JP4186199B2 - Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability - Google Patents

Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability Download PDF

Info

Publication number
JP4186199B2
JP4186199B2 JP15454598A JP15454598A JP4186199B2 JP 4186199 B2 JP4186199 B2 JP 4186199B2 JP 15454598 A JP15454598 A JP 15454598A JP 15454598 A JP15454598 A JP 15454598A JP 4186199 B2 JP4186199 B2 JP 4186199B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
solderability
resistance
bending fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15454598A
Other languages
Japanese (ja)
Other versions
JPH11350055A (en
Inventor
哲人 森
竹四 鈴木
直男 榊原
義治 前
敬司 野上
豊 古柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Shindoh Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP15454598A priority Critical patent/JP4186199B2/en
Application filed by Mitsubishi Shindoh Co Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Shindoh Co Ltd
Priority to DE19980583T priority patent/DE19980583T1/en
Priority to EP99939202A priority patent/EP0995808B1/en
Priority to CN99800259A priority patent/CN1102177C/en
Priority to TW088103623A priority patent/TW442576B/en
Priority to PCT/JP1999/001116 priority patent/WO1999046415A1/en
Priority to KR1019997010404A priority patent/KR100562790B1/en
Publication of JPH11350055A publication Critical patent/JPH11350055A/en
Priority to HK00107927A priority patent/HK1028425A1/en
Application granted granted Critical
Publication of JP4186199B2 publication Critical patent/JP4186199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、打ち抜き加工に際して金型摩耗が少ない特性(以下、この特性を耐打抜き金型摩耗性という)、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金、または耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れるとともに、さらに樹脂密着性にも優れた銅合金に関するものである。
【0002】
【従来の技術】
一般に、ICやLSIなどの半導体装置用リードフレーム、各種電気・電子部品の端子またはコネクタは、銅合金薄板を切断して条とし、これを打抜き加工、プレス加工、、曲げ加工などの金属加工を施すことにより作製される。得られたリードフレーム、端子またはコネクタは、多くの場合、一部を熱硬化性樹脂で樹脂パッケージした状態で使用される。
【0003】
この樹脂パッケージされた状態で使用される半導体装置のリードフレームを製造するための銅合金薄板として、
Fe:0.05〜3.5質量%、P:0.01〜0.4質量%を含有し、残りがCuおよび不可避不純物からなる組成を有する銅合金薄板、
Fe:0.05〜3.5質量%、P:0.01〜0.4質量%、Zn:0.05〜5質量%およびSn:0.05〜5質量%の内の1種または2種を含有し、残りがCuおよび不可避不純物からなる組成を有する銅合金薄板、
Fe:0.05〜3.5質量%、P:0.01〜0.4質量%を含有し、さらにMg、Co、Pb、Zr、Cr、Pb,Mn、Al、Ni、Si、InおよびBの内の1種または2種以上を総量で0.01〜2質量%を含有し、残りがCuおよび不可避不純物からなる組成を有する銅合金薄板、
Fe:0.05〜3.5質量%、P:0.01〜0.4質量%、Zn:0.05〜5質量%およびSn:0.05〜5質量%の内の1種または2種を含有し、さらにMg、Co、Pb、Zr、Cr、Mn、Al、Ni、Si、InおよびBの内の1種または2種以上を総量で0.01〜2質量%を含有し、残りがCuおよび不可避不純物からなる組成を有する銅合金薄板、などが知られている(特開平9−296237号公報参照)。
【0004】
【発明が解決しようとする課題】
近年、ICやLSIなどの半導体装置は高密度化、小型化が進み、その半導体装置に使用されるリードフレームも薄肉化すると共に、多ピン化、狭ピッチ化しており、さらに各種電気・電子部品の高性能化に伴って小型化、薄型化した高精度の端子またはコネクタが数多く使用されるようになってきた。これら薄肉化、多ピン化、狭ピッチ化したリードフレーム、または小型化、薄型化した高精度の端子またはコネクタを作製するには、打抜き加工材の寸法精度、バリの大きさが非常に重要な要素の1つになっている。打抜き加工に際して加工材の打抜き加工性が悪いと、金型が短時間の使用で摩耗し、金型が摩耗すると寸法精度が悪くなり大きなバリが発生するところから多ピン化、狭ピッチ化は不可能である。従来の銅合金薄板はこれを打抜き加工すると、金型の摩耗が激しく、短時間の使用で金型を交換しなければならなくなってコストがかかり、コスト削減のためには一層耐打抜き金型摩耗性に優れた銅合金薄板が求められている。
【0005】
また、ICやLSIなどは製造取り扱い中にピンが曲がることがあり、さらに市販の半導体装置を特殊な用途に使用したりまたは再使用することが多く、その際に半導体装置のピンを繰り返し曲げ加工して修正加工する必要がある。この半導体装置の薄肉化および狭ピッチ化したピンを繰り返し曲げ加工すると疲労によりピンが折損することがあり、ピンが折損した半導体装置はもはや使用することができず、廃棄しなければならなくなって作業効率が大幅に低下する。そのために繰り返し曲げ加工を行っても折損することのない耐繰り返し曲げ疲労特性に優れた銅合金薄板が求められている。
【0006】
さらに、前記半導体装置用リードフレーム、各種電気・電子部品の端子またはコネクタは、はんだ付けされる場合が多く、このはんだ付け部はますます小面積化すると共に可能な限り低温度でかつ短時間のはんだ付けが求められており、さらに、近年、はんだ付けのフラックスとして、活性のフラックスを使用すると腐食を促進されるところから、リードフレーム、端子またはコネクタのはんだ付け用フラックスとして弱活性のフラックスまたは非活性のフラックスが使用されるようになってきた。しかし、弱活性のフラックスまたは非活性のフラックスを用いてはんだ付け性の悪い材料で構成されたリードフレーム、端子またはコネクタに小面積のはんだ付けを行おうとすると不完全なはんだ付けがなされることがあり、製品の信頼性が損なわれる原因の一つになっているところから、一層はんだ付け性の優れた銅合金薄板が求められている。
【0007】
さらに、ICやLSIなどの半導体チップは約200℃あるいはそれ以上の温度でダイボンディングやワイヤボンディングが行われ、その後、それを外部環境から保護するために樹脂パッケージが行われている。この樹脂パッケージのモールディングは160℃以上の温度で行われるが、樹脂とリードフレームとの密着性が悪いと、樹脂とリードフレームの間に剥離が起こり、剥離を起こしたデバイスでは水分の吸湿が起こり、後工程のリフローはんだめっきの際に、水分の蒸気圧によってパッケージが破壊されることがあり、近年の厳しい信頼性要求に応じることができなかった。
【0008】
【課題を解決するための手段】
本発明者らは、これら課題を解決すべく研究を行っていたところ、
(a)半導体装置用リードフレーム、各種電気・電子部品の端子またはコネクタを製造するための従来のFe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%を含有し、残りがCuおよび不可避不純物からなる組成を有するFe−Zn−P系銅合金に、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%を添加すると耐繰り返し曲げ疲労特性およびはんだ付け性が向上し、さらにC:0.0005〜0.02質量%(好ましくは、C:0.001〜0.02質量%)を添加すると、耐打抜き金型摩耗性が向上する、
(b)前記(a)に記載のFe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%およびC:0.0005〜0.02質量%を含有し、残りがCuおよび不可避不純物からなる組成を有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れたFe−Zn−P系銅合金に、さらにAl、Be、Ca、Cr、MgおよびSiの内の1種または2種以上を合計で0.0007〜0.5質量%添加すると樹脂密着性が向上する、
(c)前記Al、Be、Ca、Cr、MgおよびSiの内の1種をそれぞれ0.0007〜0.5質量%添加すると樹脂密着性が一層向上するが、その中でもMgおよびSiを添加することが最も好ましく、MgおよびSiの場合はMg:0.0007〜0.5質量%およびSi:0.0007〜0.5質量%をそれぞれ単独で添加しても、またMg:0.0007〜0.5質量%およびSi:0.0007〜0.5質量%を共存させても良い。
(d)前記(a)〜(c)に記載の銅合金に不純物として含まれるNb、Ti、Zr、Ta、Hf、W、VおよびMo(以下、これらの元素を炭化物形成元素と総称する)の内の1種または2種以上は合計で0.01質量%以上含有すると、炭素添加による耐打抜き金型摩耗性を向上させる作用を軽減させるところから、炭化物形成元素の含有量は合計で0.01質量%未満に制限することが好ましい、などの知見を得たのである。
【0009】
この発明は、かかる知見にもとづいてなされたものであって、
(1)Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、残りがCuおよび不可避不純物からなる組成を有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金、
(2)Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.001〜0.02質量%を含有し、残りがCuおよび不可避不純物からなる組成を有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金、
(3)前記(1)または(2)記載の銅合金において、Nb、Ti、Zr、Ta、Hf、W、VおよびMoの内の1種または2種以上の含有量を合計で0.01質量%未満に制限した耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金、
に特徴を有するものである。
【0010】
前記C:0.0005〜0.02質量%を含有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金に、さらにAl、Be、Ca、Cr、MgおよびSiの内の1種をそれぞれ単独でAl:0.0007〜0.5質量%、Ca:0.0007〜0.5質量%、Be:0.0007〜0.5質量%、Cr:0.0007〜0.5質量%、Mg:0.0007〜0.5質量%またはSi:0.0007〜0.5質量%を添加すると樹脂密着性が向上する。さらにAl、Be、Ca、Cr、MgおよびSiの内の2種以上を合計で0.0007〜0.5質量%を含有しても良い。Al、Be、Ca、Cr、MgおよびSiの中でもMgおよびSiを添加することが一層好ましく、Mg:0.0007〜0.5質量%、Si:0.0007〜0.5質量%をそれぞれ単独、またはMg:0.0007〜0.5質量%およびSi:0.0007〜0.5質量%を共存させることができる。
【0011】
したがって、この発明は、
(4)Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Al、Be、Ca、Cr、MgおよびSiの内の1種または2種以上を合計で0.0007〜0.5質量%を含有し、残りがCuおよび不可避不純物からなる組成を有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金、
(5)Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Mg:0.0007〜0.5質量%、
を含有し、残りがCuおよび不可避不純物からなる組成を有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金、
(6)Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Si:0.0007〜0.5質量%、
を含有し、残りがCuおよび不可避不純物からなる組成を有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金、
(7)Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Mg:0.0007〜0.5質量%、
Si:0.0007〜0.5質量%、
を含有し、残りがCuおよび不可避不純物からなる組成を有する耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金、
(8)前記(4)、(5)、(6)または(7)記載の銅合金において、C含有量は0.001〜0.02質量%である耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金、
(9)前記(4)、(5)、(6)、(7)または(8)記載の銅合金において、Nb、Ti、Zr、Ta、Hf、W、VおよびMoの内の1種または2種以上の含有量を合計で0.01質量%未満に制限した耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金、に特徴を有するものである。
【0012】
前記(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)または(9)記載の銅合金は、薄板として使用される。したがって、この発明は、前記(1)、(2)、(3)(4)、(5)、(6)、(7)、(8)または(9)記載の銅合金からなる銅合金薄板、に特徴を有するものである。
【0013】
この発明の耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性、または耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金およびその薄板は、まず、原料として、高純度電気銅、炭化物形成元素含有量の少ない鉄合金あるいは銅合金、Cu−Zn母合金、Cu−Ni母合金、Cu−Sn母合金、Fe−C母合金、Cu−P母合金、Cu−Al母合金、Cu−Be母合金、Cu−Ca母合金、Cu−Cr母合金、Cu−Mg母合金、Cu−Si母合金を用意し、原料の高純度電気銅を還元性雰囲気の誘導溶解炉を用いて黒鉛製坩堝の中で溶湯表面を黒鉛製の固形物で覆いながら溶解し、得られた溶湯に必要に応じてCuと各元素を含む母合金を添加し、最後にFe−C母合金を添加して成分調整した後、黒鉛製モールドに半連続鋳造して銅合金鋳塊を製造し、この銅合金鋳塊を還元性雰囲気中、温度:750〜980℃で焼鈍後熱間圧延し、水冷したのち面削し、その後、40〜80%の冷間圧延と400〜650℃の中間焼鈍を繰り返し行い、最終冷間圧延し、250〜350℃の歪み取り焼鈍などを施して薄板とすることにより製造する。
【0014】
つぎに、この発明の耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れ、さらに樹脂密着性に優れた銅合金の成分組成を上記のごとく限定した理由について説明する。
(a)Fe
Feは、Cuの素地に固溶すると共にPと化合物を造り、強度および硬さを向上させる作用があるが、その含有量が1.5質量%未満ではその効果が十分でなく、一方、2.4質量%を越えて含有すると、表面欠陥に基づくめっき性が著しく低下し、さらに導電率および加工性の低下をもたらすので好ましくない。したがって、Feの含有量は、1.5〜2.4質量%に定めた。一層好ましい範囲は、1.8〜2.3質量%である。
【0015】
(b)P
Pは、脱酸作用があるほか、Feと化合物を生成して強度を向上させる作用があるが、0.008質量%未満ではその効果が十分でなく、一方、0.08質量%を越えて含有すると導電率および加工性の低下をもたらすところから、Pの含有量は0.008〜0.08質量%に定めた。一層好ましい範囲は、0.01〜0.05質量%である。
【0016】
(c)Zn
Znは、Cuの素地に固溶してはんだ耐熱剥離性を向上させる作用があるが、その含有量が0.01質量%未満ではその効果が十分でなく、一方、0.5質量%を越えて含有してもその効果が飽和するところから、Znの含有量は0.01〜0.5質量%に定めた。一層好ましい範囲は、0.05〜0.35質量%である。
【0017】
(d)C
Cは、銅に対して非常に固溶しにくい元素であるが、極微量に含まれることにより、鋳塊の結晶粒を微細化させ、熱間圧延工程での粒界割れを抑制する作用があり、さらに耐打抜き金型摩耗性を向上させる作用があるが、その含有量が0.0005質量%未満ではその効果が十分でなく、一方、0.02質量%を越えて含有すると、熱間圧延工程での粒界割れを発生させるので好ましくない。したがって、C含有量は、0.0005〜0.02質量%に定めた。一層好ましい範囲は、0.001〜0.02質量%であり、さらに一層好ましい範囲は、0.001〜0.008質量%である。
【0018】
(e)Ni
Niは、Cuの素地に固溶し、強度および耐リード曲げ疲労特性(耐繰り返し曲げ疲労特性)を向上させる作用があるが、その含有量が0.003質量%未満ではその効果が十分でなく、一方、0.5質量%を越えて含有すると、導電性が著しく低下するので好ましくない。したがって、Niの含有量は、0.003〜0.5質量%に定めた。一層好ましい範囲は0.008〜0.2質量%である。
【0019】
(f)Sn
Snは、Cuの素地に固溶し、強度およびはんだ付け性を向上させる作用があるが、その含有量が0.003質量%未満ではその効果が十分でなく、一方、0.5質量%を越えて含有すると、導電性が著しく低下するので好ましくない。したがって、Snの含有量は、0.003〜0.5質量%に定めた。一層好ましい範囲は0.008〜0.2質量%である。
【0020】
(g)Al、Be、Ca、Cr、MgおよびSi
これら成分は脱酸作用を有し、溶湯表面に酸化防止膜を生成させてCの消耗を抑える作用があり、さらにFe−Zn−P系銅合金の強度を向上させると共に樹脂密着性を向上させる作用を有するところから、必要に応じて添加するが、Al、Be、Ca、Cr、MgおよびSiの内の1種または2種以上が合計で0.0007質量%未満ではその効果が十分でなく、一方、0.5質量%を越えて含有すると、導電率が低下すると共に、大きな酸化物や析出物が生成しやすくなり、さらに表面の清浄性を損なうようになるので好ましくない。したがって、これら成分の含有量は、0.0007〜0.5質量%に定めた。一層好ましい範囲は0.005〜0.15質量%である。これら成分の内でもMg、Siが最も好ましく、つぎにBe、そのつぎにAl、Ca、Crが好ましい。
【0021】
(f)炭化物形成成分(Nb、Ti、Zr、Ta、Hf、W、VおよびMo)
これら成分は炭化物を生成し易い元素であるところから、これらの含有量を規制しないと溶湯中のCと反応して硬い炭化物を形成するためにCの耐打抜き金型摩耗性を向上させる作用を消失してしまうことになる。したがって炭化物形成成分の内の1種または2種以上の含有量を合計で0.01質量%未満(より好ましくは0.001質量%未満)に制限した。
【0022】
なお、Mn、Co、Agは最大0.5質量%まで、Sb、Bi、Pbは最大0.03質量%まで含まれていてもこの発明の趣旨を損なうものではない。
【0023】
【発明の実施の形態】
実施例1
原料として、高純度電気銅、炭化物形成元素を含有する鉄合金あるいは銅合金、Cu−Zn母合金、Cu−P母合金、Cu−Ni母合金、Cu−Sn母合金、Fe−C母合金および純鉄を用意し、まず、前記高純度電気銅、炭化物形成元素を含有する鉄合金あるいは銅合金、Cu−Ni母合金、Cu−Sn母合金および純鉄をCO+N2 ガス雰囲気にてコアレスタイプの誘導溶解炉を用い、黒鉛製坩堝の中で溶湯表面を黒鉛製の固形物で覆いながら溶解し、続いて、Cu−P母合金を添加して脱酸を行い、さらにCu−Zn母合金を添加し、最後にFe−C母合金を添加することによって成分調整した後、得られた溶湯を黒鉛製ノズルおよび黒鉛製モールドを用いて厚さ:160mm、幅:450mm、長さ:1600mmの鋳塊を鋳造し、表1〜表3に示される成分組成を有する本発明銅合金1〜16、比較銅合金1〜5および従来銅合金1の鋳塊を製造した。
【0024】
これら本発明銅合金1〜16、比較銅合金1〜5および従来銅合金1の鋳塊を860℃で熱間圧延して厚さ:11mmの熱延板とし、ついで水冷後、熱延板の上下両面を厚さ:0.5mmづつ両側端面を3mmづつ面削して厚さ:10mmとし、これに圧延率:84%の冷間圧延を施して厚さ:1.60mmの冷延板とし、さらに温度:530℃に1時間保持の中間焼鈍と圧延率:80%の冷間圧延を施して厚さ:0.32mmの冷延板とし、引続いて温度:480℃に1時間保持の中間焼鈍を施した後、酸洗を加え、さらに圧延率:53%の冷間圧延を施して厚さ:0.15mmの冷間圧延板とし、最終的に300℃、2分間保持の歪み取り焼鈍を施すことにより本発明銅合金1〜16、比較銅合金1〜5および従来銅合金1からなる薄板条を作製した。
【0025】
得られた本発明銅合金1〜16、比較銅合金1〜5および従来銅合金1からなる薄板条を用い、下記の試験を行い、その結果を表4〜表5に示した。
【0026】
(イ)打抜き金型摩耗試験
小型ダイイングマシン装置(能率機械製 LEM3201型)を用い、金型は市販のCo:16質量%、WC:残りからなる組成を有するWC超硬合金製のものを用い、厚さ:0.15mm、幅:25mmの寸法を有する本発明銅合金1〜16、比較銅合金1〜5および従来銅合金1からなる薄板条を連続打抜き加工により直径:5mmの円形チップを100万個打抜き、打抜き加工開始から20個の穴径と100万個打抜き加工終了直前の20個の穴径をそれぞれ測定し、それぞれの20個の穴径の平均値から変化量を求めて金型の摩耗量とし、表3の従来銅合金1の金型の摩耗量を1としてこれに対する相対値として表わした値を表4〜表5に示し、耐打抜き金型摩耗性を評価した。
【0027】
(ロ)繰り返し曲げ試験(MIL−STD−883/2004に準拠)
この試験方法は、厚さ:0.15mm、幅:25mm、長さ:300mmの寸法を有する本発明銅合金1〜16、比較銅合金1〜5および従来銅合金1からなる薄板を打抜き加工により幅:1.5mm、長さ:6mmの寸法を有する広幅部および幅:0.5mm、長さ:10mmの寸法を有する狭幅部からなる試験片を作製し、リードファティーグテスター(Hybrid Machine Product Co.製)に前記試験片の広幅部を固定し、狭幅部に重さ8オンス(226.8g)の重錘を付けて狭幅部を90°折り曲げたのち反対側に90°折り返して再び基に戻す1往復の折り曲げ操作を1回とし、試験片が折れるまでの折り曲げ操作回数を測定するものであり、各種銅合金について圧延平行方向および圧延垂直方向に各々5個の試験片を採取し、全試験片について試験片が折れるまでの折り曲げ操作回数の平均値を求め、その結果を表4〜表5に示し、耐繰り返し曲げ疲労特性を評価した。
【0028】
(ハ)はんだ付け性試験
はんだ付け性は、レスカ社のMODEL WET−6000を用いてメニスコグラフ法にて評価した。具体的には、本発明銅合金1〜16、比較銅合金1〜5および従来銅合金1からなる薄板を切断することにより厚さ:0.15mm、幅:10mm、長さ:50mmの寸法を有する試験片を作製し、この試験片を#1000のエメリー紙にて研磨し、アセトンで脱脂した後、40℃の10%硫酸水溶液にて1分間酸洗し、水洗乾燥した後、弱活性ロジン系フラックスを塗布した。この弱活性ロジン系フラックスを塗布した試験片を230℃に保持した60質量%Sn−40質量%Pbの溶融ハンダに浸漬深さ:2mm、浸漬速度:16mm/sec、感度:5gの条件で浸漬し、浸漬から試験片に浮力がかかり、最大値を経てさらに浮力が0となる時間tを求め、その結果を表4〜表5に示し、tの値が小さい程はんだに対するぬれ性が優れているところから、はんだ付け性を評価した。
【0029】
【表1】

Figure 0004186199
【0030】
【表2】
Figure 0004186199
【0031】
【表3】
Figure 0004186199
【0032】
【表4】
Figure 0004186199
【0033】
【表5】
Figure 0004186199
【0034】
表1〜表5に示される結果から、本発明銅合金1〜16からなる薄板は、いずれも従来銅合金1からなる薄板よりも耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性が共に優れていることが分かる。さらにC含有量が0.0005%未満の比較銅合金1および炭化物形成元素の合計が0.01%以上の比較銅合金3はいずれも耐打抜き金型摩耗性が十分でなく、またC含有量が0.02%を越えて含有する比較銅合金2は熱間圧延時に粒界割れが発生するので好ましくなく、Niを0.5質量%を越えさらにSnを0.5質量%を越えて含有すると導電性が低下するので好ましくないことが分かる。
【0035】
実施例2
実施例1と同様の方法でFe,P,Zn,Ni,Snを添加して溶製し、続いてAl、Be、Ca、Cr、MgおよびSiの内の1種または2種以上を添加して溶湯表面に酸化防止膜を生成させた後、最後にFe−C母合金を添加することによりCおよびFe含有量を調整し、表6〜表9に示される成分組成の本発明銅合金17〜38、比較銅合金6〜10および従来銅合金2を作製した。これら本発明銅合金17〜38、比較銅合金6〜10および従来銅合金2を実施例1と同様にして厚さ:0.15mmの冷間圧延板とし、最終的に300℃、2分間保持の歪み取り焼鈍を施すことにより本発明銅合金17〜38、比較銅合金6〜10および従来銅合金2からなる薄板条を作製した。
【0036】
これら薄板条を用い、実施例1と同様にして打抜き金型摩耗試験を行い、従来銅合金2の金型の摩耗量を1としてこれに対する相対値として表わした値を表10〜表13に示して耐打抜き金型摩耗性を評価し、さらに実施例1と同様にして繰り返し曲げ試験を行い、試験片が折れるまでの折り曲げ操作回数を測定し、その結果を表10〜表13に示して耐繰り返し曲げ疲労特性を評価した。さらに実施例1と同様にしてはんだ付け性試験を行ってtを求め、その結果を表10〜表13に示し、tの値が小さい程はんだに対するぬれ性が優れているところから、はんだ付け性を評価した。
【0037】
(ニ)樹脂密着性試験
つぎに、本発明銅合金17〜38、比較銅合金6〜10および従来銅合金2からなる薄板条を25mm×150mmの寸法に切断して図1に示される合金試験片1を作製した。
【0038】
この合金試験片1の上端に、図1に示されるように、スタッド3を有する接着面積:1.0cm2 の円錐台状のエポキシ樹脂2(住友ベークライト製、EME−6300H)を6個モールディング接着し、その後175℃に8時間保持してキュアーすることによりテストピースを作製した。このテストピースのスタッド3を引張り試験機で引っ張ることにより合金試験片1とエポキシ樹脂2との密着強度を測定し、その平均値を表10〜表13に示し、本発明銅合金17〜38、比較銅合金6〜10および従来銅合金2からなる薄板条に対する樹脂密着性を評価した。
【0039】
【表6】
Figure 0004186199
【0040】
【表7】
Figure 0004186199
【0041】
【表8】
Figure 0004186199
【0042】
【表9】
Figure 0004186199
【0043】
【表10】
Figure 0004186199
【0044】
【表11】
Figure 0004186199
【0045】
【表12】
Figure 0004186199
【0046】
【表13】
Figure 0004186199
【0047】
表6〜表13に示される結果から、Al、Be、Ca、Cr、MgおよびSiの内の1種または2種以上を含む本発明銅合金17〜38からなる薄板条は、従来銅合金2からなる薄板条よりも耐打抜き金型摩耗性および耐繰り返し曲げ疲労特性が共に優れており、さらに樹脂密着性にも優れていることがわかる。さらにC含有量が0.0005%未満でかつAl、Be、Ca、Cr、MgおよびSiの内の1種または2種以上を含む比較銅合金6、並びに炭化物形成元素の合計が0.01%以上の比較銅合金8はいずれも耐打抜き金型摩耗性が十分でないことがわかる。またC含有量が0.02%を越えて含有しかつSnの含有量が0.003%未満の比較銅合金7は熱延時に粒界割れが発生し、はんだ付け性も好ましくないことが分かる。Niを0.5質量%を越えさらにSnを0.5質量%を越えて含有すると導電性が低下するので好ましくないことが分かる。
【0048】
【発明の効果】
上述のように、この発明の銅合金は、従来の銅合金よりも耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れており、さらに樹脂密着性にも優れているところから、電子産業の発展に大いに貢献し得るものである。
【図面の簡単な説明】
【図1】 テストピースの斜視図である。
【符号の説明】
1 合金試験片
2 エポキシ樹脂
3 スタッド[0001]
BACKGROUND OF THE INVENTION
This invention is a copper alloy having a low die wear property during punching (hereinafter referred to as a die wear resistance), a repeated bending fatigue resistance property and an excellent solderability, or a die wear resistance. The present invention relates to a copper alloy that has excellent resistance to repeated bending fatigue and solderability, and also excellent resin adhesion.
[0002]
[Prior art]
In general, lead frames for semiconductor devices such as IC and LSI, and terminals or connectors of various electrical and electronic components are cut into strips from copper alloy sheets, which are then subjected to metal processing such as punching, pressing, and bending. It is produced by applying. In many cases, the obtained lead frame, terminal or connector is used in a state where a part thereof is resin-packaged with a thermosetting resin.
[0003]
As a copper alloy thin plate for manufacturing lead frames of semiconductor devices used in this resin packaged state,
Fe: 0.05 to 3.5% by mass, P: 0.01 to 0.4% by mass of copper alloy thin plate having a composition consisting of Cu and inevitable impurities,
One or two of Fe: 0.05 to 3.5% by mass, P: 0.01 to 0.4% by mass, Zn: 0.05 to 5% by mass and Sn: 0.05 to 5% by mass A copper alloy sheet containing a seed and the remainder comprising Cu and inevitable impurities,
Fe: 0.05 to 3.5% by mass, P: 0.01 to 0.4% by mass, and further Mg, Co, Pb, Zr, Cr, Pb, Mn, Al, Ni, Si, In and A copper alloy thin plate having a composition containing one or more of B in a total amount of 0.01 to 2% by mass, with the remainder consisting of Cu and inevitable impurities,
One or two of Fe: 0.05 to 3.5% by mass, P: 0.01 to 0.4% by mass, Zn: 0.05 to 5% by mass and Sn: 0.05 to 5% by mass Containing seeds, and further containing one or more of Mg, Co, Pb, Zr, Cr, Mn, Al, Ni, Si, In and B in a total amount of 0.01 to 2% by mass, A copper alloy thin plate having a composition consisting of Cu and inevitable impurities as the remainder is known (see Japanese Patent Laid-Open No. 9-296237).
[0004]
[Problems to be solved by the invention]
In recent years, semiconductor devices such as ICs and LSIs have been increased in density and size, lead frames used in the semiconductor devices have been made thinner, more pins and narrow pitches, and various electric and electronic components. Many high-precision terminals or connectors that have become smaller and thinner have come to be used with higher performance. In order to manufacture these thin, multi-pin, narrow-pitch lead frames, or high-precision terminals or connectors that are small and thin, the dimensional accuracy of punched materials and the size of burrs are very important. It is one of the elements. If the workability of the workpiece is poor during punching, the mold will wear out after a short period of use, and if the mold is worn, the dimensional accuracy will deteriorate and large burrs will be generated. Is possible. When punching a conventional copper alloy thin plate, the die wears severely, and it is necessary to replace the die after a short period of time, resulting in higher costs. There is a demand for a copper alloy sheet having excellent properties.
[0005]
In addition, pins such as ICs and LSIs may be bent during manufacturing and handling. In addition, commercially available semiconductor devices are often used for special purposes or reused. It is necessary to correct it. Pins with thinned and narrow pitched semiconductor devices may be bent repeatedly due to fatigue, and semiconductor devices with broken pins can no longer be used and must be discarded. Efficiency is greatly reduced. Therefore, there is a demand for a copper alloy thin plate having excellent resistance to repeated bending fatigue that does not break even when repeatedly bent.
[0006]
Furthermore, the lead frame for semiconductor devices and the terminals or connectors of various electric / electronic components are often soldered, and the soldered portion is further reduced in area and at the lowest possible temperature for a short time. Further, in recent years, the use of an active flux as a soldering flux promotes corrosion, so that a weakly active flux or a non-active flux is used as a soldering flux for lead frames, terminals or connectors. Active flux has come to be used. However, when soldering a small area to a lead frame, terminal or connector composed of a material with poor solderability using weakly active flux or inactive flux, incomplete soldering may be performed. There is a need for a copper alloy thin plate with even better solderability because it is one of the causes of the loss of product reliability.
[0007]
Further, semiconductor chips such as IC and LSI are die-bonded or wire-bonded at a temperature of about 200 ° C. or higher, and then a resin package is used to protect them from the external environment. Molding of this resin package is performed at a temperature of 160 ° C. or higher, but if the adhesion between the resin and the lead frame is poor, peeling occurs between the resin and the lead frame, and moisture absorption occurs in the device that has caused the peeling. During reflow solder plating in the subsequent process, the package may be broken by the vapor pressure of moisture, and it has not been possible to meet the recent strict reliability requirements.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have been researching to solve these problems,
(A) Conventional Fe for manufacturing semiconductor device lead frame, terminals or connectors of various electric / electronic components: 1.5 to 2.4 mass%, P: 0.008 to 0.08 mass%, Zn : Fe-Zn-P based copper alloy having a composition containing 0.01 to 0.5% by mass and the remainder consisting of Cu and inevitable impurities, Ni: 0.003 to 0.5% by mass, Sn: 0 Addition of 0.003 to 0.5% by mass improves the resistance to repeated bending fatigue and solderability, and C: 0.0005 to 0.02% by mass (preferably C: 0.001 to 0.02% by mass). %) Is added, the wear resistance of the punching die is improved.
(B) Fe described in (a): 1.5 to 2.4 mass%, P: 0.008 to 0.08 mass%, Zn: 0.01 to 0.5 mass%, Ni: 0.0. 003-0.5% by mass, Sn: 0.003-0.5% by mass and C: 0.0005-0.02% by mass, with the balance being composed of Cu and inevitable impurities Fe—Zn—P copper alloy with excellent wear resistance, repeated bending fatigue resistance and solderability, and one or more of Al, Be, Ca, Cr, Mg and Si in total 0 Addition of 0007 to 0.5 mass% improves resin adhesion.
(C) Addition of 0.0007 to 0.5% by mass of one of Al, Be, Ca, Cr, Mg, and Si respectively improves the resin adhesion, but among them, Mg and Si are added. Most preferably, in the case of Mg and Si, Mg: 0.0007 to 0.5 mass% and Si: 0.0007 to 0.5 mass% can be added individually, or Mg: 0.0007 to 0.5 mass% and Si: 0.0007 to 0.5 mass% may coexist.
(D) Nb, Ti, Zr, Ta, Hf, W, V, and Mo contained as impurities in the copper alloys described in (a) to (c) (hereinafter, these elements are collectively referred to as carbide forming elements) If one or more of these are contained in a total of 0.01% by mass or more, the effect of improving the die-wear resistance of the punching die due to the addition of carbon is reduced, so the content of carbide-forming elements is 0 in total. It was found that it is preferable to limit the content to less than 0.01 mass%.
[0009]
This invention was made based on such knowledge,
(1) Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass% Sn: 0.003-0.5% by mass, C: 0.0005-0.02% by mass, the remainder comprising Cu and inevitable impurities, wear resistance to punching dies, resistance to repeated bending fatigue Copper alloy with excellent characteristics and solderability,
(2) Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass% Sn: 0.003-0.5% by mass, C: 0.001-0.02% by mass, the remainder comprising Cu and inevitable impurities, wear resistance to punching dies, resistance to repeated bending fatigue Copper alloy with excellent characteristics and solderability,
(3) In the copper alloy according to (1) or (2), the total content of one or more of Nb, Ti, Zr, Ta, Hf, W, V, and Mo is 0.01. Copper alloy with excellent resistance to die wear, resistance to repeated bending fatigue and solderability limited to less than mass%,
It has the characteristics.
[0010]
C: 0.0005 to 0.02% by mass of a copper alloy excellent in punching die wear resistance, repeated bending fatigue resistance and solderability, further containing Al, Be, Ca, Cr, Mg and Si Each of these is independently used for Al: 0.0007 to 0.5 mass%, Ca: 0.0007 to 0.5 mass%, Be: 0.0007 to 0.5 mass%, Cr: 0.0007. Addition of ˜0.5 mass%, Mg: 0.0007 to 0.5 mass%, or Si: 0.0007 to 0.5 mass% improves the resin adhesion. Furthermore, you may contain 0.0007-0.5 mass% in total of 2 or more types in Al, Be, Ca, Cr, Mg, and Si. Among Al, Be, Ca, Cr, Mg, and Si, it is more preferable to add Mg and Si, and Mg: 0.0007 to 0.5 mass% and Si: 0.0007 to 0.5 mass% each independently Or Mg: 0.0007 to 0.5 mass% and Si: 0.0007 to 0.5 mass% can coexist.
[0011]
Therefore, the present invention
(4) Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass% Sn: 0.003-0.5% by mass, C: 0.0005-0.02% by mass,
A punching-resistant metal having a composition containing one or more of Al, Be, Ca, Cr, Mg, and Si in a total amount of 0.0007 to 0.5% by mass, with the remainder consisting of Cu and inevitable impurities. Copper alloy with excellent mold wear resistance, resistance to repeated bending fatigue, solderability and resin adhesion,
(5) Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass% Sn: 0.003-0.5% by mass, C: 0.0005-0.02% by mass,
Mg: 0.0007 to 0.5 mass%,
A copper alloy excellent in punching die wear resistance, repetitive bending fatigue resistance, solderability and resin adhesion, having a composition comprising Cu and the inevitable impurities.
(6) Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass% Sn: 0.003-0.5% by mass, C: 0.0005-0.02% by mass,
Si: 0.0007 to 0.5 mass%,
A copper alloy excellent in punching die wear resistance, repetitive bending fatigue resistance, solderability and resin adhesion, having a composition comprising Cu and the inevitable impurities.
(7) Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass% Sn: 0.003-0.5% by mass, C: 0.0005-0.02% by mass,
Mg: 0.0007 to 0.5 mass%,
Si: 0.0007 to 0.5 mass%,
A copper alloy excellent in punching die wear resistance, repetitive bending fatigue resistance, solderability and resin adhesion, having a composition comprising Cu and the inevitable impurities.
(8) In the copper alloy according to the above (4), (5), (6) or (7), the C content is 0.001 to 0.02% by mass, the die wear resistance and the repeated bending resistance Copper alloy with excellent fatigue characteristics, solderability and resin adhesion,
(9) In the copper alloy according to (4), (5), (6), (7) or (8), one or more of Nb, Ti, Zr, Ta, Hf, W, V and Mo It is characterized by a copper alloy excellent in punching die wear resistance, repeated bending fatigue resistance, solderability and resin adhesion, in which the content of two or more types is limited to less than 0.01% by mass. is there.
[0012]
The copper alloy described in (1), (2), (3), (4), (5), (6), (7), (8) or (9) is used as a thin plate. Accordingly, the present invention provides a copper alloy thin plate comprising the copper alloy according to (1), (2), (3), (4), (5), (6), (7), (8) or (9). , Has characteristics.
[0013]
The copper alloy and its thin plate excellent in punching die wear resistance, repeated bending fatigue resistance and solderability of this invention, or excellent in punching die wear resistance, repeated bending fatigue resistance, solderability and resin adhesion First, as raw materials, high-purity electrolytic copper, iron alloy or copper alloy with a low carbide-forming element content, Cu—Zn master alloy, Cu—Ni master alloy, Cu—Sn master alloy, Fe—C master alloy, Cu— Prepare P master alloy, Cu-Al master alloy, Cu-Be master alloy, Cu-Ca master alloy, Cu-Cr master alloy, Cu-Mg master alloy, Cu-Si master alloy, Using an induction melting furnace in a reducing atmosphere, melt the molten metal while covering the surface of the molten metal with a graphite solid in a graphite crucible, and add a master alloy containing Cu and each element to the resulting molten metal as necessary. Finally, add Fe-C master alloy After adjusting the ingredients, a copper alloy ingot is produced by semi-continuous casting into a graphite mold, and this copper alloy ingot is annealed in a reducing atmosphere at a temperature of 750 to 980 ° C., hot-rolled, and then water-cooled. Manufactured by chamfering, then repeatedly performing 40-80% cold rolling and 400-650 ° C intermediate annealing, final cold rolling, 250-350 ° C strain relief annealing, etc. to make a thin plate To do.
[0014]
Next, the reason why the component composition of the copper alloy having excellent wear resistance, resistance to repeated bending fatigue and solderability and excellent resin adhesion of the present invention is limited as described above will be described.
(A) Fe
Fe has the effect of improving the strength and hardness by dissolving P in a solid body of Cu and forming a compound with P, but if its content is less than 1.5% by mass, its effect is not sufficient, while 2 If it exceeds 4% by mass, the plating property based on surface defects is remarkably lowered, and further, the conductivity and workability are lowered. Therefore, the content of Fe is set to 1.5 to 2.4% by mass. A more preferable range is 1.8 to 2.3 mass%.
[0015]
(B) P
P has a deoxidizing effect and an effect of improving the strength by generating Fe and a compound. However, if it is less than 0.008% by mass, the effect is not sufficient, whereas it exceeds 0.08% by mass. The content of P is set to 0.008 to 0.08% by mass because it causes a decrease in conductivity and workability. A more preferable range is 0.01 to 0.05% by mass.
[0016]
(C) Zn
Zn has the effect of improving the heat resistance peelability of the solder by dissolving in the Cu substrate, but if its content is less than 0.01% by mass, the effect is not sufficient, whereas it exceeds 0.5% by mass. Even if contained, the effect is saturated, so the content of Zn was determined to be 0.01 to 0.5% by mass. A more preferable range is 0.05 to 0.35% by mass.
[0017]
(D) C
C is an element that is very difficult to dissolve in copper. However, when contained in a very small amount, C has the effect of refining the crystal grains of the ingot and suppressing intergranular cracking in the hot rolling process. There is an effect of improving the wear resistance of the punching die, but if the content is less than 0.0005% by mass, the effect is not sufficient, while if it exceeds 0.02% by mass, This is not preferable because it causes grain boundary cracking in the rolling process. Therefore, the C content is set to 0.0005 to 0.02 mass%. A more preferable range is 0.001 to 0.02% by mass, and an even more preferable range is 0.001 to 0.008% by mass.
[0018]
(E) Ni
Ni dissolves in the Cu base and has the effect of improving strength and lead bending fatigue resistance (repetitive bending fatigue resistance), but if its content is less than 0.003% by mass, the effect is not sufficient. On the other hand, if the content exceeds 0.5% by mass, the conductivity is remarkably lowered, which is not preferable. Therefore, the content of Ni is set to 0.003 to 0.5 mass%. A more preferable range is 0.008 to 0.2% by mass.
[0019]
(F) Sn
Sn dissolves in the Cu substrate and has the effect of improving strength and solderability. However, if its content is less than 0.003 mass%, its effect is not sufficient, while 0.5 mass% is added. If the content exceeds the upper limit, the conductivity is remarkably lowered. Therefore, the Sn content is set to 0.003 to 0.5 mass%. A more preferable range is 0.008 to 0.2% by mass.
[0020]
(G) Al, Be, Ca, Cr, Mg and Si
These components have a deoxidizing action, have an action of suppressing the consumption of C by generating an antioxidant film on the surface of the molten metal, and further improve the strength of the Fe—Zn—P based copper alloy and the resin adhesion. It is added as necessary because it has a function, but if one or more of Al, Be, Ca, Cr, Mg and Si is less than 0.0007 mass% in total, the effect is not sufficient. On the other hand, if the content exceeds 0.5% by mass, the electrical conductivity is lowered, large oxides and precipitates are easily generated, and the surface cleanliness is impaired, which is not preferable. Therefore, the content of these components is set to 0.0007 to 0.5 mass%. A more preferable range is 0.005 to 0.15% by mass. Of these components, Mg and Si are most preferable, followed by Be, and then Al, Ca, and Cr.
[0021]
(F) Carbide forming components (Nb, Ti, Zr, Ta, Hf, W, V and Mo)
Since these components are elements that easily generate carbides, if they are not regulated, they react with C in the molten metal to form hard carbides, so that they have the effect of improving the wear resistance of C punching dies. It will disappear. Therefore, the content of one or more of the carbide-forming components is limited to less than 0.01% by mass (more preferably less than 0.001% by mass) in total.
[0022]
It should be noted that even if Mn, Co, and Ag are included up to a maximum of 0.5 mass%, and Sb, Bi, and Pb are included up to a maximum of 0.03 mass%, the spirit of the present invention is not impaired.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
As raw materials, high-purity electrolytic copper, iron alloy or copper alloy containing a carbide-forming element, Cu—Zn master alloy, Cu—P master alloy, Cu—Ni master alloy, Cu—Sn master alloy, Fe—C master alloy, and First, pure iron is prepared. First, the high purity electrolytic copper, an iron alloy or a copper alloy containing a carbide forming element, a Cu—Ni master alloy, a Cu—Sn master alloy and pure iron are mixed with CO + N. 2 Using a coreless type induction melting furnace in a gas atmosphere, melting the molten metal while covering the surface of the molten metal with a graphite solid in a graphite crucible, followed by deoxidation by adding a Cu-P master alloy, Further, Cu—Zn master alloy was added, and finally, the composition was adjusted by adding the Fe—C master alloy, and then the obtained molten metal was obtained by using a graphite nozzle and a graphite mold, thickness: 160 mm, width: 450 mm. Ingots of length: 1600 mm were cast, and ingots of the present invention copper alloys 1 to 16, comparative copper alloys 1 to 5 and conventional copper alloy 1 having the component compositions shown in Tables 1 to 3 were produced.
[0024]
The ingots of these copper alloys 1 to 16, comparative copper alloys 1 to 5, and conventional copper alloy 1 are hot-rolled at 860 ° C. to form a hot-rolled sheet having a thickness of 11 mm. The top and bottom surfaces are both 0.5mm thick and both side edges are chamfered by 3mm to a thickness of 10mm. This is cold rolled at a rolling rate of 84% to form a cold rolled sheet with a thickness of 1.60mm. Further, intermediate annealing at a temperature of 530 ° C. for 1 hour and cold rolling at a rolling rate of 80% are performed to obtain a cold-rolled sheet having a thickness of 0.32 mm, and subsequently maintained at a temperature of 480 ° C. for 1 hour. After the intermediate annealing, pickling is performed, and further cold rolling with a rolling rate of 53% is performed to obtain a cold rolled sheet with a thickness of 0.15 mm, and finally the strain is removed at 300 ° C. for 2 minutes. The thin plate which consists of this invention copper alloys 1-16, comparative copper alloys 1-5, and the conventional copper alloy 1 by giving annealing It was produced.
[0025]
Using the obtained strips made of the present copper alloys 1 to 16, comparative copper alloys 1 to 5 and conventional copper alloy 1, the following tests were conducted, and the results are shown in Tables 4 to 5.
[0026]
(B) Punching die wear test
A small dieing machine apparatus (LEM3201 type made by Noh Machinery) was used, and the mold was made of commercially available Co: 16% by mass, WC: made of WC cemented carbide having the remaining composition, thickness: 0.15 mm, Continuous punching of thin strips of the present invention copper alloys 1 to 16, comparative copper alloys 1 to 5, and conventional copper alloy 1 having a width of 25 mm, punching 1 million circular chips with a diameter of 5 mm, and starting punching 20 hole diameters and 20 hole diameters immediately before the end of the punching process were measured, and the amount of change was calculated from the average value of each of the 20 hole diameters to determine the wear amount of the mold. Table 4 to Table 5 show the values expressed as relative values with respect to the amount of wear of the conventional copper alloy 1 die, and the wear resistance of the punching die was evaluated.
[0027]
(B) Repeated bending test (conforming to MIL-STD-883 / 2004)
This test method is performed by punching thin plates made of the present copper alloys 1 to 16, comparative copper alloys 1 to 5 and conventional copper alloy 1 having dimensions of thickness: 0.15 mm, width: 25 mm, and length: 300 mm. A test piece comprising a wide portion having a width of 1.5 mm and a length of 6 mm and a narrow portion having a width of 0.5 mm and a length of 10 mm was prepared, and a lead fatigue tester (Hybrid Machine Product Coat) was prepared. The wide part of the test piece is fixed to the product, a weight of 8 ounces (226.8 g) is attached to the narrow part, the narrow part is bent 90 °, and then folded back 90 ° to the opposite side. One reciprocating bending operation for returning to the base is performed once, and the number of bending operations until the test piece is bent is measured. For each of the various copper alloys, 5 pieces each in the rolling parallel direction and the rolling vertical direction are measured. The test pieces were collected, and the average value of the number of bending operations until the test pieces were broken was obtained for all the test pieces. The results are shown in Tables 4 to 5, and the repeated bending fatigue resistance was evaluated.
[0028]
(C) Solderability test
Solderability was evaluated by Meniscograph method using MODEL WET-6000 manufactured by Reska. Specifically, by cutting a thin plate made of the present copper alloys 1 to 16, comparative copper alloys 1 to 5, and conventional copper alloy 1, the dimensions of thickness: 0.15 mm, width: 10 mm, and length: 50 mm are obtained. This test piece was polished with # 1000 emery paper, degreased with acetone, pickled with a 10% sulfuric acid aqueous solution at 40 ° C. for 1 minute, washed with water and dried, and then a weakly active rosin. A system flux was applied. The test piece coated with this weakly active rosin flux was immersed in a molten solder of 60% by mass Sn-40% by mass Pb maintained at 230 ° C. under the conditions of immersion depth: 2 mm, immersion rate: 16 mm / sec, sensitivity: 5 g. Then, buoyancy is applied to the test piece from the immersion, and a time t when the buoyancy becomes 0 after the maximum value is obtained. The results are shown in Tables 4 to 5. The smaller the value of t, the better the wettability with respect to the solder. Therefore, the solderability was evaluated.
[0029]
[Table 1]
Figure 0004186199
[0030]
[Table 2]
Figure 0004186199
[0031]
[Table 3]
Figure 0004186199
[0032]
[Table 4]
Figure 0004186199
[0033]
[Table 5]
Figure 0004186199
[0034]
From the results shown in Tables 1 to 5, the thin plates made of the copper alloys 1 to 16 of the present invention are all better than the conventional thin plate made of the copper alloy 1 in terms of die wear resistance, repeated bending fatigue resistance and solderability. Are both excellent. Furthermore, both the comparative copper alloy 1 with a C content of less than 0.0005% and the comparative copper alloy 3 with a total of carbide forming elements of 0.01% or more are not sufficiently wear resistant to punching dies, and the C content Comparative copper alloy 2 containing more than 0.02% is not preferable because grain boundary cracks occur during hot rolling, and Ni is contained more than 0.5% by mass and Sn is contained more than 0.5% by mass. Then, it turns out that electroconductivity falls and is not preferable.
[0035]
Example 2
Add Fe, P, Zn, Ni, and Sn in the same manner as in Example 1, and then add one or more of Al, Be, Ca, Cr, Mg, and Si. After forming an antioxidant film on the surface of the molten metal, the content of C and Fe is adjusted by adding an Fe—C master alloy at the end, and the copper alloy 17 of the present invention having the component composition shown in Tables 6 to 9 is used. To 38, comparative copper alloys 6 to 10 and conventional copper alloy 2 were produced. These copper alloys 17 to 38 of the present invention, comparative copper alloys 6 to 10 and conventional copper alloy 2 were made into cold rolled plates having a thickness of 0.15 mm in the same manner as in Example 1, and finally held at 300 ° C. for 2 minutes. The thin strips made of the present copper alloys 17 to 38, the comparative copper alloys 6 to 10 and the conventional copper alloy 2 were produced by performing the above strain relief annealing.
[0036]
Using these thin strips, a die wear test was performed in the same manner as in Example 1, and the values expressed as relative values with respect to the wear amount of the conventional copper alloy 2 die are shown in Tables 10 to 13. Then, the wear resistance of the punching die was evaluated, and a repeated bending test was carried out in the same manner as in Example 1 to measure the number of bending operations until the test piece was bent. Repeated bending fatigue properties were evaluated. Furthermore, a solderability test was performed in the same manner as in Example 1 to obtain t, and the results are shown in Tables 10 to 13. The smaller the value of t, the better the wettability with respect to the solder. Evaluated.
[0037]
(D) Resin adhesion test
Next, a thin strip made of the copper alloys 17 to 38 of the present invention, the comparative copper alloys 6 to 10 and the conventional copper alloy 2 was cut into a size of 25 mm × 150 mm to prepare an alloy test piece 1 shown in FIG.
[0038]
As shown in FIG. 1, at the upper end of the alloy test piece 1, the adhesion area having the stud 3 is 1.0 cm. 2 A test piece was prepared by bonding 6 pieces of the frustoconical epoxy resin 2 (manufactured by Sumitomo Bakelite Co., Ltd., EME-6300H), followed by curing at 175 ° C. for 8 hours. By pulling the stud 3 of this test piece with a tensile tester, the adhesion strength between the alloy test piece 1 and the epoxy resin 2 was measured, and the average values are shown in Tables 10 to 13, and the copper alloys 17 to 38 of the present invention. Resin adhesion to thin strips made of comparative copper alloys 6 to 10 and conventional copper alloy 2 was evaluated.
[0039]
[Table 6]
Figure 0004186199
[0040]
[Table 7]
Figure 0004186199
[0041]
[Table 8]
Figure 0004186199
[0042]
[Table 9]
Figure 0004186199
[0043]
[Table 10]
Figure 0004186199
[0044]
[Table 11]
Figure 0004186199
[0045]
[Table 12]
Figure 0004186199
[0046]
[Table 13]
Figure 0004186199
[0047]
From the results shown in Tables 6 to 13, the thin strips of the copper alloys 17 to 38 of the present invention containing one or more of Al, Be, Ca, Cr, Mg and Si are the conventional copper alloys 2 It can be seen that both the punching die wear resistance and the repeated bending fatigue resistance are superior to those of the thin sheet strips, and the resin adhesion is also excellent. Furthermore, the C content is less than 0.0005% and the total of the comparative copper alloy 6 including one or more of Al, Be, Ca, Cr, Mg and Si, and the carbide forming elements is 0.01%. It can be seen that none of the above comparative copper alloys 8 has sufficient wear resistance of the punching die. Further, it is understood that the comparative copper alloy 7 having a C content exceeding 0.02% and an Sn content of less than 0.003% causes intergranular cracking during hot rolling, and the solderability is not preferable. . It can be seen that if Ni exceeds 0.5% by mass and Sn exceeds 0.5% by mass, the conductivity decreases, which is not preferable.
[0048]
【The invention's effect】
As described above, the copper alloy of the present invention is superior in punching die wear resistance, resistance to repeated bending fatigue and solderability, and also in resin adhesion, compared to conventional copper alloys. It can greatly contribute to the development of the electronics industry.
[Brief description of the drawings]
FIG. 1 is a perspective view of a test piece.
[Explanation of symbols]
1 Alloy specimen
2 Epoxy resin
3 Stud

Claims (10)

Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、残りがCuおよび不可避不純物からなる組成を有することを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金。  Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass%, Sn: Punching mold wear resistance and repetition resistance characterized by containing 0.003 to 0.5 mass%, C: 0.0005 to 0.02 mass%, and the remainder consisting of Cu and inevitable impurities Copper alloy with excellent bending fatigue characteristics and solderability. Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.001〜0.02質量%を含有し、残りがCuおよび不可避不純物からなる組成を有することを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金。  Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass%, Sn: Punching mold wear resistance, repetitive resistance characterized by containing 0.003 to 0.5% by mass, C: 0.001 to 0.02% by mass, and the remainder comprising Cu and inevitable impurities Copper alloy with excellent bending fatigue characteristics and solderability. 請求項1または2記載の銅合金において、Nb、Ti、Zr、Ta、Hf、W、VおよびMoの内の1種または2種以上の含有量を合計で0.01質量%未満に制限したことを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性およびはんだ付け性に優れた銅合金。  3. The copper alloy according to claim 1, wherein the content of one or more of Nb, Ti, Zr, Ta, Hf, W, V and Mo is limited to less than 0.01% by mass in total. A copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability. Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Al、Be、Ca、Cr、MgおよびSiの内の1種または2種以上を合計で0.0007〜0.5質量%を含有し、残りがCuおよび不可避不純物からなる組成を有することを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金。
Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass%, Sn: 0.003 to 0.5% by mass, C: 0.0005 to 0.02% by mass,
One or more of Al, Be, Ca, Cr, Mg and Si are contained in a total amount of 0.0007 to 0.5% by mass, and the remainder has a composition composed of Cu and inevitable impurities. A copper alloy with excellent die wear resistance, repeated bending fatigue resistance, solderability and resin adhesion.
Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Mg:0.0007〜0.5質量%、
を含有し、残りがCuおよび不可避不純物からなる組成を有することを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金。
Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass%, Sn: 0.003 to 0.5% by mass, C: 0.0005 to 0.02% by mass,
Mg: 0.0007 to 0.5 mass%,
A copper alloy excellent in punching die wear resistance, repeated bending fatigue resistance, solderability and resin adhesion, characterized in that it has a composition comprising Cu and the remainder consisting of Cu and inevitable impurities.
Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Si:0.0007〜0.5質量%、
を含有し、残りがCuおよび不可避不純物からなる組成を有することを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金。
Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass%, Sn: 0.003 to 0.5% by mass, C: 0.0005 to 0.02% by mass,
Si: 0.0007 to 0.5 mass%,
A copper alloy excellent in punching die wear resistance, repeated bending fatigue resistance, solderability and resin adhesion, characterized in that it has a composition comprising Cu and the remainder consisting of Cu and inevitable impurities.
Fe:1.5〜2.4質量%、P:0.008〜0.08質量%、Zn:0.01〜0.5質量%、Ni:0.003〜0.5質量%、Sn:0.003〜0.5質量%、C:0.0005〜0.02質量%を含有し、さらに、
Mg:0.0007〜0.5質量%、
Si:0.0007〜0.5質量%、
を含有し、残りがCuおよび不可避不純物からなる組成を有することを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金。
Fe: 1.5-2.4 mass%, P: 0.008-0.08 mass%, Zn: 0.01-0.5 mass%, Ni: 0.003-0.5 mass%, Sn: 0.003 to 0.5% by mass, C: 0.0005 to 0.02% by mass,
Mg: 0.0007 to 0.5 mass%,
Si: 0.0007 to 0.5 mass%,
A copper alloy excellent in punching die wear resistance, repeated bending fatigue resistance, solderability and resin adhesion, characterized in that it has a composition comprising Cu and the remainder consisting of Cu and inevitable impurities.
請求項4、5、6または7記載の銅合金において、C含有量は0.001〜0.02質量%であることを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金。  The copper alloy according to claim 4, 5, 6, or 7, wherein the C content is 0.001 to 0.02 mass%, the die-cutting die wear resistance, the repeated bending fatigue resistance, and the soldering Copper alloy with excellent adhesion and resin adhesion. 請求項4、5、6、7または8記載の銅合金において、Nb、Ti、Zr、Ta、Hf、W、VおよびMoの内の1種または2種以上の含有量を合計で0.01質量%未満に制限したことを特徴とする耐打抜き金型摩耗性、耐繰り返し曲げ疲労特性、はんだ付け性および樹脂密着性に優れた銅合金。  The copper alloy according to claim 4, 5, 6, 7 or 8, wherein the total content of one or more of Nb, Ti, Zr, Ta, Hf, W, V and Mo is 0.01. A copper alloy excellent in punching die wear resistance, repeated bending fatigue resistance, solderability and resin adhesion, characterized by being limited to less than mass%. 請求項1、2、3、4、5、6、7、8または9記載の銅合からなる銅合金薄板。  A copper alloy thin plate comprising the copper alloy according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9.
JP15454598A 1998-03-10 1998-06-03 Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability Expired - Lifetime JP4186199B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP15454598A JP4186199B2 (en) 1998-06-03 1998-06-03 Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability
EP99939202A EP0995808B1 (en) 1998-03-10 1999-03-09 Copper alloy and copper alloy thin sheet exhibiting improved wear of blanking metal mold
CN99800259A CN1102177C (en) 1998-03-10 1999-03-09 Copper alloy and copper alloy thin sheet exhibiting improved wear of blanking metal mold
TW088103623A TW442576B (en) 1998-03-10 1999-03-09 Copper alloy and copper alloy sheet, excellent in resistance against blanking die wear
DE19980583T DE19980583T1 (en) 1998-03-10 1999-03-09 Copper-based alloy and sheet metal made of this with excellent die-cut wear resistance
PCT/JP1999/001116 WO1999046415A1 (en) 1998-03-10 1999-03-09 Copper alloy and copper alloy thin sheet exhibiting improved wear of blanking metal mold
KR1019997010404A KR100562790B1 (en) 1998-03-10 1999-03-09 Copper alloy and copper alloy thin sheet
HK00107927A HK1028425A1 (en) 1998-03-10 2000-12-09 Copper alloy and copper alloy thin sheet exhibiting improved wear of blanking metal mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15454598A JP4186199B2 (en) 1998-06-03 1998-06-03 Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability

Publications (2)

Publication Number Publication Date
JPH11350055A JPH11350055A (en) 1999-12-21
JP4186199B2 true JP4186199B2 (en) 2008-11-26

Family

ID=15586604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15454598A Expired - Lifetime JP4186199B2 (en) 1998-03-10 1998-06-03 Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability

Country Status (1)

Country Link
JP (1) JP4186199B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344171B1 (en) 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts
JP5525369B2 (en) * 2010-03-11 2014-06-18 三菱伸銅株式会社 Cu-Fe-P copper alloy strips for electronic equipment with excellent resin adhesion
JP5866411B2 (en) 2013-08-09 2016-02-17 三菱マテリアル株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP5866410B2 (en) 2013-08-09 2016-02-17 三菱マテリアル株式会社 Copper alloy sheet and method for producing copper alloy sheet

Also Published As

Publication number Publication date
JPH11350055A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
KR101056973B1 (en) Cu-Ni-Si alloy
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP4197718B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
KR20090096343A (en) Copper alloy sheet for qfn package superior in dicing processability and qfn package
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
CN1102177C (en) Copper alloy and copper alloy thin sheet exhibiting improved wear of blanking metal mold
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
KR101682801B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP6811136B2 (en) Cu-Ni-Si based copper alloy strip and its manufacturing method
JP6210887B2 (en) Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
JP4186199B2 (en) Copper alloy with excellent die wear resistance, repeated bending fatigue resistance and solderability
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP3344700B2 (en) High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP4186201B2 (en) Copper alloy and copper alloy thin plate with excellent die wear resistance and resin adhesion
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JP2503793B2 (en) Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies
JP2001131657A (en) Copper alloy for electrical and electronic parts
JP5236973B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP3404278B2 (en) Cu-Ni-Si based copper base alloy with improved annealing cracking
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPH1136028A (en) Lead frame for semiconductor device
JPH0325495B2 (en)
JPH05311297A (en) Copper base alloy for connector and its manufacture
JP2012153950A (en) Copper alloy plate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term