JP4186338B2 - Adsorption type refrigerator - Google Patents

Adsorption type refrigerator Download PDF

Info

Publication number
JP4186338B2
JP4186338B2 JP26433099A JP26433099A JP4186338B2 JP 4186338 B2 JP4186338 B2 JP 4186338B2 JP 26433099 A JP26433099 A JP 26433099A JP 26433099 A JP26433099 A JP 26433099A JP 4186338 B2 JP4186338 B2 JP 4186338B2
Authority
JP
Japan
Prior art keywords
air
heat
adsorber
moisture
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26433099A
Other languages
Japanese (ja)
Other versions
JP2001091090A (en
Inventor
伸 本田
勝也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP26433099A priority Critical patent/JP4186338B2/en
Publication of JP2001091090A publication Critical patent/JP2001091090A/en
Application granted granted Critical
Publication of JP4186338B2 publication Critical patent/JP4186338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a coefficient of performance of an absorption type refrigerator. SOLUTION: A first state in which air heated to be dehumidified by first and second absorbers 110, 120 is cooled by a first heat exchanger 161, then cooled to be humidified by a third absorber 130, and the heated air is supplied to a fourth absorber 140 to desorb the moisture absorbed to the absorber 140, and a second state in which air heated to be dehumidified by third and fourth absorbers 130, 140 is cooled by a second heat exchanger 162, then cooled and humidified by the absorber 110, and the heated air is supplied to the absorber 120 to desorb the moisture absorbed to the second absorber are alternately switched. Thus, for example in the first state, since only the absorber 140 is necessary to supply an external heat energy, a heat amount to be externally given can be reduced, and hence coefficient of performance of the absorption type refrigerator is improved.

Description

【0001】
【発明の属する技術分野】
本発明は、シリカゲル等の吸着剤を用いた吸着式冷凍機に関するもので、空調装置に適用して有効である。
【0002】
【従来の技術】
吸着式冷凍機として、例えば特開平5−301014号公報に記載の発明は、加湿器にて水を蒸発させてその蒸発潜熱により空気を加湿冷却するとともに、吸着剤にて加湿された空気中の水分を吸着して除湿するものである。
【0003】
そして、水分を吸着して水分吸着が飽和した吸着剤については、太陽熱や廃熱を利用して吸着剤を加熱することにより、吸着されていた水分を脱離させている。以下、吸着剤を加熱して、水分を脱離させることを「吸着剤を再生する」と言う。
【0004】
【発明が解決しようとする課題】
ところで、吸着式冷凍機の発生する冷凍能力を増大させるには、吸着剤が吸着する水分量を増大させる必要があるが、吸着剤が吸着する水分量を増大させると、吸着剤を再生させるに必要な熱量も増大してしまう。
【0005】
このため、太陽熱や廃熱等の再生に必要な熱量(以下、この熱量を必要再生熱量と呼ぶ。)が小さいと、十分な冷凍能力を発揮することができない。
【0006】
本発明は、上記点に鑑み、少ない必要再生熱量にて十分な冷凍能力を得る(成績係数の向上を図る)ことを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、第1、2吸着器(110、120)にて水分を吸着して空気を除湿加熱し、その除湿加熱された空気を第1熱交換器(161)にて冷却した後、第1熱交換器(161)にて冷却された空気を水分が吸着された第3吸着器(130)に供給して空気を加湿冷却するとともに、第4吸着器(140)に加熱空気を供給して第4吸着器(140)に吸着した水分を脱離させる第1状態と、第3、4吸着器(130、140)にて水分を吸着して空気を除湿加熱し、その除湿加熱された空気を第2熱交換器(162)にて冷却した後、第2熱交換器(162)にて冷却された空気を水分が吸着された第1吸着器(110)に供給して空気を加湿冷却するとともに、第2吸着器(120)に加熱空気を供給して第2吸着器に吸着した水分を脱離させる第2状態と、を交互に切り換えることを特徴とする。
【0008】
これにより、水分の脱離は、例えば第1状態においては第3吸着器(130)及び第4吸着器(140)で行われ、しかも、外部から熱エネルギを供給する必要があるのは、第4吸着器(140)のみである。
【0009】
したがって、本発明に係る吸着式冷凍機における必要再生熱量が、上記公報に係る冷凍機における必要再生熱量より小さくなるので、吸着式冷凍機の成績係数を向上させることができ、少ない必要再生熱量にて十分な冷凍能力を得ることが可能となる。
【0010】
請求項2に記載の発明では、第1状態においては、第4吸着器(140)通過した加熱空気中から熱を回収し、その回収した熱を加熱空気に供給し、第2状態においては、第2吸着器(120)通過した加熱空気中から熱を回収し、その回収した熱を加熱空気に供給することを特徴とする。
【0011】
これにより、外部から与える熱量を小さくすることができるので、さらに少ない熱量にて十分な冷凍能力を得ることが可能となる。
【0012】
請求項3に記載の発明では、第1、2吸着器(110、120)又は第3、4吸着器(130、140)に流入する空気中に水分を供給する加湿器(191、192)を有することを特徴とする。
【0013】
これにより、除湿加熱される前の空気の温度が低下し、吸着式冷凍機内の加湿冷却量が増大するので、ケーシング(150)から吹き出す空気の温度より低下させることができる。
【0014】
請求項4に記載の発明では、第1、2熱交換器(161、162)に液体を噴射し、第1、2熱交換器(161、162)の冷却能力を増大させる噴射装置を有することを特徴とする。
【0015】
これにより、第1、2熱交換器(161、162)の冷却能力が増大するので、ケーシング(150)から吹き出す空気の温度をより低下させることができる。
【0016】
請求項5に記載の発明では、ケーシング(150)に吸入される前の湿度より低い湿度の状態においては、第2、4吸着器(120、140)に収納された吸着剤(121、141)は、第1、3吸着器(110、130)に収納された吸着剤(111、131)に比べて多くの水分を吸着することができるものであることを特徴とする。
【0017】
これにより、効率良く空気を除湿加熱できるので、吸着式冷凍機の成績係数をさらに向上させることができる。
【0018】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0019】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る吸着式冷凍機を空調装置に適用したものであって、図1は吸着式冷凍機(以下、冷凍機と略す。)100の模式図である。
【0020】
図1中、110、120、130、140は、雰囲気中の水分を吸着する際に熱を発生し、加熱されることによりその吸着した水分を脱離する吸着剤(本実施形態では、シリカゲル)111、121、131、141が収納された第1〜4吸着器であり、これらの吸着器110、120、130、140は、室外の空気を室内に導くとともに空気の通路を構成する空調ケーシング150内に収納されている。なお、空調ケーシング150内を流通する空気(以下、この空気を空調風と呼ぶ。)は、図示しない送風機によって流通させられている。
【0021】
161、162は空調風と空調ケーシング150外の空気(本実施形態では、室外空気)との間で熱交換を行い、室外空気により空調風を冷却する第1、2熱交換器である。171、172はエンジン(内燃機関)Eの冷却水(廃熱)を熱源として第4、2吸着器140、120に流入する空気を加熱し、吸着剤141、121を加熱する第1、2加熱用熱交換器であり、第1加熱用熱交換器171は第4吸着器140(吸着剤141)を加熱するものであり、第2加熱用熱交換器172は第2吸着器120(吸着剤141)を加熱するものである。
【0022】
なお、173、174はエンジンEから吐出される冷却水を第1加熱用熱交換器171に向けて流通させる場合と第2加熱用熱交換器172に向けて流通させる場合とを切り換える切換弁であり、Pは冷却水を循環させるポンプである。
【0023】
ところで、図2は、空調ケーシング150内を流通する空調風流れを示す模式図であり、空調風流れは制御ドア(流通空気制御手段)181〜188(以下、これらの制御ドアを総称するときは、制御ドア180と表記する。)により制御されている。
【0024】
因みに、図2(b)は冷凍機100の平面図であり、図2(a)は(a)の上面図であり、図2(c)は(a)の下面図である。また、図1、2は後述する第1状態を示し、図3、4は後述する第2状態を示している。
【0025】
次に、本実施形態の作動を述べる。
【0026】
冷凍機100の起動スイッチ(図示せず)の投入と同時に送風機が稼働し、空調ケーシング150内に空調風が流通し始める。そして、以下の第1状態と第2状態とを所定時間毎に交互に切換ながら室内に吹き出す空気(空調風)を冷却する。なお、所定時間は、各吸着器110、120、130、140の水分吸着能力及び水分脱離能力が所定能力以下となるまでに必要な時間に基づいて適宜選定されるものである。
【0027】
1.第1状態(図1、2参照)
室外空気を吸入して、その吸入した空気を第1吸着器110→第2吸着器120→第1熱交換器161→第3吸着器130の順に空調ケーシング150内を流通させた後、室内に向けて吹き出す。
【0028】
このため、空調ケーシング150内に吸入された空気(空調風)は、第1、2吸着器110、120にて水分が吸着されて除湿加熱され、その後、第1熱交換器161にて冷却された後、水分が吸着された第3吸着器130にて加湿冷却されて室内に吹き出す。
【0029】
また、エンジンEの冷却水を第1加熱用熱交換器171に流通させるとともに、室内から吸入した空気を第1加熱用熱交換器171にて加熱し、その加熱空気を第4吸着器140に供給して吸着剤141を加熱した後、吸着剤141の加熱を終了した(第4吸着器140を通過した)空気を室外に放出する。
【0030】
2.第2状態(図3、4参照)
室外空気を吸入して、その吸入した空気を第3吸着器130→第4吸着器140→第2熱交換器162→第1吸着器110の順に空調ケーシング150内を流通させた後、室内に向けて吹き出す。
【0031】
このため、空調ケーシング150内に吸入された空気(空調風)は、第3、4吸着器130、140にて水分が吸着されて除湿加熱され、その後、第2熱交換器162にて冷却された後、水分が吸着された第1吸着器110にて加湿冷却されて室内に吹き出す。
【0032】
また、エンジンEの冷却水を第2加熱用熱交換器172に流通させるとともに、室内から吸入した空気を第2加熱用熱交換器172にて加熱し、その加熱空気を第2吸着器120に供給して吸着剤142を加熱した後、吸着剤142の加熱を終了した(第2吸着器120を通過した)空気を室外に放出する。
【0033】
次に、本実施形態の特徴を述べる。
【0034】
図5の太い実線は、空調ケーシング150の部位A〜E(図1、3参照)における空調風の状態(温度、絶対湿度、相対湿度、エンタルピ)を示す線図であり、冷凍機を稼働させると、空調風は図5のA→B→C→D→Eの順に状態を変化させながら空調ケーシング150内を流通して室内に吹き出される。
【0035】
つまり、第1状態において、例えば温度35℃、相対湿度50%の室外空気が第1吸着器110に吸入されと(図5のA点)、空調空気は、第1、2吸着器110、120によって除湿されながらその温度を上昇させていく(A→B→C)。このとき、第1、2吸着器110、120における水分の吸着工程は、略断熱変化と見なすことができるので、第1吸着器110に吸入された空気は、等エンタルピ線(図5の破線)に沿って変化する。
【0036】
次に、空調風は、第1熱交換器161にて絶対湿度一定の状態で冷却されて、例えば温度35℃、相対湿度9%の状態の空気となる。ここで、絶対湿度と温度との関係は、図5の線図において直交関係にあるので、空調風はC点からD点に横軸(温度軸)と平行に移動する(C→D)。
【0037】
そして、第1熱交換器161を流出した空調風は、次に第3吸着器130に流入し、吸着剤131を加熱することにより自らは加湿冷却されながらその温度を低下させていく。このとき、第3吸着器130は、第2状態において水分を吸着したときの雰囲気の相対湿度と等しい相対湿度となるように水分を脱離するとともに、略断熱変化するためD点を通る等エンタルピ線に沿ってE点(例えば温度22℃、相対湿度50%)まで変化する。
【0038】
ここで、室外空気の状態(特に、相対湿度)は、第1状態と第2状態とが切り換わる間(所定時間内)に大きく変化することはないので、第3吸着器130が、第2状態において水分を吸着したときの雰囲気の相対湿度と、第1状態において第1吸着器110が水分を吸着するときの雰囲気の相対湿度とは、略等しいものと考えることができる。したがって、E点は、D点を通る等エンタルピ線とA点を通る等相対湿度線(図5の一点鎖線)との交点となる。
【0039】
このとき、等エンタルピ線と等相対湿度線とは、互いに交差するような関係があるので、第1熱交換器161にて冷却されたことに対応して、E点はA点より温度が低い方にずれ、室内に吹き出す空気を冷却することができる。
【0040】
ところで、上記公報に記載の発明では、空気を冷却するために加湿した水分に対応する必要再生熱量を必要としたが、本実施形態では、水分の脱離は、例えば第1状態においては第3吸着器130及び第4吸着器140で行われ、しかも、外部から熱エネルギ(エンジンEの廃熱)を供給しているのは、第4吸着器140のみである。
【0041】
したがって、本実施形態に係る冷凍機100における必要再生熱量は、上記公報に係る冷凍機における必要再生熱量より小さくなるので、冷凍機の成績係数を向上させることができ、少ない必要再生熱量にて十分な冷凍能力を得ることが可能となる。
【0042】
なお、図6は冷凍機内存在する全ての吸着剤の水分吸着量と雰囲気湿度(関係湿度)との関係を示すグラフであり、このグラフに示すように、本実施形態によれば、水分の脱離工程において必要とする熱量は、吸着水分量Cに対応する熱量となり、上記公報に係る冷凍機において水分の脱離工程において必要とする熱量は、吸着水分量Coに対応する熱量となる。したがって、上述のごとく、本実施形態に係る冷凍機100における必要再生熱量は、上記公報に係る冷凍機における必要再生熱量より小さくなる。
【0043】
因みに、図5において、本実施形態に係る冷凍能力はh1(第1、2熱交換器161、162における熱交換量)により示され、必要再生熱量はh2により示される。
【0044】
また、上記公報に記載の発明は、温度の異なる空気が流通する2本の空気通路間を、吸着剤が収納された除湿ロータ及び両空気通路間の熱交換を行う熱交換ロータが行き来(回転)するので、これらロータが設置された部位で両空気通路間に空気の漏れが発生し、この部位で熱損失が発生するおそれが高い。
【0045】
これに対して、本実施形態では、温度の異なる空気通路間を吸着器110、120、130、140が行き来するといった作動を行わないので、空気の漏れに伴う熱損失が発生しない。
【0046】
ところで、本実施形態に係る冷凍機では、吸入された室外空気を一旦、除湿加熱することにより室外空気と空調風(空調ケーシング150内を流通する空気)との間に温度差を発生させて空調風の熱を室外に放熱し、その後、加湿冷却するものであるので、原理的には、2個の吸着器(第1、3吸着器110、130)と1個の熱交換器(第1熱交換器161)にて冷凍機として成り立つ。しかし、切換方式となるので、断続的な冷房となる。
【0047】
さらに、1個の吸着器では、実用的に十分な量の除湿加熱を行うことができないので、室外空気と空調風との間に十分な温度差を確保することができず、放熱を十分にできない。
【0048】
これに対して、本実施形態では、2個の吸着器にて除湿加熱を行っているので、室外空気と空調風との間に十分な温度差を確保することが可能となる。また、第1状態から第2状態へ切り替わったとき、2個の吸着器を加湿冷却と廃熱による脱離との2工程に割り当てることができるため、連続的な冷房が可能となる。
【0049】
しかも、周知のごとく、吸着剤は水分を吸着する吸着工程と水分を脱離する脱離工程とで関係湿度に対する水分吸着量が異なるので(図6参照)、第3吸着器130は、第2状態において吸着した水分量の全てを脱離することができず、室内に吹き出す空気の温度が十分に下がらないおそれがある。
【0050】
これに対して、本実施形態では、(エンジンEの)廃熱にて十分に水分が脱離された吸着器にて除湿加熱するので、空調風の湿度を十分に低下させることができる。したがって、脱離工程にある吸着器(例えば第1状態にあっては第3吸着器130)に十分に関係湿度の低い空気が供給されることとなるので、脱離工程にある吸着器にて空調風を十分に加湿冷却することができる。
【0051】
(第2実施形態)
本実施形態は、図7、8に示すように、第4、2吸着器140、120の空気流れ下流側に熱を回収する第1、2熱回収器181、182を設けるとともに、両熱回収器181、182で回収した熱を再び吸着剤の再生に利用するようにしたものである。なお、図7は第1状態を示すものであり、図8は第2状態を示すものである。
【0052】
これにより、図9に示すように、必要再生熱量h2に対して回収された熱量h3分、外部(エンジンE)から与える熱量h4を小さくすることができるので、さらに少ない熱量にて十分な冷凍能力を得ることが可能となる。
【0053】
(第3実施形態)
本実施形態は、図10、11に示すように、第1実施形態に係る冷凍機100において、第1状態にあっては第1、2吸着器110、120に流入する空気(除湿加熱される前の空気)中に、第2状態にあっては第3、4吸着器130、140に流入する空気(除湿加熱される前の空気)中に水分を供給する加湿器191、192を設けたものである。
【0054】
なお、図10は第1状態を示しており、図11は第2状態を示しており、第1状態では加湿器191により第1吸着器110に流入する空気に加湿し、第2状態では加湿器192により第3吸着器130に流入する空気に加湿する。
【0055】
これにより、図12に示すように、除湿加熱される前の空気の温度が低下し、冷凍機100内の加湿冷却量が増大するので、室内に吹き出す空気の温度を第1実施形態に係る冷凍機100より低下させることができる。
【0056】
(第4実施形態)
本実施形態は、図13、14に示すように、第1実施形態に係る冷凍機100において、第1、2熱交換器161、162に霧状(ミスト状)の水(液体)を噴射(噴霧)する第1、2噴霧装置(噴射装置)201、202を設けたものである。
【0057】
なお、図13は第1状態を示し、図14は第2状態を示しており、第1状態においては第1噴霧装置201にて第1熱交換器161に水を噴霧し、第2状態においては第2噴霧装置202にて第2熱交換器162に水を噴霧する。
【0058】
これにより、第1、2熱交換器161、162の冷却能力が増大するので、図15に示すように、室内に吹き出す空気の温度を第1実施形態に係る冷凍機100より低下させることができる。
【0059】
(第5実施形態)
本実施形態は、第2、4吸着器120、140に収納された吸着剤121、141は、第1、3吸着器110、130に収納された吸着剤111、131に比べて、主に低い湿度の状態で水分の吸着を行うことに着目してなされたものである。
【0060】
具体的には、図16に示すように、空調ケーシング150に吸入される前(室外空気)の関係湿度より低い関係湿度の状態において、吸着剤111、131より多くの水分を吸着することができる吸着剤を吸着剤121、141に採用したものである。因みに、本実施形態では、吸着剤111、131をシリカゲルBタイプとし、吸着剤121、141をシリカゲルAタイプとしている。
【0061】
これにより、効率良く空調風を除湿加熱できるので、冷凍機100の成績係数をさらに向上させることができる。
【0062】
(その他の実施形態)
上述の実施形態では、室外空気を吸入して室内に吹き出す空気を冷凍機100にて空調(冷却)したが、室内空気を吸入して室内に吹き出す空気を空調してもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る冷凍機における第1状態を示す模式図である。
【図2】本発明の第1実施形態に係る冷凍機における制御ドアの状態を示す模式図である。
【図3】本発明の第1実施形態に係る冷凍機における第2状態を示す模式図である。
【図4】本発明の第1実施形態に係る冷凍機における制御ドアの状態を示す模式図である。
【図5】絶対湿度の温度との関係を示す線図である。
【図6】吸着量と関係湿度との関係を示す線図である。
【図7】本発明の第2実施形態に係る冷凍機における第1状態を示す模式図である。
【図8】本発明の第2実施形態に係る冷凍機における第2状態を示す模式図である。
【図9】絶対湿度の温度との関係を示す線図である。
【図10】本発明の第3実施形態に係る冷凍機における第1状態を示す模式図である。
【図11】本発明の第3実施形態に係る冷凍機における第2状態を示す模式図である。
【図12】絶対湿度の温度との関係を示す線図である。
【図13】本発明の第4実施形態に係る冷凍機における第1状態を示す模式図である。
【図14】本発明の第4実施形態に係る冷凍機における第2状態を示す模式図である。
【図15】絶対湿度の温度との関係を示す線図である。
【図16】本発明の第4実施形態に係る冷凍機における吸着量と関係湿度との関係を示す線図である。
【符号の説明】
110…第1吸着器、120…第2吸着器、130…第3吸着器、
140…第4吸着器、161…第1熱交換器、162…第2熱交換器、
171…第1加熱用熱交換器、172…第2加熱用熱交換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorption refrigerator using an adsorbent such as silica gel, and is effective when applied to an air conditioner.
[0002]
[Prior art]
As an adsorption-type refrigerator, for example, the invention described in Japanese Patent Laid-Open No. 5-301014 is a method of evaporating water with a humidifier and humidifying and cooling the air by the latent heat of evaporation, and in the air humidified with an adsorbent. It dehumidifies by adsorbing moisture.
[0003]
And about the adsorbent which adsorb | sucked the water and the water | moisture-content adsorption was saturated, the adsorbed water | moisture content is desorbed by heating an adsorbent using solar heat or waste heat. Hereinafter, heating the adsorbent to desorb moisture will be referred to as “regenerating the adsorbent”.
[0004]
[Problems to be solved by the invention]
By the way, in order to increase the refrigerating capacity generated by the adsorption refrigerator, it is necessary to increase the amount of water adsorbed by the adsorbent. However, if the amount of water adsorbed by the adsorbent is increased, the adsorbent is regenerated. The amount of heat required also increases.
[0005]
For this reason, if the amount of heat necessary for regeneration such as solar heat and waste heat (hereinafter, this amount of heat is referred to as necessary amount of regeneration heat) is small, sufficient refrigeration capacity cannot be exhibited.
[0006]
In view of the above points, an object of the present invention is to obtain a sufficient refrigeration capacity (to improve the coefficient of performance) with a small amount of necessary regeneration heat.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in the invention described in claim 1, moisture is adsorbed by the first and second adsorbers (110, 120) to dehumidify and heat the air, and the dehumidification heating is performed. After the air is cooled by the first heat exchanger (161), the air cooled by the first heat exchanger (161) is supplied to the third adsorber (130) on which moisture is adsorbed to humidify the air. In the first state in which the fourth adsorber (140) is cooled and heated air is supplied to desorb the moisture adsorbed on the fourth adsorber (140), and the third and fourth adsorbers (130, 140). Then, moisture is adsorbed to dehumidify and heat the air. After the dehumidified and heated air is cooled by the second heat exchanger (162), the air cooled by the second heat exchanger (162) While supplying air to the adsorbed first adsorber (110) to humidify and cool the air, the second adsorber (1) 0) and a second state in which the adsorbed water heated air to the second adsorber by supplying desorbed, characterized in that the switch alternately.
[0008]
Thereby, the desorption of moisture is performed by the third adsorber (130) and the fourth adsorber (140) in the first state, for example, and it is necessary to supply heat energy from the outside. There are only four adsorbers (140).
[0009]
Therefore, since the necessary regeneration heat amount in the adsorption refrigerator according to the present invention is smaller than the necessary regeneration heat amount in the refrigerator according to the above publication, the coefficient of performance of the adsorption refrigerator can be improved, and the necessary regeneration heat amount is small. And sufficient refrigeration capacity can be obtained.
[0010]
In the invention according to claim 2, in the first state, heat is recovered from the heated air that has passed through the fourth adsorber (140), the recovered heat is supplied to the heated air, and in the second state, Heat is recovered from the heated air that has passed through the second adsorber (120), and the recovered heat is supplied to the heated air.
[0011]
As a result, the amount of heat applied from the outside can be reduced, so that a sufficient refrigerating capacity can be obtained with a smaller amount of heat.
[0012]
In the invention described in claim 3, the humidifier (191, 192) for supplying moisture to the air flowing into the first, second adsorber (110, 120) or the third, fourth adsorber (130, 140) is provided. It is characterized by having.
[0013]
Thereby, since the temperature of the air before dehumidification heating falls and the humidification cooling amount in an adsorption-type refrigerator increases, it can be made lower than the temperature of the air which blows off from a casing (150).
[0014]
In invention of Claim 4, it has an injection device which injects a liquid to a 1st, 2nd heat exchanger (161,162) and increases the cooling capacity of a 1st, 2nd heat exchanger (161,162). It is characterized by.
[0015]
Thereby, since the cooling capacity of the first and second heat exchangers (161, 162) is increased, the temperature of the air blown out from the casing (150) can be further reduced.
[0016]
In the invention according to claim 5, the adsorbent (121, 141) accommodated in the second and fourth adsorbers (120, 140) in a humidity lower than the humidity before being sucked into the casing (150). Is characterized in that it can adsorb more water than the adsorbents (111, 131) accommodated in the first and third adsorbers (110, 130).
[0017]
Thereby, since air can be efficiently dehumidified and heated, the coefficient of performance of the adsorption refrigeration machine can be further improved.
[0018]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In this embodiment, the adsorption refrigerator according to the present invention is applied to an air conditioner. FIG. 1 is a schematic diagram of an adsorption refrigerator (hereinafter abbreviated as a refrigerator) 100.
[0020]
In FIG. 1, 110, 120, 130, and 140 are adsorbents that generate heat when adsorbing moisture in the atmosphere and desorb the adsorbed moisture when heated (in this embodiment, silica gel). 111, 121, 131, and 141 are first to fourth adsorbers in which the adsorbers 110, 120, 130, and 140 guide outdoor air into the room and configure an air passage. It is stored inside. Air that circulates in the air conditioning casing 150 (hereinafter, this air is referred to as conditioned air) is circulated by a blower (not shown).
[0021]
Reference numerals 161 and 162 denote first and second heat exchangers that perform heat exchange between the conditioned air and the air outside the air-conditioning casing 150 (in this embodiment, outdoor air) and cool the conditioned air with the outdoor air. Reference numerals 171 and 172 denote first and second heatings that heat the air flowing into the fourth and second adsorbers 140 and 120 using the cooling water (waste heat) of the engine (internal combustion engine) E as a heat source and heat the adsorbents 141 and 121, respectively. The first heating heat exchanger 171 heats the fourth adsorber 140 (adsorbent 141), and the second heating heat exchanger 172 is the second adsorber 120 (adsorbent). 141).
[0022]
Reference numerals 173 and 174 denote switching valves for switching between the case where the cooling water discharged from the engine E is circulated toward the first heating heat exchanger 171 and the case where it is circulated toward the second heating heat exchanger 172. Yes, P is a pump for circulating cooling water.
[0023]
FIG. 2 is a schematic view showing the flow of conditioned air flowing in the air conditioning casing 150. The conditioned air flow is controlled by doors (circulating air control means) 181 to 188 (hereinafter, these control doors are collectively referred to). , Expressed as a control door 180).
[0024]
2 (b) is a plan view of the refrigerator 100, FIG. 2 (a) is a top view of (a), and FIG. 2 (c) is a bottom view of (a). 1 and 2 show a first state described later, and FIGS. 3 and 4 show a second state described later.
[0025]
Next, the operation of this embodiment will be described.
[0026]
At the same time as the start switch (not shown) of the refrigerator 100 is turned on, the blower operates, and the conditioned air starts to flow through the air conditioning casing 150. And the air (air conditioning wind) which blows off indoors is cooled, switching the following 1st state and 2nd state alternately for every predetermined time. The predetermined time is appropriately selected based on the time required until the water adsorption capacity and the water desorption capacity of each of the adsorbers 110, 120, 130, and 140 become equal to or less than the predetermined capacity.
[0027]
1. First state (see Figs. 1 and 2)
After sucking outdoor air, the sucked air is circulated through the air conditioning casing 150 in the order of the first adsorber 110, the second adsorber 120, the first heat exchanger 161, and the third adsorber 130, and then indoors. Blow out.
[0028]
For this reason, the air (air conditioned air) sucked into the air conditioning casing 150 is dehumidified and heated by the moisture adsorbed by the first and second adsorbers 110 and 120, and then cooled by the first heat exchanger 161. After that, it is humidified and cooled by the third adsorber 130 in which moisture is adsorbed and blown out into the room.
[0029]
In addition, the cooling water of the engine E is circulated through the first heating heat exchanger 171, the air sucked from the room is heated by the first heating heat exchanger 171, and the heated air is supplied to the fourth adsorber 140. After supplying and heating the adsorbent 141, the air that has finished heating the adsorbent 141 (passed through the fourth adsorber 140) is discharged to the outside of the room.
[0030]
2. Second state (see FIGS. 3 and 4)
After sucking outdoor air, the sucked air is circulated through the air conditioning casing 150 in the order of the third adsorber 130, the fourth adsorber 140, the second heat exchanger 162, and the first adsorber 110, and is then indoors. Blow out.
[0031]
For this reason, the air (air conditioned air) sucked into the air conditioning casing 150 is dehumidified and heated by the third and fourth adsorbers 130 and 140 and then cooled by the second heat exchanger 162. After that, it is humidified and cooled by the first adsorber 110 to which moisture is adsorbed and blown out into the room.
[0032]
In addition, the cooling water of the engine E is circulated through the second heating heat exchanger 172, the air sucked from the room is heated by the second heating heat exchanger 172, and the heated air is supplied to the second adsorber 120. After supplying and heating the adsorbent 142, the air that has finished heating the adsorbent 142 (passed through the second adsorber 120) is discharged to the outside of the room.
[0033]
Next, features of the present embodiment will be described.
[0034]
The thick solid line in FIG. 5 is a diagram showing the state of the conditioned air (temperature, absolute humidity, relative humidity, enthalpy) in the parts A to E (see FIGS. 1 and 3) of the air conditioning casing 150, and operates the refrigerator. Then, the conditioned air circulates in the air conditioning casing 150 while being changed in the order of A → B → C → D → E in FIG.
[0035]
That is, in the first state, for example, when outdoor air having a temperature of 35 ° C. and a relative humidity of 50% is sucked into the first adsorber 110 (point A in FIG. 5), the conditioned air becomes the first and second adsorbers 110 and 120. The temperature is raised while being dehumidified by (A → B → C). At this time, since the moisture adsorption process in the first and second adsorbers 110 and 120 can be regarded as a substantially adiabatic change, the air sucked into the first adsorber 110 is an isenthalpy line (broken line in FIG. 5). Varies along.
[0036]
Next, the conditioned air is cooled in a state where the absolute humidity is constant in the first heat exchanger 161, and becomes air having a temperature of 35 ° C. and a relative humidity of 9%, for example. Here, since the relationship between absolute humidity and temperature is orthogonal in the diagram of FIG. 5, the conditioned air moves from point C to point D in parallel with the horizontal axis (temperature axis) (C → D).
[0037]
The conditioned air that has flowed out of the first heat exchanger 161 then flows into the third adsorber 130 and heats the adsorbent 131 to reduce its temperature while being humidified and cooled. At this time, the third adsorber 130 desorbs moisture so as to have a relative humidity equal to the relative humidity of the atmosphere when moisture is adsorbed in the second state, and is substantially enthalpy passing through the point D because it changes substantially adiabatic. It changes to E point (for example, temperature 22 degreeC, relative humidity 50%) along a line.
[0038]
Here, the state of the outdoor air (particularly relative humidity) does not change significantly during the switching between the first state and the second state (within a predetermined time). It can be considered that the relative humidity of the atmosphere when moisture is adsorbed in the state and the relative humidity of the atmosphere when the first adsorber 110 adsorbs moisture in the first state are substantially equal. Therefore, the point E is an intersection of an equal enthalpy line passing through the point D and an equal relative humidity line passing through the point A (a dashed line in FIG. 5).
[0039]
At this time, since the isoenthalpy line and the isorelative humidity line intersect each other, the temperature at the point E is lower than the point A corresponding to the cooling at the first heat exchanger 161. The air blown into the room can be cooled.
[0040]
By the way, in the invention described in the above publication, the necessary regeneration heat amount corresponding to the humidified moisture is required to cool the air. However, in this embodiment, the desorption of moisture is, for example, the third state in the first state. Only the fourth adsorber 140 is used in the adsorber 130 and the fourth adsorber 140 and supplies heat energy (waste heat of the engine E) from the outside.
[0041]
Therefore, since the necessary regeneration heat amount in the refrigerator 100 according to the present embodiment is smaller than the necessary regeneration heat amount in the refrigerator according to the above publication, the coefficient of performance of the refrigerator can be improved, and a small necessary regeneration heat amount is sufficient. It is possible to obtain a sufficient refrigeration capacity.
[0042]
FIG. 6 is a graph showing the relationship between the moisture adsorption amount of all the adsorbents present in the refrigerator and the atmospheric humidity (relative humidity). As shown in this graph, according to this embodiment, moisture removal is performed. The amount of heat required in the separation step is the amount of heat corresponding to the amount of adsorbed moisture C, and the amount of heat required in the moisture desorption step in the refrigerator according to the above publication is the amount of heat corresponding to the amount of adsorbed moisture Co. Accordingly, as described above, the necessary regeneration heat amount in the refrigerator 100 according to the present embodiment is smaller than the necessary regeneration heat amount in the refrigerator according to the above publication.
[0043]
Incidentally, in FIG. 5, the refrigerating capacity according to the present embodiment is indicated by h 1 (heat exchange amount in the first and second heat exchangers 161 and 162), and the necessary regeneration heat amount is indicated by h 2 .
[0044]
In the invention described in the above publication, a dehumidification rotor in which an adsorbent is stored and a heat exchange rotor that exchanges heat between the two air passages travel between two air passages through which air having different temperatures flows (rotation). Therefore, there is a high possibility that air leaks between the two air passages at the site where these rotors are installed, and heat loss occurs at this site.
[0045]
On the other hand, in this embodiment, since the operation of the adsorbers 110, 120, 130, and 140 going back and forth between air passages having different temperatures is not performed, heat loss due to air leakage does not occur.
[0046]
By the way, in the refrigerator according to this embodiment, the sucked outdoor air is once dehumidified and heated to generate a temperature difference between the outdoor air and the conditioned air (air flowing through the air conditioning casing 150). Since heat of the wind is radiated to the outside and then humidified and cooled, in principle, two adsorbers (first and third adsorbers 110, 130) and one heat exchanger (first The heat exchanger 161) is realized as a refrigerator. However, since it becomes a switching system, it becomes intermittent cooling.
[0047]
Furthermore, since a single adsorber cannot perform a practically sufficient amount of dehumidifying heating, a sufficient temperature difference cannot be ensured between the outdoor air and the conditioned air, and sufficient heat dissipation can be achieved. Can not.
[0048]
On the other hand, in this embodiment, since dehumidification heating is performed by two adsorbers, it is possible to ensure a sufficient temperature difference between the outdoor air and the conditioned air. In addition, when the first state is switched to the second state, the two adsorbers can be assigned to two steps of humidification cooling and desorption by waste heat, so that continuous cooling is possible.
[0049]
Moreover, as is well known, since the adsorbent has a different amount of moisture adsorption with respect to the relative humidity in the adsorption step for adsorbing moisture and the desorption step for desorbing moisture (see FIG. 6), In the state, all of the adsorbed moisture cannot be removed, and the temperature of the air blown into the room may not be sufficiently lowered.
[0050]
On the other hand, in the present embodiment, the dehumidifying heating is performed by the adsorber from which water has been sufficiently desorbed by the waste heat (of the engine E), so that the humidity of the conditioned air can be sufficiently reduced. Therefore, since the air having a sufficiently low humidity is supplied to the adsorber in the desorption process (for example, the third adsorber 130 in the first state), the adsorber in the desorption process The conditioned air can be sufficiently humidified and cooled.
[0051]
(Second Embodiment)
In this embodiment, as shown in FIGS. 7 and 8, first and second heat recovery units 181 and 182 for recovering heat are provided on the downstream side of the air flow of the fourth and second adsorption units 140 and 120, and both heat recovery units are performed. The heat recovered by the containers 181 and 182 is used again for the regeneration of the adsorbent. FIG. 7 shows the first state, and FIG. 8 shows the second state.
[0052]
As a result, as shown in FIG. 9, the amount of heat h 4 provided from the outside (engine E) can be reduced by the amount of heat h 3 recovered with respect to the required amount of regeneration heat h 2 , so that a smaller amount of heat is sufficient. It is possible to obtain a sufficient refrigeration capacity.
[0053]
(Third embodiment)
In this embodiment, as shown in FIGS. 10 and 11, in the refrigerator 100 according to the first embodiment, in the first state, air flowing into the first and second adsorbers 110 and 120 (dehumidified and heated). Humidifiers 191 and 192 for supplying moisture to the air flowing into the third and fourth adsorbers 130 and 140 (the air before being dehumidified and heated) are provided in the second state. Is.
[0054]
10 shows the first state, and FIG. 11 shows the second state. In the first state, the humidifier 191 humidifies the air flowing into the first adsorber 110, and in the second state, the humidification. The air flowing into the third adsorber 130 is humidified by the vessel 192.
[0055]
As a result, as shown in FIG. 12, the temperature of the air before being dehumidified and heated decreases, and the amount of humidification and cooling in the refrigerator 100 increases. Therefore, the temperature of the air blown into the room is set to the refrigeration according to the first embodiment. It can be lowered from the machine 100.
[0056]
(Fourth embodiment)
In this embodiment, as shown in FIGS. 13 and 14, in the refrigerator 100 according to the first embodiment, mist (mist) water (liquid) is injected into the first and second heat exchangers 161 and 162 ( First and second spraying devices (spraying devices) 201 and 202 for spraying are provided.
[0057]
13 shows the first state, and FIG. 14 shows the second state. In the first state, the first spraying apparatus 201 sprays water on the first heat exchanger 161, and in the second state, FIG. Sprays water onto the second heat exchanger 162 by the second spraying device 202.
[0058]
Thereby, since the cooling capacity of the 1st, 2nd heat exchangers 161 and 162 increases, as shown in FIG. 15, the temperature of the air blown into the room can be lowered from the refrigerator 100 according to the first embodiment. .
[0059]
(Fifth embodiment)
In this embodiment, the adsorbents 121 and 141 accommodated in the second and fourth adsorbers 120 and 140 are mainly lower than the adsorbents 111 and 131 accommodated in the first and third adsorbers 110 and 130. This was made by paying attention to moisture adsorption in a humidity state.
[0060]
Specifically, as shown in FIG. 16, more moisture than the adsorbents 111 and 131 can be adsorbed in a relative humidity state lower than the relative humidity before being sucked into the air conditioning casing 150 (outdoor air). Adsorbents are used for the adsorbents 121 and 141. Incidentally, in this embodiment, the adsorbents 111 and 131 are silica gel B type, and the adsorbents 121 and 141 are silica gel A type.
[0061]
Thereby, since the conditioned air can be efficiently dehumidified and heated, the coefficient of performance of the refrigerator 100 can be further improved.
[0062]
(Other embodiments)
In the above-described embodiment, the air that is sucked into the outdoor air and blown into the room is air-conditioned (cooled) by the refrigerator 100. However, the air that is sucked into the indoor air and blown into the room may be air-conditioned.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first state in a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram showing a state of a control door in the refrigerator according to the first embodiment of the present invention.
FIG. 3 is a schematic diagram showing a second state in the refrigerator according to the first embodiment of the present invention.
FIG. 4 is a schematic diagram showing a state of a control door in the refrigerator according to the first embodiment of the present invention.
FIG. 5 is a diagram showing the relationship between absolute humidity and temperature.
FIG. 6 is a diagram showing the relationship between the amount of adsorption and the relative humidity.
FIG. 7 is a schematic diagram showing a first state in a refrigerator according to a second embodiment of the present invention.
FIG. 8 is a schematic diagram showing a second state in the refrigerator according to the second embodiment of the present invention.
FIG. 9 is a diagram showing the relationship between absolute humidity and temperature.
FIG. 10 is a schematic diagram showing a first state in a refrigerator according to a third embodiment of the present invention.
FIG. 11 is a schematic diagram showing a second state in the refrigerator according to the third embodiment of the present invention.
FIG. 12 is a diagram showing the relationship between absolute humidity and temperature.
FIG. 13 is a schematic diagram showing a first state in a refrigerator according to a fourth embodiment of the present invention.
FIG. 14 is a schematic diagram showing a second state in the refrigerator according to the fourth embodiment of the present invention.
FIG. 15 is a diagram showing the relationship between absolute humidity and temperature.
FIG. 16 is a diagram showing the relationship between the amount of adsorption and the relative humidity in the refrigerator according to the fourth embodiment of the present invention.
[Explanation of symbols]
110 ... first adsorber, 120 ... second adsorber, 130 ... third adsorber,
140 ... 4th adsorber, 161 ... 1st heat exchanger, 162 ... 2nd heat exchanger,
171 ... 1st heat exchanger, 172 ... 2nd heat exchanger.

Claims (5)

雰囲気中の水分を吸着する際に熱を発生し、加熱されることによりその吸着した水分を脱離する吸着剤(111、121、131、141)が収納された第1〜4吸着器(110、120、130、140)と、
前記第1〜4吸着器(110、120、130、140)を収納するとともに、空気の通路を形成するケーシング(150)と、
前記ケーシング(150)内を通過する空気と前記ケーシング(150)外の空気とを熱交換を行い、前記ケーシング(150)内を通過する空気冷却する第1、2熱交換器(161、162)とを有し、
前記第1、2吸着器(110、120)にて水分を吸着して空気を除湿加熱し、その除湿加熱された空気を前記第1熱交換器(161)にて冷却した後、前記第1熱交換器(161)にて冷却された空気を水分が吸着された前記第3吸着器(130)に供給して空気を加湿冷却するとともに、前記第4吸着器(140)に加熱空気を供給して前記第4吸着器(140)に吸着した水分を脱離させる第1状態と、
前記第3、4吸着器(130、140)にて水分を吸着して空気を除湿加熱し、その除湿加熱された空気を前記第2熱交換器(162)にて冷却した後、前記第2熱交換器(162)にて冷却された空気を水分が吸着された前記第1吸着器(110)に供給して空気を加湿冷却するとともに、前記第2吸着器(120)に加熱空気を供給して前記第2吸着器に吸着した水分を脱離させる第2状態と、
を交互に切り換えることを特徴とする吸着式冷凍機。
The first to fourth adsorbers (110, 110) containing the adsorbents (111, 121, 131, 141) that generate heat when adsorbing moisture in the atmosphere and desorb the adsorbed moisture by being heated. 120, 130, 140), and
A casing (150) for housing the first to fourth adsorbers (110, 120, 130, 140) and forming an air passage;
First and second heat exchangers (161, 162) for exchanging heat between air passing through the casing (150) and air outside the casing (150) and cooling the air passing through the casing (150). And
Moisture is adsorbed by the first and second adsorbers (110, 120) to dehumidify and heat the air, and after the dehumidified and heated air is cooled by the first heat exchanger (161), the first The air cooled by the heat exchanger (161) is supplied to the third adsorber (130) where moisture is adsorbed to humidify and cool the air, and the heated air is supplied to the fourth adsorber (140). A first state for desorbing moisture adsorbed on the fourth adsorber (140);
Moisture is adsorbed by the third and fourth adsorbers (130, 140) to dehumidify and heat the air, and the dehumidified and heated air is cooled by the second heat exchanger (162), and then the second The air cooled by the heat exchanger (162) is supplied to the first adsorber (110) in which moisture is adsorbed to humidify and cool the air, and the heated air is supplied to the second adsorber (120). A second state in which moisture adsorbed on the second adsorber is desorbed;
Adsorption type refrigerator characterized by switching alternately.
前記第1状態においては、前記第4吸着器(140)を通過した加熱空気中から熱を回収し、その回収した熱を前記加熱空気に供給し、
前記第2状態においては、前記第2吸着器(120)を通過した加熱空気中から熱を回収し、その回収した熱を前記加熱空気に供給することを特徴とする請求項1に記載の吸着式冷凍機。
In the first state, heat is recovered from the heated air that has passed through the fourth adsorber (140), and the recovered heat is supplied to the heated air.
The adsorption according to claim 1, wherein in the second state, heat is recovered from the heated air that has passed through the second adsorber (120), and the recovered heat is supplied to the heated air. Type refrigerator.
前記第1、2吸着器(110、120)又は前記第3、4吸着器(130、140)に流入する空気中に水分を供給する加湿器(191、192)を有することを特徴とする請求項1又は2に記載の吸着式冷凍機。A humidifier (191, 192) for supplying moisture to the air flowing into the first and second adsorbers (110, 120) or the third and fourth adsorbers (130, 140). Item 3. The adsorption refrigerator according to item 1 or 2. 前記第1、2熱交換器(161、162)に液体を噴射し、前記第1、2熱交換器(161、162)の冷却能力を増大させる噴射装置を有することを特徴とする請求項1ないし3のいずれか1つに記載の吸着式冷凍機。It has an injection device which injects a liquid to said 1st, 2nd heat exchanger (161,162), and increases the cooling capacity of said 1st, 2nd heat exchanger (161,162). The adsorption type refrigerator as described in any one of thru | or 3. 前記ケーシング(150)に吸入される前の湿度より低い湿度の状態においては、前記第2、4吸着器(120、140)に収納された前記吸着剤(121、141)は、前記第1、3吸着器(110、130)に収納された前記吸着剤(111、131)に比べて多くの水分を吸着することができるものであることを特徴とする請求項1ないし4のいずれか1つに記載の吸着式冷凍機。In a state of humidity lower than the humidity before being sucked into the casing (150), the adsorbents (121, 141) stored in the second and fourth adsorbers (120, 140) are the first, One of Claims 1 thru | or 4 characterized by being able to adsorb | suck more water | moisture content compared with the said adsorption agent (111,131) accommodated in 3 adsorption machine (110,130). An adsorption refrigerator as described in 1.
JP26433099A 1999-09-17 1999-09-17 Adsorption type refrigerator Expired - Fee Related JP4186338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26433099A JP4186338B2 (en) 1999-09-17 1999-09-17 Adsorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26433099A JP4186338B2 (en) 1999-09-17 1999-09-17 Adsorption type refrigerator

Publications (2)

Publication Number Publication Date
JP2001091090A JP2001091090A (en) 2001-04-06
JP4186338B2 true JP4186338B2 (en) 2008-11-26

Family

ID=17401695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26433099A Expired - Fee Related JP4186338B2 (en) 1999-09-17 1999-09-17 Adsorption type refrigerator

Country Status (1)

Country Link
JP (1) JP4186338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655288B2 (en) * 2001-05-07 2011-03-23 株式会社白川製作所 Engine-driven dry air generation method

Also Published As

Publication number Publication date
JP2001091090A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
CN109282374B (en) Dehumidifying air conditioner
CN100453958C (en) Sorptive heat exchanger and related cooled sorption process
US20230022397A1 (en) Air quality adjustment system
JP3992051B2 (en) Air conditioning system
JPH11132506A (en) Dehumidification air conditioner and operation thereof
JPH11262621A (en) Dehumidifying air conditioner
JP2001241693A (en) Air conditioner
KR20010102493A (en) Air conditioner
JPH08189667A (en) Dehumidifying-humidifying device
JP2011089665A (en) Humidity conditioner
JP2006326504A (en) Dehumidifier
JP4258930B2 (en) Dehumidifying / humidifying device, dehumidifying / humidifying device and air conditioner
JP5089254B2 (en) Humidity conditioning air conditioning system for automobiles
JP2004092956A (en) Desiccant air conditioning method and desiccant air conditioner
JP2005164148A (en) Humidity conditioning device
JP2005147484A (en) Air conditioner
JP4186338B2 (en) Adsorption type refrigerator
JP4186339B2 (en) Adsorption type refrigerator
JP2000205598A (en) Dehumidifying air-conditioning method and device, and method for using the same
JP2001099452A (en) Humidifier
JP2000283498A (en) Operation method for adsorption dehumidification air conditioner and adsorption dehumidification air conditioner
JP2005134005A (en) Humidity conditioning device
JPH11304194A (en) Desiccant air-conditioning method
JP2008201199A (en) Air conditioner for vehicle
JP2008304113A (en) Humidifying air-conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees