JP4187755B2 - Gas flow control device - Google Patents

Gas flow control device Download PDF

Info

Publication number
JP4187755B2
JP4187755B2 JP2006118740A JP2006118740A JP4187755B2 JP 4187755 B2 JP4187755 B2 JP 4187755B2 JP 2006118740 A JP2006118740 A JP 2006118740A JP 2006118740 A JP2006118740 A JP 2006118740A JP 4187755 B2 JP4187755 B2 JP 4187755B2
Authority
JP
Japan
Prior art keywords
thermal power
gas
secondary pressure
flow rate
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006118740A
Other languages
Japanese (ja)
Other versions
JP2006214724A (en
Inventor
圭一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2006118740A priority Critical patent/JP4187755B2/en
Publication of JP2006214724A publication Critical patent/JP2006214724A/en
Application granted granted Critical
Publication of JP4187755B2 publication Critical patent/JP4187755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/005Regulating fuel supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • F23N2225/06Measuring pressure for determining flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

本発明は、ガスコンロ等のガス調理器具に使用され、ガス調理器具に設けたガスバーナの設定火力の変化を少なくするガス流量制御装置に関する。   The present invention relates to a gas flow rate control device that is used in a gas cooking appliance such as a gas stove and reduces a change in the set thermal power of a gas burner provided in the gas cooking appliance.

この種のガス流量制御装置は、例えば、ガスバーナの混合管に接続されたガス噴射ノズルに連なるガス通路を有し、ガス通路には、例えばステッピングモータで駆動されてガス通路の開度を変更する火力調節手段が設けられている(例えば、特許文献1参照)。   This type of gas flow control device has, for example, a gas passage connected to a gas injection nozzle connected to a mixing pipe of a gas burner, and the gas passage is driven by, for example, a stepping motor to change the opening of the gas passage. Thermal power adjusting means is provided (see, for example, Patent Document 1).

火力調節手段の下流側であってガス噴射ノズルの上流側のガス通路には、燃料ガスの二次圧を検知する二次圧検知手段である圧力センサが設けられている。このガス流量制御装置を、例えばガスコンロに設けてガスバーナの火力を調節する場合、ガスコンロには火力調節手段の開度を制御するマイコンが設けられており、火力を中間火力にする場合には、圧力センサで検知した二次圧が、中間火力時の二次圧として予め記憶された値に一致するようにモータを制御して火力調節手段の開度を調節する。   A pressure sensor, which is a secondary pressure detecting means for detecting the secondary pressure of the fuel gas, is provided in the gas passage on the downstream side of the thermal power adjusting means and the upstream side of the gas injection nozzle. For example, when the gas flow rate control device is provided in a gas stove to adjust the thermal power of the gas burner, the gas stove is provided with a microcomputer for controlling the opening degree of the thermal power control means. The motor is controlled to adjust the opening degree of the thermal power adjusting means so that the secondary pressure detected by the sensor matches the value stored in advance as the secondary pressure at the time of the intermediate thermal power.

ところで、複数のガスバーナを設けたガスコンロでは、器具内の温度変化が大きい。このような雰囲気中に圧力センサを設けると温度変化に伴って圧力センサの特性が変化してその出力が変化する。特に、ガス器具の小型化に伴って小型の圧力センサを用いた場合、その特性の変化量は大きい。
特開2001−56118号公報(図2)
By the way, in the gas stove provided with the several gas burner, the temperature change in an instrument is large. When a pressure sensor is provided in such an atmosphere, the characteristics of the pressure sensor change with changes in temperature, and the output changes. In particular, when a small pressure sensor is used as the gas appliance is downsized, the amount of change in the characteristics is large.
JP 2001-56118 A (FIG. 2)

しかしながら、上記のものでは、圧力センサの特性変化に対応して補正を行っていない。このため、圧力センサで検知した検知値を予め記憶させた値に一致させても、その時のガスバーナの火力が、圧力センサの特性が変化する前のガスバーナの火力と一致しない。   However, in the above, correction is not performed in response to a change in the characteristics of the pressure sensor. For this reason, even if the detection value detected by the pressure sensor is matched with the value stored in advance, the heating power of the gas burner at that time does not match the heating power of the gas burner before the characteristics of the pressure sensor change.

この場合、温度変化の影響を受け難い大型の圧力センサを使用することも考えらえるが、コスト高を招くと共に、ガス流量制御装置自体が大型化する。   In this case, it is conceivable to use a large pressure sensor that is not easily affected by temperature changes, but this increases the cost and the size of the gas flow control device itself.

そこで本発明は、上記の問題点に鑑み、小型の圧力センサを使用した場合に、圧力センサの特性が変化してもガスバーナの中間火力が変化しないガス流量制御装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a gas flow rate control device in which the intermediate thermal power of the gas burner does not change even when the characteristics of the pressure sensor change when a small pressure sensor is used. .

上記課題を解決するために本発明によるガス流量制御装置は、ガスバーナへガスを供給するガス通路に、このガス通路の開度を変更してガスバーナへのガス流量を増減して火力を調節する火力調節手段と、この火力調節手段の下流側のガス圧である二次圧を検知する二次圧検知手段とを備え、最小火力と最大火力との間に中間火力を設定し、この中間火力に対応する二次圧として予め設定された圧力になるように、二次圧検知手段の検知値に基づいて火力調節手段の開度を変更するガス流量制御装置において、上記火力調節手段を、少なくとも、大きさの相違する複数の第1連通孔が開設された固定ディスクと、第1連通孔を順次開閉する1個の第2連通孔が開設された回転ディスクとから構成し、最小火力時にはオリフィスを設けたバイパス通路のみにガスを流し、最小火力でのガス通路の開度をこのオリフィスによって規定すると共に、最大火力時には第1連通孔と第2連通孔とが重なり合って形成される開度が最大になるようにすることによって、上記最小火力と最大火力とは二次圧検知手段の検知値にかかわらず機械的に決定するように構成し、最小火力時に温度変化による二次圧検知手段の特性の変化量を検知し、その特性の変化量に基づいて上記中間火力時の二次圧検知手段の検知値を補正することを特徴とする。 In order to solve the above-described problems, a gas flow control device according to the present invention is a thermal power that adjusts thermal power by changing the opening of the gas passage to increase or decrease the gas flow rate to the gas burner in a gas passage that supplies gas to the gas burner. Adjusting means and secondary pressure detecting means for detecting a secondary pressure that is a gas pressure downstream of the heating power adjusting means, and setting an intermediate heating power between the minimum heating power and the maximum heating power, In the gas flow rate control device that changes the opening degree of the thermal power adjusting means based on the detection value of the secondary pressure detecting means so as to be a preset pressure as the corresponding secondary pressure, the thermal power adjusting means is at least: A fixed disk having a plurality of first communication holes having different sizes and a rotating disk having one second communication hole that sequentially opens and closes the first communication hole. Viper provided Gas is allowed to flow only through the passage, and the opening of the gas passage at the minimum heating power is defined by this orifice, and at the maximum heating power, the opening formed by overlapping the first communication hole and the second communication hole is maximized. Therefore, the minimum thermal power and the maximum thermal power are determined mechanically regardless of the detection value of the secondary pressure detection means, and the amount of change in the characteristics of the secondary pressure detection means due to temperature change at the minimum thermal power And the detection value of the secondary pressure detection means at the time of the intermediate heating power is corrected based on the amount of change in the characteristic.

二次圧検知手段の特性が変化した場合には、二次圧検知手段の検知値を補正して特性の変化の影響が火力の制御に及ばないようにした。また、最小火力時に特性の変化量を検知するように構成したが、これは、最小火力位置は点火後必ず通過する位置であることと、圧力の変動が火力に及ぼす影響は圧力が低い方が大きいこと等によるものである。   When the characteristics of the secondary pressure detection means change, the detection value of the secondary pressure detection means is corrected so that the influence of the change in characteristics does not affect the control of the thermal power. In addition, it is configured to detect the amount of change in characteristics at the minimum thermal power, but this is because the minimum thermal power position is a position that always passes after ignition, and the influence of pressure fluctuation on thermal power is lower when the pressure is lower. This is due to the largeness.

なお、上記最小火力でのガス通路の開度は、バイパス通路に設けられたオリフィスによって規定されるように構成すれば、二次圧検知手段の特性が変化しても、最小火力時のガス流量がオリフィスによって規定されるため、常に一定になる。   If the opening of the gas passage at the minimum heating power is defined by an orifice provided in the bypass passage, the gas flow rate at the minimum heating power can be obtained even if the characteristics of the secondary pressure detecting means change. Is always constant because it is defined by the orifice.

具体的には、上記火力調節手段を、少なくとも、大きさの相違する複数の第1連通孔が開設された固定ディスクと、第1連通孔を順次開閉する1個の第2連通孔が開設された回転ディスクとから構成し、最小火力時にはバイパス通路のみにガスを流すように構成することができる。   Specifically, the thermal power adjusting means includes at least a fixed disk having a plurality of first communication holes having different sizes and one second communication hole for sequentially opening and closing the first communication holes. The rotating disk can be configured so that the gas flows only through the bypass passage at the time of the minimum heating power.

そして、上記回転ディスクをステッピングモータで回転させるように構成し、最小火力時の回転ディスクの回転角を、ステッピングモータへ供給するパルス数またはステッピングモータに付設したリミットスイッチで規定することが望ましい。   It is preferable that the rotating disk is configured to be rotated by a stepping motor, and the rotation angle of the rotating disk at the minimum heating power is defined by the number of pulses supplied to the stepping motor or a limit switch attached to the stepping motor.

ところで、二次圧検知手段の特性が少しでも変化したら補正するように構成すると、補正が頻繁に行われ煩わしい。そこで、上記検知した二次圧の変化量が、火力変化を許容できる所定の範囲内にある場合には、二次圧検知手段の検知値に対する補正を行わないことが望ましい。   By the way, if the correction is made when the characteristic of the secondary pressure detecting means changes even a little, the correction is frequently performed and is troublesome. Therefore, when the detected change amount of the secondary pressure is within a predetermined range in which the change in the thermal power is allowed, it is desirable not to correct the detection value of the secondary pressure detection means.

以上の説明から明らかなように、本発明は、二次圧検知手段の特性が温度変化の影響を受けて変化しても、その特性の変化の影響を火力調節に及ばないようにすることによって、火力調節を常に一定の状態で行うことができる。   As is apparent from the above description, the present invention prevents the influence of the change in the characteristics from affecting the thermal power control even if the characteristics of the secondary pressure detecting means change due to the influence of the temperature change. The heating power adjustment can always be performed in a constant state.

図1および図2を参照して、1は、例えばガスコンロに設けられる本発明のガス流量制御装置である。ガス流量制御装置1は、ガスコンロに設けたガスバーナの混合管に接続されたガス噴射ノズル(図示せず)に連なるガス通路11を備えた装置本体12を有する。装置本体12の下面には、ガス噴射ノズルへの燃料ガスのガス流量を調節する火力調節手段であるガスバルブ2が設けられている。   1 and 2, reference numeral 1 denotes a gas flow rate control device according to the present invention provided in, for example, a gas stove. The gas flow rate control device 1 has a device main body 12 having a gas passage 11 connected to a gas injection nozzle (not shown) connected to a mixing tube of a gas burner provided in a gas stove. A gas valve 2 is provided on the lower surface of the apparatus main body 12 as a thermal power adjusting means for adjusting the gas flow rate of the fuel gas to the gas injection nozzle.

ガスバルブ2は、ガス通路11に連通する内部通路21を設けたバルブケーシング22を有し、バルブケーシング22の上面には、内部通路21に連通するガス流入口23が開設されている。   The gas valve 2 has a valve casing 22 provided with an internal passage 21 communicating with the gas passage 11, and a gas inlet 23 communicating with the internal passage 21 is opened on the upper surface of the valve casing 22.

バルブケーシング22の下面には、回転角検知手段であるリミットスイッチ31を有するステッピングモータ3が連結され、ステッピングモータ3の回転軸32の先端はシール材33を介して内部通路21に突出している。   A stepping motor 3 having a limit switch 31 serving as a rotation angle detection means is connected to the lower surface of the valve casing 22, and the tip of the rotating shaft 32 of the stepping motor 3 protrudes into the internal passage 21 via a seal material 33.

内部通路21には、ガス通路11の上流側に位置して回転軸32の先端に連結された回転ディスク4と、この回転ディスク4の下流側に位置してバルブケーシング22に嵌着された固定ディスク5とが設けられている。回転ディスク4と固定ディスク5とによって内部通路21からガス通路11への通路面積の開度を変更してガス流量が調節される。   In the internal passage 21, there is a rotating disc 4 that is located upstream of the gas passage 11 and connected to the tip of the rotating shaft 32, and a fixed fitting that is located downstream of the rotating disc 4 and is fitted to the valve casing 22. A disk 5 is provided. The gas flow rate is adjusted by changing the opening of the passage area from the internal passage 21 to the gas passage 11 by the rotating disc 4 and the fixed disc 5.

図2に示すように、固定ディスク5には、第1連通孔である4個の孔51、52、53、54が、相互に開口面積を相違させて同一円周上に形成され、最小火力時にオリフィス14へガスを導く第1孔51以外の他の孔52、53、54は相互に連続して形成されている。   As shown in FIG. 2, the fixed disk 5 has four holes 51, 52, 53, and 54, which are the first communication holes, formed on the same circumference with different opening areas, and the minimum thermal power. Other holes 52, 53, 54 other than the first hole 51, which sometimes leads the gas to the orifice 14, are formed continuously with each other.

回転ディスク4には、回転軸32が正転すると、第1連通孔の各孔51、52、53、54に順次一致して内部通路21とバイパス路13やガス通路11との連通を許容する1個の楕円形の第2連通孔41が開設されている。   When the rotary shaft 32 rotates in the forward direction, the rotary disk 4 sequentially matches the holes 51, 52, 53, 54 of the first communication hole and allows the internal passage 21 to communicate with the bypass passage 13 and the gas passage 11. One elliptical second communication hole 41 is opened.

ここで、ガスバーナの火炎が消えない程度の最小火力は、使用する燃料ガスの種類やガスバーナの能力に応じて相違する。このため、使用する燃料ガスの種類等の異なるガス器具ごとに最小火力に相当するガス流量を規定できるように構成することが望ましい。   Here, the minimum heating power at which the flame of the gas burner does not disappear varies depending on the type of fuel gas used and the capacity of the gas burner. For this reason, it is desirable that the gas flow rate corresponding to the minimum heating power can be defined for each gas appliance having different types of fuel gas to be used.

本実施の形態では、第1連通孔の内の、独立して開設された孔51を介してガス通路11に連通するバイパス通路13を装置本体12に設けると共に、バイパス通路13に最小火力時のガス流量を規定するオリフィス14を挿設した。このため、オリフィス14を交換することで燃料ガスの種類やガスバーナの能力に対応した最小火力時のガス流量を設定できる。   In the present embodiment, the apparatus main body 12 is provided with a bypass passage 13 communicating with the gas passage 11 through the independently opened hole 51 among the first communication holes, and the bypass passage 13 is provided with a minimum heating power. An orifice 14 for defining the gas flow rate was inserted. For this reason, the gas flow rate at the minimum heating power corresponding to the type of fuel gas and the capability of the gas burner can be set by replacing the orifice 14.

そして、第2連通孔41が第1連通孔のいずれの孔51、52、53、54にも一致しないと内部通路21がガス通路11に対して閉止され、ガス通路11への燃料ガスの供給が停止される(図2(a)参照)。   If the second communication hole 41 does not coincide with any of the first communication holes 51, 52, 53, 54, the internal passage 21 is closed with respect to the gas passage 11, and the fuel gas is supplied to the gas passage 11. Is stopped (see FIG. 2A).

ステッピングモータ3を駆動して回転ディスク4を回転させ、第2連通孔41を、第1連通孔51、52、53、53、54のいずれかに一致させることで開度が増減されガス流量が調節される。なお、安全性等を考慮して、ガス流入口23の下流側であって内部通路21の途中に開閉弁である電磁安全弁6を設けている(図1参照)。   By driving the stepping motor 3 to rotate the rotating disk 4 and making the second communication hole 41 coincide with one of the first communication holes 51, 52, 53, 53, 54, the opening degree is increased and the gas flow rate is increased. Adjusted. In consideration of safety and the like, an electromagnetic safety valve 6 that is an on-off valve is provided downstream of the gas inlet 23 and in the middle of the internal passage 21 (see FIG. 1).

また、ガス通路11には、このガス通路11内の二次圧を検知する圧力センサ7が設けられている。圧力センサ7は、ガス通路11に対して垂直に設けた分岐路11aに、シール材71を介して挿設した導入筒72を有し、この導入筒72を介してガス通路11に連通する密閉状の空室73内には樹脂製の薄板(図示せず)が組込まれている。   Further, the gas passage 11 is provided with a pressure sensor 7 for detecting the secondary pressure in the gas passage 11. The pressure sensor 7 has an introduction cylinder 72 inserted through a sealing material 71 in a branch path 11 a provided perpendicular to the gas passage 11, and is hermetically sealed to communicate with the gas passage 11 via the introduction cylinder 72. A thin plate made of resin (not shown) is incorporated in the vacant chamber 73.

そして、ガス通路11に燃料ガスを流すと、導入筒72を通って空室73内に伝播する燃料ガスの二次圧で薄板がたわみ、その時の薄板11のたわみ量をこの薄板に貼着した歪ゲージで検知して二次圧が検知される。   When the fuel gas flows through the gas passage 11, the thin plate bends due to the secondary pressure of the fuel gas propagating through the introduction cylinder 72 and into the empty chamber 73, and the amount of deflection of the thin plate 11 at that time is adhered to this thin plate. The secondary pressure is detected by detecting with a strain gauge.

ここで、作動が電子制御されることにより調理者の利便性を高めたガスコンロでは、ガスバーナの火力調節が、例えば操作パネルに設けたタッチスイッチによって行われる。この場合、ガスバルブ2は、例えばガスバーナの火力を最小火力である火力1から最大火力である火力4までの4段階に設定できるように制御される。   Here, in the gas stove improved in the convenience of the cooker by electronically controlling the operation, the heating power of the gas burner is adjusted by, for example, a touch switch provided on the operation panel. In this case, the gas valve 2 is controlled so that, for example, the thermal power of the gas burner can be set in four stages from the thermal power 1 that is the minimum thermal power to the thermal power 4 that is the maximum thermal power.

この場合、タッチスイッチを押して火力1にすると、モータ3を駆動して回転軸32を正転させ、第2連通孔41を第1連通孔の独立した孔51に一致させる。この場合、ガスバーナの火炎が消えない程度の最小火力になるようにガスが流れる(図2(b)参照)。   In this case, when the touch switch is pressed and the heating power is 1, the motor 3 is driven to rotate the rotating shaft 32 in the forward direction so that the second communication hole 41 is aligned with the independent hole 51 of the first communication hole. In this case, the gas flows so that the minimum heating power is such that the flame of the gas burner does not disappear (see FIG. 2B).

次に、タッチスイッチを押して火力2に設定すると、モータ3を駆動して回転軸32がさらに正転して、第2連通孔41を、第1連通孔の孔51および孔52に一致させる。この場合、ガスバーナの火力を火力2にする流量の燃料ガスがガス通路11へと流れる。なお、ガス通路11への燃料ガスの流量は、第1連通孔の孔51および孔52と第2連通孔41とが一致する面積に応じて変更できる(図2(c)参照)。   Next, when the touch switch is pressed to set the heating power 2, the motor 3 is driven and the rotating shaft 32 further rotates in the forward direction so that the second communication hole 41 coincides with the holes 51 and 52 of the first communication hole. In this case, the fuel gas having a flow rate that makes the gas burner's thermal power 2 thermal power flows to the gas passage 11. The flow rate of the fuel gas to the gas passage 11 can be changed according to the area where the holes 51 and 52 of the first communication hole and the second communication hole 41 coincide (see FIG. 2C).

そして、火力3で、第2連通孔41を第1連通孔の孔52および孔53に一致させ(図2(d)参照)、火力4では第2連通孔41を第1連通孔の孔53および孔54に一致させると(図2(e)参照)、ガスバーナの火力をそれぞれ火力3および最大火力である火力4にする流量の燃料ガスがガス通路11へと流れる。この場合もまた、第2連通孔41が一致する第1連通孔の各孔51から孔54の面積を変更することでガス流量が調節できる。   Then, the second communication hole 41 is made to coincide with the holes 52 and 53 of the first communication hole by the thermal power 3 (see FIG. 2D), and the second communication hole 41 is made the hole 53 of the first communication hole by the thermal power 4. When the gas burner coincides with the hole 54 (see FIG. 2E), the fuel gas having a flow rate that makes the thermal power of the gas burner the thermal power 3 and the thermal power 4 that is the maximum thermal power flows to the gas passage 11, respectively. In this case as well, the gas flow rate can be adjusted by changing the area of each hole 51 to hole 54 of the first communication hole that coincides with the second communication hole 41.

ここで、火力1はオリフィス14によりガスの流量が規定され、火力4では孔53および孔54によって最大流量に規定されるので、火力1での二次圧と火力4での二次圧とは共に機種毎に機械的に規定される。   Here, in the thermal power 1, the gas flow rate is defined by the orifice 14, and in the thermal power 4, the maximum flow rate is defined by the holes 53 and 54, so the secondary pressure in the thermal power 1 and the secondary pressure in the thermal power 4 are Both are mechanically specified for each model.

この火力1での二次圧と火力4での二次圧との間を3等分して火力2および火力3に対応する二次圧を算出して予めマイコン(図示せず)に記憶させておく。そして、火力2や火力3がタッチスイッチによって選択されたら、圧力センサ7の検知値がそれら予め記憶しておいた値になるようにモータ3を駆動して回転ディスク4を回転させて、ガスバルブ2の開度(ガス流量)が調節されている。   The secondary pressure at the thermal power 1 and the secondary pressure at the thermal power 4 are divided into three equal parts to calculate the secondary pressure corresponding to the thermal power 2 and the thermal power 3 and stored in advance in a microcomputer (not shown). Keep it. When the thermal power 2 or the thermal power 3 is selected by the touch switch, the motor 3 is driven to rotate the rotating disk 4 so that the detected value of the pressure sensor 7 becomes a value stored in advance, and the gas valve 2 is rotated. The degree of opening (gas flow rate) is adjusted.

ところで、複数のガスバーナを設けたガスコンロでは器具内の温度変化が大きい。このような雰囲気中では、温度変化に伴って圧力センサ7の特性が変化してその出力値が変化する。特に、ガス器具の小型化に伴って小型の圧力センサを設けた場合、その特性の変化量は大きくなる。   By the way, in the gas stove provided with the several gas burner, the temperature change in an instrument is large. In such an atmosphere, the characteristics of the pressure sensor 7 change as the temperature changes, and the output value changes. In particular, when a small pressure sensor is provided as the gas appliance is miniaturized, the amount of change in its characteristics increases.

この場合、圧力センサ7から出力される値が、マイコンに予め記憶させた初期の値に一致するようにフィードバック制御して回転軸32の回転角を制御しても、圧力センサ7の特性が変化しているので、その時のガスバーナの火力は、圧力センサ7の特性が変化する前のガスバーナの火力と一致しない。   In this case, the characteristics of the pressure sensor 7 change even if the rotation angle of the rotary shaft 32 is controlled by feedback control so that the value output from the pressure sensor 7 matches the initial value stored in advance in the microcomputer. Therefore, the heating power of the gas burner at that time does not coincide with the heating power of the gas burner before the characteristics of the pressure sensor 7 change.

図3を参照して、例えば初期の特性を線aで示すと、温度が上昇すると圧力センサ7の特性は図において上方にシフトし、線bに示す状態になる。すると、例えば火力2での二次圧がP1であるとすると、初期の特性である線aにしたがって、V1という値がマイコンに記憶されている。ところが、特性が線bに示す状態に変化しておれば、圧力センサ7の検知値がV1に一致するように制御した場合、二次圧はP1より低いP2になってしまう。そのため、火力2を選択した場合の火力は当初予定していた火力より小さくなる。   Referring to FIG. 3, for example, when the initial characteristic is indicated by a line a, when the temperature rises, the characteristic of the pressure sensor 7 is shifted upward in the figure to a state indicated by a line b. Then, for example, assuming that the secondary pressure at the thermal power 2 is P1, the value V1 is stored in the microcomputer according to the line a which is an initial characteristic. However, if the characteristic is changed to the state shown by the line b, the secondary pressure becomes P2 lower than P1 when the detection value of the pressure sensor 7 is controlled to coincide with V1. Therefore, when the thermal power 2 is selected, the thermal power becomes smaller than the initially planned thermal power.

従って、図4に示すように、圧力センサ7の特性が変化する前であれば、火力1でのガス流量はR1となり、火力2でのガス流量はR2となり、火力3でのガス流量はR3となり、火力4でのガス流量はR4となる。ところが、図3に示すように圧力センサ7の特性が変化すると、火力2でのガス流量がE2に減少し、火力3でのガス流量がE3に減少する。   Therefore, as shown in FIG. 4, before the characteristic of the pressure sensor 7 is changed, the gas flow rate at the thermal power 1 is R1, the gas flow rate at the thermal power 2 is R2, and the gas flow rate at the thermal power 3 is R3. Thus, the gas flow rate at the thermal power 4 is R4. However, when the characteristics of the pressure sensor 7 change as shown in FIG. 3, the gas flow rate at the thermal power 2 decreases to E2, and the gas flow rate at the thermal power 3 decreases to E3.

このような弊害を是正するためには、図3に示すように、火力2の場合であれば、当初記憶されている値であるV1をV2に補正する必要が生じる。上述のように、火力1および火力4は機械的にガス流量が規定されるので、圧力センサ7の特性の変化の影響を受けない。したがって、火力1および火力4のいずれかの状態で圧力センサ7の特性の変化量を検知すればよい。本実施の形態では、火力1は点火後必ず通過する位置であることと、圧力の変動が火力に及ぼす影響は圧力が低い方が大きいこと等に鑑み、火力1で圧力センサ7の特性の変化量を検知することとした。   In order to correct such a harmful effect, as shown in FIG. 3, in the case of the thermal power 2, it is necessary to correct the initially stored value V1 to V2. As described above, the thermal power 1 and the thermal power 4 are not affected by the change in the characteristics of the pressure sensor 7 because the gas flow rate is mechanically defined. Therefore, it is only necessary to detect the amount of change in the characteristics of the pressure sensor 7 in either the thermal power 1 or the thermal power 4 state. In the present embodiment, in view of the fact that the thermal power 1 is a position that must pass after ignition and that the influence of the pressure fluctuation on the thermal power is larger when the pressure is lower, the thermal power 1 changes the characteristics of the pressure sensor 7. The amount was to be detected.

本実施の形態では、マイクロスイッチ31によって、火力1となる回転ディスク4の回転角を規定するが、ステッピングモータ3へ入力するパルス数で規定しもよい。そして、第2連通孔41と第1連通孔の孔51とを一致させて火力1の状態にし、圧力センサ7で二次圧を検知する。圧力センサ7の特性が変化してれば、圧力センサ7から出力される検知値は当初予定した値より高い値となる。その増加分が図3でのV2−V1に相当する。したがって、その増加分を火力2および火力3に対応させて記憶させた値に各々加算して補正し、補正後の新たな値をマイコンに上書きさせて記憶する。   In the present embodiment, the rotation angle of the rotating disk 4 that becomes the heating power 1 is defined by the microswitch 31, but may be defined by the number of pulses input to the stepping motor 3. Then, the second communication hole 41 and the hole 51 of the first communication hole are made to coincide with each other so that the heating power is 1, and the pressure sensor 7 detects the secondary pressure. If the characteristics of the pressure sensor 7 change, the detection value output from the pressure sensor 7 will be higher than the initially planned value. The increase corresponds to V2-V1 in FIG. Therefore, the increment is corrected by adding to the stored values corresponding to the thermal power 2 and the thermal power 3, respectively, and the corrected new value is overwritten and stored in the microcomputer.

ただし、上記増加分が所定の範囲を超えるまでは、火力変化が許容できるので補正を行わないようにした。   However, until the above increase exceeds a predetermined range, the heating power change can be allowed, so that correction is not performed.

このように上記増加分が所定の範囲を超えるまでは補正を行わないことにより、圧力センサ7の応答性がステッピングモータ3の応答性に比べて遅いことや部品間のがたつきで、圧力センサ7の検知値を記憶されている値に一致させる際にステッピングモータ3が必要以上に回転する等の問題は生じない。なお、火力変化を許容できる範囲は、予め実験等により算出しマイコンに記憶させておく。   As described above, the correction is not performed until the increase exceeds the predetermined range, so that the response of the pressure sensor 7 is slower than the response of the stepping motor 3 or the rattling between the components causes the pressure sensor. When matching the detected value of 7 with the stored value, the problem that the stepping motor 3 rotates more than necessary does not occur. In addition, the range which can accept | permit a thermal power change is calculated beforehand by experiment etc., and is memorize | stored in a microcomputer.

ところで、本実施の形態では、バイパス通路13を設け、このバイパス通路13にオリフィス14を設けたが、図5に示すように、第1連通孔の孔51の上流側に所定のオリフィス孔8aを設けたオリフィス板8を装着してもよい。   By the way, in this embodiment, the bypass passage 13 is provided and the orifice 14 is provided in the bypass passage 13. However, as shown in FIG. 5, a predetermined orifice hole 8a is provided on the upstream side of the hole 51 of the first communication hole. The provided orifice plate 8 may be mounted.

なお、本発明は上記した形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもかまわない。   In addition, this invention is not limited to an above-described form, You may add a various change in the range which does not deviate from the summary of this invention.

本発明の一実施の形態の構成を示す図The figure which shows the structure of one embodiment of this invention ガスバルブによる流量調節を説明する図Diagram explaining flow rate adjustment by gas valve 温度変化に伴う圧力センサの特性の変化を説明するグラフGraph explaining changes in pressure sensor characteristics with temperature change 圧力センサの特性が変化した場合のガス流量の変化を説明するグラフGraph explaining changes in gas flow rate when pressure sensor characteristics change 他の実施の形態でのガス流量制御装置を示す図The figure which shows the gas flow control apparatus in other embodiment.

符号の説明Explanation of symbols

1 ガス流量制御装置
11 ガス通路
13 バイパス通路
14 オリフィス
2 ガスバルブ
4 回転ディスク
5 固定ディスク
7 圧力センサ
1 Gas Flow Control Device 11 Gas Passage 13 Bypass Passage 14 Orifice 2 Gas Valve 4 Rotating Disc 5 Fixed Disc 7 Pressure Sensor

Claims (3)

ガスバーナへガスを供給するガス通路に、このガス通路の開度を変更してガスバーナへのガス流量を増減して火力を調節する火力調節手段と、この火力調節手段の下流側のガス圧である二次圧を検知する二次圧検知手段とを備え、最小火力と最大火力との間に中間火力を設定し、この中間火力に対応する二次圧として予め設定された圧力になるように、二次圧検知手段の検知値に基づいて火力調節手段の開度を変更するガス流量制御装置において、上記火力調節手段を、少なくとも、大きさの相違する複数の第1連通孔が開設された固定ディスクと、第1連通孔を順次開閉する1個の第2連通孔が開設された回転ディスクとから構成し、最小火力時にはオリフィスを設けたバイパス通路のみにガスを流し、最小火力でのガス通路の開度をこのオリフィスによって規定すると共に、最大火力時には第1連通孔と第2連通孔とが重なり合って形成される開度が最大になるようにすることによって、上記最小火力と最大火力とは二次圧検知手段の検知値にかかわらず機械的に決定するように構成し、最小火力時に温度変化による二次圧検知手段の特性の変化量を検知し、その特性の変化量に基づいて上記中間火力時の二次圧検知手段の検知値を補正することを特徴とするガス流量制御装置。 The gas passage for supplying gas to the gas burner is a thermal power adjusting means for adjusting the thermal power by changing the opening of the gas passage to increase or decrease the gas flow rate to the gas burner, and the gas pressure downstream of the thermal power adjusting means. A secondary pressure detecting means for detecting the secondary pressure, setting an intermediate thermal power between the minimum thermal power and the maximum thermal power, so that the secondary pressure corresponding to the intermediate thermal power is a preset pressure, In the gas flow rate control device that changes the opening degree of the thermal power control means based on the detection value of the secondary pressure detection means, the thermal power control means is fixed with at least a plurality of first communication holes having different sizes. It consists of a disk and a rotating disk with one second communication hole that opens and closes the first communication hole in sequence, and gas flows only through the bypass passage provided with an orifice when the minimum thermal power is applied. The opening of this Together defined by orifice, at the time of maximum heating power by allowing opening to be formed by overlapping the first communicating hole and the second communicating hole is maximized, the secondary pressure sensing means and the minimum thermal power and maximum heating power Regardless of the detected value, the amount of change in the characteristics of the secondary pressure detecting means due to temperature change is detected at the minimum heating power, and the amount of change in the above-mentioned intermediate heating power is detected based on the amount of change in the characteristics. A gas flow rate control device for correcting a detection value of a next pressure detection means. 上記回転ディスクをステッピングモータで回転させるように構成し、最小火力時の回転ディスクの回転角を、ステッピングモータへ供給するパルス数またはステッピングモータに付設したリミットスイッチで規定することを特徴とする請求項記載のガス流量制御装置。 The rotary disk is configured to be rotated by a stepping motor, and the rotation angle of the rotary disk at the minimum heating power is defined by the number of pulses supplied to the stepping motor or a limit switch attached to the stepping motor. 1 gas flow rate control apparatus according. 上記検知した二次圧の変化量が、火力変化を許容できる所定の範囲内にある場合には、二次圧検知手段の検知値に対する補正を行わないことを特徴とする請求項1または請求項記載のガス流量制御装置。 Variation of the detected secondary pressure is, if within a predetermined range that can tolerate thermal change claim 1 or claim, characterized in that no correction for the detection value of the secondary pressure detector 2 gas flow rate control apparatus according.
JP2006118740A 2006-04-24 2006-04-24 Gas flow control device Expired - Fee Related JP4187755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118740A JP4187755B2 (en) 2006-04-24 2006-04-24 Gas flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118740A JP4187755B2 (en) 2006-04-24 2006-04-24 Gas flow control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002228038A Division JP2004069147A (en) 2002-08-05 2002-08-05 Gas flow rate control device

Publications (2)

Publication Number Publication Date
JP2006214724A JP2006214724A (en) 2006-08-17
JP4187755B2 true JP4187755B2 (en) 2008-11-26

Family

ID=36978094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118740A Expired - Fee Related JP4187755B2 (en) 2006-04-24 2006-04-24 Gas flow control device

Country Status (1)

Country Link
JP (1) JP4187755B2 (en)

Also Published As

Publication number Publication date
JP2006214724A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
US8449289B2 (en) Multi-gas appliance
US7523762B2 (en) Modulating gas valves and systems
US7249610B2 (en) Ratio controller with dynamic ratio formation
EP3228936B1 (en) Method for operating a gas burner appliance
US6287108B1 (en) Control of the burner heat output in a gas-operated cooking or baking appliance
KR20010071151A (en) Regulating device for gas burners
US20070243495A1 (en) Electronic gas control system
KR100500556B1 (en) Apparatus for controlling heating power
EP3608591B1 (en) Burner
US20070278319A1 (en) Gas oven with proportional gas supply
TWI221891B (en) Fire power adjusting apparatus
JP3819307B2 (en) Gas flow control device
JP4187755B2 (en) Gas flow control device
US20060292505A1 (en) System for controlling the delivery of a fuel gas to a burner apparatus
JP3750062B2 (en) Gas flow control device
JP2004069147A (en) Gas flow rate control device
JP3750061B2 (en) Gas flow control device
JP3182101B2 (en) Fan control device for combustion equipment
KR100192924B1 (en) Combustion apparatus
KR0153711B1 (en) Combustion apparatus
JPH0268449A (en) Bypass mixing type hot water feeder
KR100224207B1 (en) Amount of fuel injection correction method and device by using pressure in fuel tank
JPH11108346A (en) Combustor
KR930004524B1 (en) Controller for combustion device
JP3534875B2 (en) Combustion equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Ref document number: 4187755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees