焼鈍との組合せにより得られる組織と機械的性質の変化を検討したが、大ひずみ加工後もセメンタイトが存在する領域と存在しない領域が混在する不均一な組織となるため、焼鈍時にフェライト粒径が大きく異なる不均一な混粒組織が生成し、所望の高強度、高延性の鋼材を得ることはできなかった。
【0005】
普通低炭素鋼の超微細フェライト結晶粒組織を実現するのに、マルテンサイト組織から出発するという発想は、超鉄鋼の開発を推進する、STX−21プロジェクトやスーパーメタルプロジェクトでも使っており、新規なものとは言えない。しかしながら、その方法で実際に引張強さ800MPa以上で、均一伸び5%以上,かつ破断伸びが20%以上の高強度・高延性低炭素鋼は実現されていない。特に、低ひずみ加工により高強度・高延性および高延性の鋼材を得ることの発想は全く存在しない。
【0006】
【発明が解決しようとする課題】
本願発明の課題は、前記所望される特性を持った鋼材を、従来の鋼材の製造工程をあまり変形することなく製造できる方法を提供すること、および前記所望の特性を持つ鋼材を提供することである。前記したように、超微細フェライト結晶粒組織を実現するのに、マルテンサイト組織を出発組織とするという発想は公知である。しかし、焼き入れ性の悪い普通低炭素鋼を製造工程の中で全面的にマルテンサイト組織とすることは困難と考えられていた。本発明者らは、従来の製造工程の変更を少なくして、マルテンサイト鋼を、引張強度が800MPa以上であり、均一伸びが5%以上で破断伸びが20%以上の高強度・高延性普通低炭素鋼材を製造するための原料とするために、先ず、原料マルテンサイトと、その後の処理により得られる鋼材の強度、延性などの特性との関連を検討する中で、オーステナイト結晶粒を粗大化させた後に水冷することにより得られたマルテンサイト相が90%以上の鋼材は、低ひずみ加工、すなわち、全圧下率20%以上80%未満の冷間圧延と焼鈍により前記所望の強度、均一伸び、破断伸びなどの特性を持った高強度・高延性低炭素鋼材を得ることができることを発見して前記課題を解決することができた。すなわち、該低ひずみ加工・焼鈍と該加工・焼鈍に供する特定の鋼材との組み合わせにより、前記課題を解決した。
【0007】
【課題を解決するための手段】
本発明の第1は、普通低炭素鋼または0.01%以下でマルテンサイト変態促進に有効な量のBを添加した普通低炭素鋼のオーステナイト結晶粒を100μm以上に粗大化させた後に水冷することにより得られたマルテンサイト相が90%以上の鋼材を全圧下率20%以上80%未満の冷間圧延と焼鈍により平均結晶粒径を1.0μm以下の超微細結晶粒フェライト組織とする低ひずみ加工・焼鈍して得られた引張強度が800MPa以上であり、均一伸びが5%以上で破断伸びが20%以上である高強度・高靱性低炭素鋼材である。
【0008】
本発明の第2は、普通低炭素鋼または0.01%以下でマルテンサイト変態促進に有効な量のBを添加した普通低炭素鋼のオーステナイト結晶粒を100μm以上に粗大化させた後に水冷することによりマルテンサイト相が90%以上である鋼材を得、該鋼材を全圧下率20%以上80%未満の冷間圧延と500℃以上600℃未満の焼鈍により平均結晶粒径を1.0μm以下の超微細結晶粒フェライト組織とすることを特徴とする引張強度が800MPa以上であり、均一伸びが5%以上で破断伸びが20%以上である高強度・高延性低炭素鋼材を製造する方法である。
【0009】
【本発明の実施の態様】
本発明をより詳細に説明する。A.本発明を説明するための、試験方法、測定装置などをまとめて説明する。1,引張試験片の形状はJIS5号試験片の1/5の大きさ(平行部長さ10mm×平行部幅5mm)である。2,光学顕微鏡、TEMの観察試料は公知の方法により作成した。
【0010】
B、本発明の特徴を図を参照しながら説明する。図1は一般構造用圧延鋼材(JIS−SS400)(C 0.13%, Si0.01%, Mn 0.37%, P 0.02%, S 0.004%,sol.Al 0.04%)の厚さ2mmの熱延版(受入材)を,1000℃で15分間オーステナイト化処理してオーステナイト粒径を100〜200μmに粗大化した後に水冷して得られた焼入れ材の縦断面の光学顕微鏡組織写真である。約4%の初析フェライトを含む粗大なマルテンサイト組織である。
【0011】
図2は図1の焼入れ材を多パス冷間圧延により全圧下率50%(a),および70%(b)まで圧延して得られた冷間圧延材の縦断面の光学顕微鏡組織写真である。旧オーステナイト粒界に析出した初析フェライトが黒いコントラストで観察される。通常、炭素鋼のマルテンサイトは焼入れままでは加工性が悪いとされるが、低炭素鋼マルテンサイト、少なくとも本発明の処方により形成されたものは70%以上の冷間圧延が可能であることを図2は示している。
【0012】
図3は図1の焼入れ材、図2の冷間圧延材の引張試験による公称応力-公称ひずみ曲線である。参考のためフェライト-パーライト組織を有する受入れ材の公称応力-公称ひずみ曲線を破線で示した。焼入れにより引張強さは410MPaから1100MPaに上昇し、更に25%冷間圧延により1340MPa,50%冷間圧延により1470MPa,70%冷間圧延により1640MPaに上昇している。しかしながら破断伸びは焼入れ材で約10%、冷間圧延材では約6%である。また冷間圧延材の均一伸びは1%以下である。
【0013】
図4は図3の50%冷間圧延材及びそれを各種温度で30分間焼鈍した焼鈍材の引張試験による公称応力-公称ひずみ曲線である。焼鈍により強度は低下するが,500℃以上の焼鈍により延性が回復し、500℃〜550℃では強度があまり下がらずに破断伸びと均一伸びが明瞭に増加している。その結果、550℃焼鈍材において引張強さ870MPa、0.2%耐力710MPa、破断伸び21%、均一伸び8%の超高強度・高延性鋼が得られた。
【0014】
図5は50%冷間圧延材とその焼鈍材の引張強さ、0.2%耐力、破断伸び、均一伸びと焼鈍温度の関係を示す。破断伸びと均一伸びは焼鈍温度が525℃を超えると急激に回復するが、引張強さは500℃から550℃の間で殆ど一定となっている。これが550℃において超高強度・高延性鋼が得られた原因である。
【0015】
図6は50%冷間圧延・焼鈍材の縦断面のTEM組織写真である。400℃焼鈍材(a)の組織は圧延材と同様のマルテンサイトラスに由来する層状組織である。500℃焼鈍材(b)では等軸形状の粒径100〜300nmの超微細結晶粒が広い範囲で観察された。図には示さないが(b)の制限視野回折図形よりこれらの微細等軸粒は大角粒界に囲まれており、サブグレインではないことが明らかになっている。550℃焼鈍材も同様の超微細粒組織であるが、600℃では粒径が数μmまで粗大化した結晶粒と球状に析出したセメンタイトが観察された。このセメンタイトの析出が500℃以上で起こり、結晶粒成長を抑制することによって、100〜300nmの超微細粒組織を発生させ、同時に均一伸びに必要な加工硬化能を賦与したと考えられる。以上のように低炭素鋼マルテンサイトを出発組織として、圧下率50%という低ひずみ加工と550℃焼鈍により超微細フェライト結晶粒組織が得られ、超高強度・高延性低炭素鋼が得られることが明らかとなった。
【0016】
図7に本発明の鋼であるマルテンサイトの50%冷間圧延・焼鈍材(○)および従来技術のフェライト+パーライト組織を出発組織とした大ひずみ加工材(97%冷間圧延材)(△)の強度−延性バランスを示す。前記したように、フェライト−パーライト組織を出発組織とし大ひずみ加工を行った場合、焼鈍により得られる組織は混粒組織となり、所望の高強度・高延性は得られなかった。これに対して、本発明のマルテンサイトの冷間圧延・焼鈍材では強度−延性バランスは図7から明瞭に分かるように、引張強度800MPa以上でかつ破断伸び20%以上の条件を満たす実験点が得られている。
【0017】
【発明の効果】
以上述べたように、0.13%C普通低炭素鋼(JIS-SS400)について本発明のマルテンサイト組織を出発組織として50%冷間圧延後焼鈍を行うと粒径100〜300nmの超微細フェライト結晶粒組織が得られ、また550℃で30分間焼鈍において引張強さ870MPaで破断伸びが21%、均一伸び8%と極めて優れた機械的性質を持った鋼が得られる、という優れた効果がもたらされる。
【図面の簡単な説明】
【図1】1000℃で15分間オーステナイト化熱処理後水冷した普通低炭素鋼板(JIS−SS400,厚さ2mm)の縦断面の光学顕微鏡組織
【図2】普通低炭素鋼(JIS−SS400)のマルテンサイト組織を出発組織とする冷間圧延材の縦断面の光学顕微鏡組織.(a)50%冷間圧延,(b)70%冷間圧延
【図3】普通低炭素鋼(JIS−SS400)の焼入材と各種圧下率冷間圧延材の公称応力-公称ひずみ曲線
【図4】普通低炭素鋼(JIS−SS400)のマルテンサイト組織を出発組織とする50%冷間圧延材,およびそれを各種温度で30分間焼鈍した材料の公称応力-公称ひずみ曲線
【図5】普通低炭素鋼(JIS−SS400)のマルテンサイト組織を出発組織とする50%冷間圧延・焼鈍材の焼鈍温度と機械的性質の関係
【図6】普通低炭素鋼(JIS−SS400)のマルテンサイト組織を出発組織とする50%冷間圧延・焼鈍材の縦断面のTEM組織.(a)400℃,(b)500℃,(c)550℃,(d)600℃,各温度30分間焼鈍
【図7】普通低炭素鋼(JIS−SS400)のマルテンサイト組織を出発組織とし50%冷間圧延後各種温度で30分間焼鈍した材料とフェライト+パーライト組織を出発組織としARBにより97%冷間圧延後各種温度で30分間焼鈍した材料の引張強さと破断伸びの関係(強度−延性バランス)の比較
[0001]
BACKGROUND OF THE INVENTION
In the present invention, ordinary low carbon steel or ordinary low carbon steel with 0.01% or less of B added in an amount effective for promoting martensitic transformation is processed and heat-treated to coarsen austenite crystal grains to 100 μm or more and then water-cooled. give the steel the martensite phase is 90% or more by, cold rolled steel materials in total reduction rate less than 20% or more 80%, strain low as annealed at less than 500 ° C. or higher 600 ° C. processing -A high strength / high ductility low carbon steel material having a tensile strength of 800 MPa or more obtained by annealing, a uniform elongation of 5% or more, and a breaking elongation of 20% or more, and the high strength / high ductility low carbon steel material. It relates to a manufacturing method. In the present specification, the ordinary low carbon steel means that the carbon content is 0.2% or less (in this specification, it means wt% unless otherwise specified), Mn is 1.6% or less, and Si is 0. .5% or less, P is 0.05% or less, and S is 0.05% or less. The ordinary low carbon steel to which a small amount (0.01% or less) of B is added is an amount of B effective to promote martensitic transformation at 0.01% or less in order to improve the hardenability of the ordinary low carbon steel. It is what was added.
[0002]
[Prior art]
Steel materials are required to improve the space utilization by increasing the number of buildings, save energy in automobiles, ships, etc., and improve the recyclability of resources. In order to meet the requirements of the former two, it is necessary to make steel materials of high strength and high ductility, and the recyclability of resources is usually low carbon without adding the alloying elements to the high strength and high ductility. It is desirable to achieve using steel. Several projects have been established to meet the advanced properties required for the steel. In these projects, the super-metal (or super steel) project is called, and the current “400 MPa class composition steel” is realized by ultrafine graining with a crystal grain size of 1 μm or less, and the double strength “800 MPa” is achieved. It is intended to make a ferritic steel that has a ductility and is easy to weld. In this field, the Hall-Petch relationship is established to improve the strength by reducing the ferrite crystal grain size of steel, that is, the yield stress and the tensile strength are reduced by reducing the ferrite crystal diameter of the steel. It is known that it rises and at the same time the toughness improves. However, there is a problem that the elongation in the tensile test is generally lowered.
[0003]
CAMP-ISIJ Vol. 11 (1998) 1031-1034 achieves a grain size of 1 μm or less with a ferrite-carbide structure in the study of obtaining steel having a strength increased to 800 MPa class from easily welded 400 MPa class steel. It has been described goals and be Rukoto that. As a specific means for achieving the target, an 8 mm thick sample was austenitized (1100 ° C., 60 seconds), then cooled with water to obtain a martensite structure, and this was biaxially hot at 640 ° C. The ferritic structure of the rolled steel (total reduction ratio 90%) was refined equiaxed to have a nominal particle size of 0.77 μm and a Vickers hardness of 245 corresponding to a tensile strength of 760 MPa. Has been reported. However, there is no report of making a test piece for strength test from the bulk steel material and measuring the tensile strength directly, and no mention is made of elongation at all. In addition, the steel used here has Mn content increased to 2.03% in order to ensure hardenability, and the martensitic steel is rolled at 640 ° C. hot. .
[0004]
Furthermore, in the development of steel materials that satisfy the requirements for high strength, high toughness, and high ductility, solid solution strengthening methods, alloy precipitation strengthening methods, transformation strengthening methods, and the like are being studied. This is expensive because it contains a large amount, and there is a problem that the recyclability is deteriorated. Therefore, there have been researches and reports on strengthening methods by refining crystal grains that do not involve the addition of alloying elements, but they all involve large strain processing and have the problem of requiring special processing equipment. The present inventors also use a structure having a starting steel material of ferrite-pearlite, and a structure and mechanical properties obtained by a combination of room temperature ARB (Accumulative Roll-Bonding), which is large strain processing, and annealing. However, since a non-uniform structure where cementite is present and non-existent is mixed even after large strain processing, a non-uniform mixed-grain structure with significantly different ferrite grain sizes is generated during annealing. The desired high strength and high ductility steel material could not be obtained.
[0005]
The idea of starting from the martensite structure to realize the ultrafine ferrite grain structure of ordinary low carbon steel is also used in the STX-21 project and super metal project that promote the development of super steel. Not a thing. However, a high strength / high ductility low carbon steel having a tensile strength of 800 MPa or more, a uniform elongation of 5% or more, and a breaking elongation of 20% or more has not been realized by this method. In particular, there is no idea of obtaining a steel material having high strength, high ductility and high ductility by low strain processing.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a steel material having the desired characteristics without significantly changing the manufacturing process of a conventional steel material, and to provide a steel material having the desired characteristics. is there. As described above, the idea of using a martensite structure as a starting structure for realizing an ultrafine ferrite crystal grain structure is known. However, it has been considered that it is difficult to make a general low carbon steel with poor hardenability into a martensite structure throughout the manufacturing process. The present inventors reduced the number of changes in the conventional manufacturing process, and the martensitic steel has a high strength and high ductility that has a tensile strength of 800 MPa or more, a uniform elongation of 5% or more, and a breaking elongation of 20% or more. In order to make a raw material for producing low-carbon steel materials, first, austenite grains are coarsened while examining the relationship between raw material martensite and properties such as strength and ductility of the steel material obtained by subsequent processing. the martensite phase of not less than 90% of the steel material obtained by water cooling after the low strain working, i.e., the desired strength by annealing and cold rolling the total reduction rate less than 20% or more 80%, It was discovered that a high strength and high ductility low carbon steel material having characteristics such as uniform elongation and elongation at break could be obtained, and the above-mentioned problems could be solved. That is, the said subject was solved by the combination of this low distortion processing and annealing and the specific steel materials with which it uses for this processing and annealing.
[0007]
[Means for Solving the Problems]
In the first aspect of the present invention, the austenite crystal grains of ordinary low carbon steel or ordinary low carbon steel to which 0.01% or less of an effective amount of B added to promote martensite transformation is coarsened to 100 μm or more and then water-cooled. The steel material having a martensite phase of 90% or more obtained by the above is made into an ultrafine-grained ferrite structure having an average grain size of 1.0 μm or less by cold rolling and annealing with a total rolling reduction of 20% or more and less than 80%. strain processing and annealing to the resulting tensile strength of not less than 800 MPa, elongation at break in a uniform elongation of 5% or more Ru high strength and high toughness low carbon steel der that is 20% or more.
[0008]
In the second aspect of the present invention, the austenite crystal grains of ordinary low carbon steel or ordinary low carbon steel to which 0.01% or less of an effective amount of B added for martensite transformation promotion is coarsened to 100 μm or more and then water-cooled. give the steel the martensite phase is 90% or more by the average crystal grain size by annealing below the steel material to cold rolling and 500 ° C. or higher 600 ° C. of the total rolling reduction below 20% or more 80% 1. A high-strength and high-ductility low-carbon steel material having a tensile strength of 800 MPa or more, a uniform elongation of 5% or more and a breaking elongation of 20% or more, characterized by having an ultrafine-grained ferrite structure of 0 μm or less Is the method.
[0009]
[Embodiments of the present invention]
The present invention will be described in more detail. A. A test method, a measuring apparatus, etc. for explaining the present invention will be described together. 1. The shape of the tensile test piece is 1/5 the size of the JIS No. 5 test piece (parallel portion length 10 mm × parallel portion width 5 mm). 2. Observation samples for optical microscope and TEM were prepared by a known method.
[0010]
B. The features of the present invention will be described with reference to the drawings. 1 shows rolled steel for structural use (JIS-SS400) (C 0.13%, Si 0.01%, Mn 0.37%, P 0.02%, S 0.004%, sol.Al 0.04% ) Of 2 mm thick hot rolled plate (accepting material) at 1000 ° C. for 15 minutes to austenite, coarsen the austenite grain size to 100-200 μm and then water-cooled. It is a microscope structure photograph. It is a coarse martensite structure containing about 4% pro-eutectoid ferrite.
[0011]
2 is an optical micrograph of the longitudinal section of the cold rolled material obtained by rolling the quenched material of FIG. 1 to 50% (a) and 70% (b) of the total reduction by multi-pass cold rolling. is there. Proeutectoid ferrite precipitated at the prior austenite grain boundaries is observed with black contrast. Normally, the martensite of carbon steel is said to have poor workability as it is quenched, but low-carbon steel martensite, at least those formed by the formulation of the present invention, can be cold-rolled by 70% or more. FIG.
[0012]
FIG. 3 is a nominal stress-nominal strain curve obtained by a tensile test of the quenched material of FIG. 1 and the cold rolled material of FIG. For reference, the nominal stress-nominal strain curve of a receiving material having a ferrite-pearlite structure is shown by a broken line. The tensile strength increases from 410 MPa to 1100 MPa by quenching, and further increases to 1340 MPa by 25% cold rolling, 1470 MPa by 50% cold rolling, and 1640 MPa by 70% cold rolling. However, the elongation at break is about 10% for the hardened material and about 6% for the cold rolled material. The uniform elongation of the cold rolled material is 1% or less.
[0013]
FIG. 4 is a nominal stress-nominal strain curve obtained by a tensile test of the 50% cold-rolled material of FIG. 3 and an annealed material obtained by annealing it for 30 minutes at various temperatures. Although the strength is reduced by annealing, the ductility is restored by annealing at 500 ° C. or higher, and the elongation at break and uniform elongation are clearly increased at 500 ° C. to 550 ° C. without significantly decreasing the strength. As a result, an ultrahigh strength / high ductility steel having a tensile strength of 870 MPa, a 0.2% proof stress of 710 MPa, a breaking elongation of 21% and a uniform elongation of 8% was obtained in the annealed material at 550 ° C.
[0014]
FIG. 5 shows the relationship between the tensile strength, 0.2% yield strength, elongation at break, uniform elongation and annealing temperature of a 50% cold rolled material and its annealed material. The elongation at break and uniform elongation recover rapidly when the annealing temperature exceeds 525 ° C, but the tensile strength is almost constant between 500 ° C and 550 ° C. This is the reason why ultra-high strength and high ductility steel was obtained at 550 ° C.
[0015]
FIG. 6 is a TEM micrograph of a longitudinal section of a 50% cold rolled / annealed material. The structure of the 400 ° C. annealed material (a) is a layered structure derived from martensite lath similar to the rolled material. In the 500 ° C. annealed material (b), equiaxed ultrafine crystal grains having a grain size of 100 to 300 nm were observed in a wide range. Although not shown in the figure, it is clear from the limited field diffraction pattern of (b) that these fine equiaxed grains are surrounded by large-angle grain boundaries and are not subgrains. The annealed material at 550 ° C. has a similar ultrafine grain structure, but at 600 ° C., crystal grains coarsened to several μm and cementite precipitated in a spherical shape were observed. This precipitation of cementite occurs at 500 ° C. or higher and suppresses the growth of crystal grains, thereby generating an ultrafine grain structure of 100 to 300 nm and simultaneously imparting work hardening ability necessary for uniform elongation. As described above, starting from low carbon steel martensite, ultrafine ferrite grain structure can be obtained by low strain processing with a reduction rate of 50% and annealing at 550 ° C, and ultrahigh strength and high ductility low carbon steel should be obtained. Became clear.
[0016]
FIG. 7 shows a martensite 50% cold-rolled / annealed material (○), which is the steel of the present invention, and a large strain processed material (97% cold-rolled material) starting from a conventional ferrite + pearlite structure (△) ) Strength-ductility balance. As described above, when large strain processing was performed using a ferrite-pearlite structure as a starting structure, the structure obtained by annealing was a mixed grain structure, and desired high strength and high ductility were not obtained. On the other hand, in the martensitic cold-rolled / annealed material of the present invention, as can be clearly seen from FIG. 7, the experimental point satisfying the conditions that the tensile strength is 800 MPa or more and the breaking elongation is 20% or more. Has been obtained.
[0017]
【The invention's effect】
As described above, when 0.13% C ordinary low carbon steel (JIS-SS400) is annealed after 50% cold rolling using the martensite structure of the present invention as a starting structure, ultrafine ferrite having a particle size of 100 to 300 nm is obtained. An excellent effect is obtained that a crystal grain structure is obtained and a steel having extremely excellent mechanical properties such as an elongation at break of 21% and a uniform elongation of 8% at a tensile strength of 870 MPa when annealed at 550 ° C. for 30 minutes. Brought about.
[Brief description of the drawings]
FIG. 1 is an optical microscopic structure of a normal low carbon steel plate (JIS-SS400, thickness 2 mm) of ordinary low carbon steel (JIS-SS400, thickness 2 mm) which has been subjected to austenitizing heat treatment at 1000 ° C. for 15 minutes and then water cooled. FIG. Optical microscope structure of the longitudinal section of a cold rolled material starting from the site structure. (a) 50% cold rolling, (b) 70% cold rolling [Fig. 3] Nominal stress-nominal strain curve of quenching material of various ordinary low carbon steels (JIS-SS400) and various rolling reduction cold rolling materials 【 Fig. 4 Nominal stress-nominal strain curve of 50% cold-rolled steel starting from the martensitic structure of ordinary low carbon steel (JIS-SS400) and materials annealed at various temperatures for 30 minutes. Relationship between annealing temperature and mechanical properties of 50% cold-rolled / annealed material starting from the martensitic structure of ordinary low carbon steel (JIS-SS400) Fig. 6 Martens of ordinary low carbon steel (JIS-SS400) TEM structure of longitudinal section of 50% cold-rolled / annealed material starting from the site structure. (a) 400 ° C., (b) 500 ° C., (c) 550 ° C., (d) 600 ° C., annealing for 30 minutes at each temperature. [FIG. 7] The martensitic structure of ordinary low carbon steel (JIS-SS400) is used as the starting structure. Relationship between tensile strength and elongation at break of materials annealed at various temperatures for 30 minutes after 50% cold rolling and materials annealed at various temperatures for 30 minutes after cold rolling with 97% ARB using ferrite + pearlite structure (strength- Comparison of ductility balance

Claims (4)

普通低炭素鋼または0.01%以下でマルテンサイト変態促進に有効な量のBを添加した普通低炭素鋼のオーステナイト結晶粒を100μm以上に粗大化させた後に水冷することにより得られたマルテンサイト相が90%以上の鋼材を全圧下率20%以上80%未満の冷間圧延と焼鈍により平均結晶粒径を1.0μm以下の超微細結晶粒フェライト組織とする低ひずみ加工して得られた引張強度が800MPa以上であり、均一伸びが5%以上、破断伸びが20%以上の高強度・高延性低炭素鋼材。Martensite obtained by coarsening austenite crystal grains of ordinary low carbon steel or normal low carbon steel with 0.01% or less of an effective amount of B added to promote martensite transformation to 100 μm or more and then water cooling. It was obtained by low-strain processing of a steel material having a phase of 90% or more to an ultrafine-grained ferrite structure having an average grain size of 1.0 μm or less by cold rolling and annealing with a total rolling reduction of 20% or more and less than 80% . A high strength, high ductility low carbon steel material having a tensile strength of 800 MPa or more, a uniform elongation of 5% or more, and a breaking elongation of 20% or more. 焼鈍を500℃以上600℃未満で行うことを特徴とする請求項1に記載の高強度・高延性低炭素鋼材。The high strength / high ductility low carbon steel material according to claim 1 , wherein annealing is performed at 500 ° C. or more and less than 600 ° C. 普通低炭素鋼または0.01%以下でマルテンサイト変態促進に有効な量のBを添加した普通低炭素鋼を加工・熱処理し、オーステナイト結晶粒を100μm以上に粗大化させた後に水冷することによりマルテンサイト相が90%以上である鋼材を得、該鋼材を全圧下率20%以上80%未満の冷間圧延と焼鈍により平均結晶粒径を1.0μm以下の超微細結晶粒フェライト組織とすることを特徴とする引張強度が800MPa以上であり、均一伸びが5%以上、破断伸びが20%以上の高強度・高延性低炭素鋼材を製造する方法。By processing and heat-treating ordinary low-carbon steel or ordinary low-carbon steel to which B is added in an amount of 0.01% or less and effective in promoting martensitic transformation, the austenite grains are coarsened to 100 μm or more and then cooled with water. give the steel the martensite phase is 90% or more, the steel material a total reduction rate of 20% of less than 8 0% on more than a by annealing cold rolling average grain size less 1.0μm ultrafine grain ferrite A method for producing a high strength and high ductility low carbon steel material having a tensile strength of 800 MPa or more, a uniform elongation of 5% or more, and a breaking elongation of 20% or more. 冷間圧延を全圧下率20%以上80%未満で行った後、500℃以上600℃未満で焼鈍を行うことを特徴とする請求項3に記載の高強度・高延性低炭素鋼材を製造する方法。After cold rolling with total reduction rate less than 20% or more 80%, high strength and high ductility low carbon steel according to claim 3, characterized in that performing the annealing at lower than 500 ° C. or higher 600 ° C. How to manufacture.
JP2001090731A 2001-03-27 2001-03-27 High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same Expired - Fee Related JP4189133B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001090731A JP4189133B2 (en) 2001-03-27 2001-03-27 High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same
CNB028073398A CN1279203C (en) 2001-03-27 2002-03-25 High strength and high ductility steel plate having hyperfine crystal grain structure produced by subjecting ordinary low carbon steel to low strain working and annealing,and method for prodn. thereof
EP02713191A EP1394279B1 (en) 2001-03-27 2002-03-25 High strength and high ductility steel plate having hyperfine crystal grain structure produced by subjecting ordinary low carbon steel to low strain working and annealing, and method for production thereof
US10/471,545 US20040112484A1 (en) 2001-03-27 2002-03-25 High strength and high ductility steel sheet plate having hyperfine crystal grain structure produced by ordinary low carbon steel to low strain working and annealing, and method for production thereof
PCT/JP2002/002848 WO2002077310A1 (en) 2001-03-27 2002-03-25 High strength and high ductility steel plate having hyperfine crystal grain structure produced by subjecting ordinary low carbon steel to low strain working and annealing, and method for production thereof
KR10-2003-7012534A KR20030080101A (en) 2001-03-27 2002-03-25 High strength and high ductility steel plate having hyperfine crystal grain structure produced by subjecting ordinary low carbon steel to low strain working and annealing, and method for production thereof
DE60205744T DE60205744T2 (en) 2001-03-27 2002-03-25 HIGH STRENGTH AND HIGH-DUCTILE STEEL PLATE WITH HYPERFINE CRYSTAL CORRUGATED STRUCTURE MANUFACTURED BY MOBILIZATION PROCESSING AND GLOWING OF COMMON CARBON STEEL STEEL, AND METHOD OF MANUFACTURING THEREOF
US11/548,532 US20070084529A1 (en) 2001-03-27 2006-10-11 High strength and high ductility steel sheet having ultrafine crystalline grain structure obtained by low strain processing and annealing of ordinary low carbon steel, and a method for producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090731A JP4189133B2 (en) 2001-03-27 2001-03-27 High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002285278A JP2002285278A (en) 2002-10-03
JP4189133B2 true JP4189133B2 (en) 2008-12-03

Family

ID=18945478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090731A Expired - Fee Related JP4189133B2 (en) 2001-03-27 2001-03-27 High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same

Country Status (7)

Country Link
US (2) US20040112484A1 (en)
EP (1) EP1394279B1 (en)
JP (1) JP4189133B2 (en)
KR (1) KR20030080101A (en)
CN (1) CN1279203C (en)
DE (1) DE60205744T2 (en)
WO (1) WO2002077310A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098292A1 (en) 2009-02-24 2010-09-02 株式会社デルタツーリング Manufacturing method and heat-treatment device for high-strength, highly-tough thin steel
WO2010101040A1 (en) 2009-03-05 2010-09-10 株式会社デルタツーリング Structural material

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050271496A1 (en) * 2002-10-17 2005-12-08 National Institute For Materials Science Formed product and method for production thereof
JP4284405B2 (en) * 2002-10-17 2009-06-24 独立行政法人物質・材料研究機構 Tapping screw and its manufacturing method
WO2006057430A1 (en) * 2004-11-24 2006-06-01 National Institute For Materials Science Process for producing high-strength molding, high-strength molding obtained thereby and high-strength machine screw
JP4681290B2 (en) * 2004-12-03 2011-05-11 本田技研工業株式会社 High strength steel plate and manufacturing method thereof
US8070888B2 (en) * 2005-02-28 2011-12-06 National Institute For Materials Science High strength formed article comprising hyperfine grain structure steel and manufacturing method of the same
WO2007132607A1 (en) * 2006-05-17 2007-11-22 National Institute For Materials Science Steel sheet, steel sheet coil, and process for producing the same
KR20090016480A (en) 2006-06-01 2009-02-13 혼다 기켄 고교 가부시키가이샤 High-strength steel sheet and process for producing the same
JP5252128B2 (en) 2010-05-27 2013-07-31 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
EP2562034B1 (en) * 2011-08-25 2017-10-04 Adient Luxembourg Holding S.à r.l. Profile component for a vehicle seat, method and device for producing a profile component
US8518195B2 (en) * 2012-01-20 2013-08-27 GM Global Technology Operations LLC Heat treatment for producing steel sheet with high strength and ductility
US9410222B2 (en) 2012-06-19 2016-08-09 Buffalo Armory Llc Method and apparatus for treating a steel article
US9410220B2 (en) 2012-06-19 2016-08-09 Buffalo Armory Llc Method and apparatus for treating a steel article
AU2013205082B2 (en) * 2013-04-13 2017-04-27 Infrabuild Construction Solutions Pty Ltd Steel product and method of producing the product
CN107438487B (en) * 2014-12-19 2021-01-12 纽科尔公司 Hot-rolled light martensitic steel plate and manufacturing method thereof
CN106435132B (en) * 2016-10-27 2018-04-24 华北理工大学 A kind of processing method of low-carbon alloy steel
CZ308041B6 (en) * 2018-05-18 2019-11-13 Univerzita J. E. Purkyně V Ústí Nad Labem Heat treatment method of low carbon boron steels
CN112417740B (en) * 2020-12-14 2024-01-26 中南大学 Accurate measurement method for low-temperature fracture elongation of aluminum alloy for aerospace
CN114635018B (en) * 2022-03-23 2024-01-26 安徽工业大学 Method for reinforcing and plasticizing Q345 low-carbon steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578124A (en) * 1984-01-20 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho High strength low carbon steels, steel articles thereof and method for manufacturing the steels
CA2004548C (en) * 1988-12-05 1996-12-31 Kenji Aihara Metallic material having ultra-fine grain structure and method for its manufacture
JPH02301540A (en) * 1989-05-15 1990-12-13 Sumitomo Metal Ind Ltd Fine grained ferrite steel
JP2537118B2 (en) * 1992-10-07 1996-09-25 新日本製鐵株式会社 Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JP3383148B2 (en) * 1996-04-10 2003-03-04 新日本製鐵株式会社 Manufacturing method of high strength steel with excellent toughness
BR9806104A (en) * 1997-06-26 1999-08-31 Kawasaki Steel Co Superfine granulation steel tube and process for its production.
JP2000192139A (en) * 1998-12-28 2000-07-11 Kawasaki Steel Corp Thermomechanical treating method for steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098292A1 (en) 2009-02-24 2010-09-02 株式会社デルタツーリング Manufacturing method and heat-treatment device for high-strength, highly-tough thin steel
WO2010101040A1 (en) 2009-03-05 2010-09-10 株式会社デルタツーリング Structural material

Also Published As

Publication number Publication date
DE60205744D1 (en) 2005-09-29
KR20030080101A (en) 2003-10-10
EP1394279A4 (en) 2004-07-21
US20040112484A1 (en) 2004-06-17
EP1394279B1 (en) 2005-08-24
DE60205744T2 (en) 2006-06-22
WO2002077310A1 (en) 2002-10-03
EP1394279A1 (en) 2004-03-03
CN1279203C (en) 2006-10-11
CN1500155A (en) 2004-05-26
JP2002285278A (en) 2002-10-03
US20070084529A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4189133B2 (en) High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
Xie et al. Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP6338024B2 (en) High strength steel plate and manufacturing method thereof
CN106756517B (en) A kind of steel plate and its manufacturing method for polar region ship
JP2001011575A (en) Bar steel and steel wire for machine structure excellent in cold workability and its production
JP2005336526A (en) High strength steel sheet having excellent workability and its production method
JP2004232022A (en) Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor
JP2005179703A (en) High strength steel sheet having excellent elongation and stretch-flange formability
Ghosh et al. An ultra low carbon Cu bearing steel: influence of thermomechanical processing and aging heat treatment on structure and properties
CN108220812A (en) A kind of super ferrite stainless steel of plasticity containing rare earth high-strength and preparation method thereof
JP2018090874A (en) High-strength steel sheet excellent in bake hardenability and method for manufacturing the same
Ding et al. Effect of intercritical temperature on quenching and partitioning steels originated from martensitic pre-microstructure
CN105102659B (en) Nitrogen treatment steel plate and its manufacture method
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
CN108950150A (en) Manganese Q&P steel heat treatment process in superhigh intensity cold rolling based on complete austenitizing
JP2004183064A (en) Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor
Achary Tensile properties of austempered ductile iron under thermomechanical treatment
CN110402298A (en) High strength cold rolled steel plate and its manufacturing method
JP2808675B2 (en) Fine grain bainite steel
JP3873111B2 (en) Ultra fine ferritic steel
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees