JP4184306B2 - Electron emitter - Google Patents

Electron emitter Download PDF

Info

Publication number
JP4184306B2
JP4184306B2 JP2004078311A JP2004078311A JP4184306B2 JP 4184306 B2 JP4184306 B2 JP 4184306B2 JP 2004078311 A JP2004078311 A JP 2004078311A JP 2004078311 A JP2004078311 A JP 2004078311A JP 4184306 B2 JP4184306 B2 JP 4184306B2
Authority
JP
Japan
Prior art keywords
electron
deflection
emitting device
electrode
irradiation surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004078311A
Other languages
Japanese (ja)
Other versions
JP2005268025A (en
Inventor
誠 岡野
哲也 今井
治 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2004078311A priority Critical patent/JP4184306B2/en
Priority to US11/083,095 priority patent/US7486011B2/en
Publication of JP2005268025A publication Critical patent/JP2005268025A/en
Application granted granted Critical
Publication of JP4184306B2 publication Critical patent/JP4184306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source

Description

本発明は、所定の照射面に電子を照射する電子放出素子に関する。   The present invention relates to an electron-emitting device that irradiates electrons to a predetermined irradiation surface.

記憶再生装置や画像表示装置などに、電子放出素子を用いた技術が知られている。特に、電子放出素子が有する電子源から電子が照射される電子照射面上の位置(以下、「照射位置」と呼ぶ)を移動させる技術として、以下に示すようなものがある。   A technique using an electron-emitting device is known for a storage / reproduction device or an image display device. In particular, techniques for moving a position on an electron irradiation surface (hereinafter referred to as “irradiation position”) where electrons are irradiated from an electron source included in the electron-emitting device include the following.

例えば、特許文献1には、電子線(電子ビーム)を用いて記録/再生を行う記録装置において、記録媒体を移動させることにより記録媒体上の記録位置を変更する技術が記載されている。また、特許文献2には、圧電素子からなるカンチレバー上に電子源を形成し、カンチレバーの変位タイミングと電子源の電子放出タイミングを制御することにより、電子ビームの照射位置を変位可能とする技術が記載されている。更に、非特許文献1には、電子ビーム自体を偏向することによって、電子ビームの照射位置を移動させる技術が記載されている。   For example, Patent Document 1 describes a technique for changing a recording position on a recording medium by moving the recording medium in a recording apparatus that performs recording / reproduction using an electron beam (electron beam). Japanese Patent Application Laid-Open No. 2004-228688 discloses a technique that enables an electron beam irradiation position to be displaced by forming an electron source on a cantilever made of a piezoelectric element and controlling the displacement timing of the cantilever and the electron emission timing of the electron source. Are listed. Further, Non-Patent Document 1 describes a technique for moving the irradiation position of an electron beam by deflecting the electron beam itself.

しかしながら、上記のような文献に記載された技術では、電子放出素子等を含んだ装置が複雑な機構となり、簡便な構成にすることができない場合があった。例えば、記録媒体自体を動かす場合には、複雑な駆動機構が必要となる。また、カンチレバーを用いた場合も同様に、カンチレバーを駆動するための機構が複雑になる。一方、電子ビーム自体を偏向する場合には、電子ビームの大きな偏向量を得るために偏向部分と電子照射面との距離を大きくとる必要があった。更に、電子ビーム自体を曲げることによって、電子照射面上において電子ビームに収差が生じてしまい、電子照射面に電子ビームが好適に収束しない。それを防ぐためには、補正のための機構を加えることになり、装置が複雑かつ大きくなるという問題があった。   However, with the techniques described in the above-mentioned documents, there are cases in which a device including an electron-emitting device or the like has a complicated mechanism and cannot have a simple configuration. For example, when moving the recording medium itself, a complicated drive mechanism is required. Similarly, when a cantilever is used, a mechanism for driving the cantilever is complicated. On the other hand, when the electron beam itself is deflected, it is necessary to increase the distance between the deflection portion and the electron irradiation surface in order to obtain a large deflection amount of the electron beam. Further, bending the electron beam itself causes aberration in the electron beam on the electron irradiation surface, and the electron beam is not suitably converged on the electron irradiation surface. In order to prevent this, a correction mechanism is added, and there is a problem that the apparatus becomes complicated and large.

特開平9−7240号公報Japanese Patent Laid-Open No. 9-7240 特開平7−182967号公報JP 7-182967 A T.H.P.Chang, L.P.Muray, U.Staufer and D.P.Kern, "A Scanning Tunneling Microscope Based Microcolumn System", Jpn.J.Appl.Phys. Vol.31(1992) pp.4232-4240T.H.P.Chang, L.P.Muray, U.Staufer and D.P.Kern, "A Scanning Tunneling Microscope Based Microcolumn System", Jpn.J.Appl.Phys. Vol.31 (1992) pp.4232-4240

本発明が解決しようとする課題には、上記のようなものが例として挙げられる。本発明は、電子を照射する位置を移動可能とし、小型で簡便に構成される電子放出素子を提供することを課題とする。   Examples of problems to be solved by the present invention include the above. An object of the present invention is to provide an electron-emitting device that can move a position to which electrons are irradiated and is small and easily configured.

請求項1に記載の発明は、電子放出素子は、陰極基板と、前記陰極基板上に設けられ、前記陰極基板に対向配置された電子照射面に電子を照射する細線型の電子放出部と、前記電子放出部の周辺に電界を発生させることにより、前記電子放出部を偏向させる偏向手段と、を備えることを特徴とする。   According to the first aspect of the present invention, an electron-emitting device includes a cathode substrate, a thin-line electron emitting portion that is provided on the cathode substrate and irradiates electrons to an electron irradiation surface that is disposed opposite to the cathode substrate, And deflecting means for deflecting the electron emission portion by generating an electric field around the electron emission portion.

本発明の好適な実施形態では、電子放出素子は、陰極基板と、前記陰極基板上に設けられ、前記陰極基板に対向配置された電子照射面に電子を照射する細線型の電子放出部と、前記電子放出部の周辺に電界を発生させることにより、前記電子放出部を偏向させる偏向手段と、を備える。   In a preferred embodiment of the present invention, the electron-emitting device includes a cathode substrate, a thin-line electron emitting portion that is provided on the cathode substrate and irradiates electrons to an electron irradiation surface that is disposed opposite to the cathode substrate, Deflection means for deflecting the electron emission part by generating an electric field around the electron emission part.

上記の電子放出素子は、陰極基板を陰極とし、陰極と陽極に電圧を印加することで、陰極基板上に設けられた電子放出部より電子を放出させ、陽極面上に形成された電子照射面に当該電子を照射させる装置である。電子放出部は、例えば電子源であり、陰極基板上に設けられる細線型のものとする。偏向手段は、電子放出部周辺に電界を発生させる。電子放出部には電荷が存在するため、発生された電界により力を受ける。これにより、細線型の電子放出部は偏向されて湾曲し、電子を放出する先端部が移動する。したがって、電子放出部より電子が照射される電子照射面上の位置(以下、「照射位置」と呼ぶ)は、電子照射面上で移動することになる。これにより、電子が照射される電子照射面を移動させたり、電子放出部全体の位置を移動させたりする必要がないので、電子放出素子、又は電子放出素子を含む装置の構成が複雑化せず、簡便に構成することができる。   The above-described electron-emitting device has an electron-irradiated surface formed on the anode surface by using a cathode substrate as a cathode and applying a voltage to the cathode and anode to emit electrons from an electron-emitting portion provided on the cathode substrate. Is a device that irradiates the electron. The electron emission part is an electron source, for example, and is a thin line type provided on the cathode substrate. The deflecting means generates an electric field around the electron emission portion. Since an electric charge exists in the electron emission portion, the electron emission portion receives force due to the generated electric field. As a result, the thin-line electron emitting portion is deflected and curved, and the tip portion that emits electrons moves. Therefore, the position on the electron irradiation surface (hereinafter referred to as “irradiation position”) to which the electrons are irradiated from the electron emission portion moves on the electron irradiation surface. As a result, it is not necessary to move the electron irradiation surface on which the electrons are irradiated or to move the position of the entire electron emission portion, so that the configuration of the electron emission element or the apparatus including the electron emission element is not complicated. It can be configured simply.

上記の電子放出素子の一態様では、前記偏向手段として、前記電子放出部の周囲の前記陰極基板と前記電子照射面との空間に設けられた少なくとも一対の偏向電極を備え、偏向電極に電圧を印加することにより電子放出部を偏向させる。偏向電極は複数設けることで、電子放出部を様々な方向に移動することができる。これにより、電子が照射される照射位置の可動範囲を広げることができる。例えば2対の偏向電極を前後方向と左右方向に設けることにより、電子放出部の先端部を2次元平面上の任意の位置に移動することが可能となる。   In one aspect of the electron-emitting device, the deflecting unit includes at least a pair of deflecting electrodes provided in a space between the cathode substrate and the electron irradiation surface around the electron-emitting portion, and a voltage is applied to the deflecting electrodes. By applying this, the electron emission portion is deflected. By providing a plurality of deflection electrodes, the electron emission portion can be moved in various directions. Thereby, the movable range of the irradiation position irradiated with electrons can be expanded. For example, by providing two pairs of deflection electrodes in the front-rear direction and the left-right direction, the tip of the electron emission portion can be moved to an arbitrary position on the two-dimensional plane.

上記の電子放出素子の他の一態様では、前記電子照射面は、前記電子放出部の屈曲点を中心とする略球面を有する。電子放出部は、偏向手段により屈曲点を中心に偏向される。   In another aspect of the above electron-emitting device, the electron irradiation surface has a substantially spherical surface centered on a bending point of the electron-emitting portion. The electron emitting portion is deflected around the bending point by the deflecting means.

この態様では、電子放出面をこの屈曲点を中心とする球面に形成すると、電子放出部の先端部と電子照射面との距離は一定に保たれる。これにより、照射位置におけるビームスポットの面積を一定に維持することができる。   In this aspect, when the electron emission surface is formed in a spherical surface centered on this bending point, the distance between the tip of the electron emission portion and the electron irradiation surface is kept constant. Thereby, the area of the beam spot at the irradiation position can be kept constant.

上記の電子放出素子の他の一態様では、前記偏向手段は、前記電子放出部の長さ方向に、第1の偏向電極と、第2の偏向電極と、を備え、前記偏向手段は、前記電子放出部の先端部と前記電子照射面との距離を一定に保つように、前記第1の偏向電極及び前記第2の偏向電極に電圧を印加して前記電子放出部を偏向させる。   In another aspect of the electron-emitting device, the deflecting unit includes a first deflecting electrode and a second deflecting electrode in a length direction of the electron-emitting portion, and the deflecting unit includes the deflecting unit, A voltage is applied to the first deflection electrode and the second deflection electrode to deflect the electron emission portion so that the distance between the tip of the electron emission portion and the electron irradiation surface is kept constant.

この態様では、電子放出部に、その長さ方向に設けられた2組の偏向電極(第1の偏向電極と第2の偏向電極)によって偏向させる。この場合、電子放出部には2箇所から力が加えられて偏向されるので、電子放出部の変位の自由度が増加することになる。即ち、電子放出部の先端部と電子照射面との距離を調整しやすくなる。したがって、これらの偏向電極に適切な電圧を印加することにより、電子放出部の先端部と電子照射面との距離を一定に維持しつつ、電子放射部を偏向されることが可能となるので、電子照射面を平面とすることができる。したがって、電子放出素子を容易、且つ低コストで製作可能となる。   In this aspect, the electron emission portion is deflected by two sets of deflection electrodes (first deflection electrode and second deflection electrode) provided in the length direction. In this case, since the force is applied to the electron emission portion from two locations and deflected, the degree of freedom of displacement of the electron emission portion increases. That is, it becomes easy to adjust the distance between the tip of the electron emission portion and the electron irradiation surface. Therefore, by applying an appropriate voltage to these deflection electrodes, it becomes possible to deflect the electron emission portion while maintaining a constant distance between the tip of the electron emission portion and the electron irradiation surface. The electron irradiation surface can be a flat surface. Therefore, the electron-emitting device can be easily manufactured at low cost.

以下、図面を参照して本発明の好適な実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[第1実施例]
まず、本発明の第1実施例に係る電子放出素子について、図1〜図3を用いて説明する。図1には、第1実施例に係る電子放出素子100の概略構成を示す。
[First embodiment]
First, an electron-emitting device according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of an electron-emitting device 100 according to the first embodiment.

図1に示すように、電子放出素子100は、陰極基板1と、電子引出電極2と、偏向電極3と、電子源(電子放出部)4と、電子照射面5と、を備える。   As shown in FIG. 1, the electron-emitting device 100 includes a cathode substrate 1, an electron extraction electrode 2, a deflection electrode 3, an electron source (electron emission unit) 4, and an electron irradiation surface 5.

陰極基板1は、シリコンなどの材料から構成される基板である。陰極基板1は、図示しない電源により電圧を印加され、電子放出素子100において陰極(冷陰極)として機能する。また、陰極基板1上には、電子源4が形成されている。   The cathode substrate 1 is a substrate made of a material such as silicon. The cathode substrate 1 is applied with a voltage by a power source (not shown) and functions as a cathode (cold cathode) in the electron-emitting device 100. An electron source 4 is formed on the cathode substrate 1.

電子源4は、細線型の電子放出部として機能し、例えばカーボンナノチューブなどを用いる。カーボンナノチューブは、アーク放電法やレーザー蒸発法やプラズマCVD法によって形成される。カーボンナノチューブを用いた場合、例えば、電子源4の直径は10nmに、長さは500μmにされる。また、陰極基板1上にエミッタチップを形成し、この上にカーボンナノチューブを成長させることもできる。なお、電子源4に、シリコンなどのナノチューブを用いてもよい。また、電子源4の材料に金属材料を用いてもよい。   The electron source 4 functions as a thin-line electron emission portion, and uses, for example, a carbon nanotube. The carbon nanotube is formed by an arc discharge method, a laser evaporation method, or a plasma CVD method. When the carbon nanotube is used, for example, the diameter of the electron source 4 is set to 10 nm and the length is set to 500 μm. It is also possible to form an emitter chip on the cathode substrate 1 and grow carbon nanotubes thereon. Note that a nanotube such as silicon may be used for the electron source 4. A metal material may be used as the material of the electron source 4.

電子引出電極2は、図示しない電源により電圧を印加され、電子放出素子100において陽極として機能する。また、電子源4より放出される電子10が照射される面には、電子照射面5が形成されている。なお、陰極基板1と電子照射面5との距離は、例えば1mmに設定される。   The electron extraction electrode 2 is applied with a voltage by a power source (not shown) and functions as an anode in the electron emission element 100. An electron irradiation surface 5 is formed on the surface irradiated with the electrons 10 emitted from the electron source 4. The distance between the cathode substrate 1 and the electron irradiation surface 5 is set to 1 mm, for example.

このように、電子放出素子100は、上記の陰極基板1と電子引出電極2に電圧を印加することにより、陰極基板1に設けられた電子源4より電子10を放出させる装置である。放出された電子10は、電子引出電極2上の電子照射面5に照射される(この照射される位置を、以下では「照射位置11」として用いる)。この電子10の照射を利用して、記録媒体に情報を記録したり、記録媒体に記録された情報を再生したり、画像表示装置に画像を表示させることができる。   Thus, the electron-emitting device 100 is a device that emits electrons 10 from the electron source 4 provided on the cathode substrate 1 by applying a voltage to the cathode substrate 1 and the electron extraction electrode 2 described above. The emitted electrons 10 are irradiated onto the electron irradiation surface 5 on the electron extraction electrode 2 (this irradiation position is used as “irradiation position 11” below). Using the irradiation of the electrons 10, information can be recorded on the recording medium, information recorded on the recording medium can be reproduced, and an image can be displayed on the image display device.

本実施例では、電子源4の周囲の、陰極基板1と電子照射面5の間に存在する空間内に、偏向電極3(以下、「偏向電極3」と表記した場合は、偏向電極3a、3bを含めた意味として用いる)が設けられている。即ち、偏向電極3aと偏向電極3bとの電極間に、電子源4が挟まれるように偏向電極3が配置される。この偏向電極3にも、図示しない電源より電圧が印加される。これにより、偏向電極3の間に電界(以下、「偏向電界」とも呼ぶ)が生じることになる。電子源4に存在する電荷は、偏向電極3が発生する偏向電界により力を受ける。これによって、電子源4自体が屈曲(以下、「偏向」とも呼ぶ)することになる。以上のように、偏向電極3は、電子源4を偏向させる偏向手段として機能する。   In the present embodiment, in the space around the electron source 4 between the cathode substrate 1 and the electron irradiation surface 5, the deflection electrode 3 (hereinafter referred to as “deflection electrode 3”, the deflection electrode 3 a, 3b is used as a meaning including 3b). That is, the deflection electrode 3 is disposed so that the electron source 4 is sandwiched between the deflection electrode 3a and the deflection electrode 3b. A voltage is also applied to the deflection electrode 3 from a power source (not shown). As a result, an electric field (hereinafter also referred to as “deflection electric field”) is generated between the deflection electrodes 3. The electric charge present in the electron source 4 is subjected to a force by a deflection electric field generated by the deflection electrode 3. As a result, the electron source 4 itself bends (hereinafter also referred to as “deflection”). As described above, the deflection electrode 3 functions as a deflection unit that deflects the electron source 4.

なお、図1に示すように、偏向電極3a、3bは、電子源4に沿った長さLを有しており、偏向電極3は、電極間隔Wを有している。例えば、電極間隔Wは20μm、長さLは10μmとして構成される。   As shown in FIG. 1, the deflection electrodes 3 a and 3 b have a length L along the electron source 4, and the deflection electrode 3 has an electrode interval W. For example, the electrode interval W is 20 μm and the length L is 10 μm.

具体的に、電子源4が屈曲する様子を、図2を用いて説明する。図2(a)に示すように、紙面左の偏向電極3aを陽極、紙面右の偏向電極3bを陰極となるように、偏向電極3に電圧を印加する。この場合、偏向電極3の間には偏向電界が発生し、電子源4は負の電荷が存在するため、矢印12で示すような力が電子源4に働く。一方、図2(b)に示すように、紙面左の偏向電極3aを陰極、紙面右の偏向電極3bを陽極となるように偏向電極3に電圧を印加した場合、電子源4には矢印14で示す方向の力が働く。以上のように偏向電極3に電圧を印加することにより、電子源4は、陰極基板1上の位置は固定されたまま屈曲する。これにより、電子源4より放出される電子が照射される照射位置11を、電子照射面5上で移動させることができる。   Specifically, how the electron source 4 is bent will be described with reference to FIG. As shown in FIG. 2A, a voltage is applied to the deflection electrode 3 so that the left deflection electrode 3a serves as an anode and the right deflection electrode 3b serves as a cathode. In this case, a deflection electric field is generated between the deflection electrodes 3, and a negative charge is present in the electron source 4, so that a force as indicated by an arrow 12 acts on the electron source 4. On the other hand, as shown in FIG. 2B, when a voltage is applied to the deflection electrode 3 so that the left deflection electrode 3a serves as a cathode and the right deflection electrode 3b serves as an anode, an arrow 14 is applied to the electron source 4. The force in the direction indicated by By applying a voltage to the deflection electrode 3 as described above, the electron source 4 bends while the position on the cathode substrate 1 is fixed. Thereby, the irradiation position 11 irradiated with the electrons emitted from the electron source 4 can be moved on the electron irradiation surface 5.

なお、偏向電極3に電圧を印加することにより電子源4が偏向する量(符号13で示す量であり、以下「偏向量13」と呼ぶ)は、電子源4を構成する材料のヤング率、電子源4の直径・長さ、電子源4内に存在する電荷量、偏向電極3のサイズ、偏向電極3の電極間隔などにより決定されるが、例えば、長さ500μm、直径10nmの電子源を、図1に一例を示したような電極間隔W20μm、長さL10μmを有する偏向電極3に4Vの電圧を印加して偏向した場合、偏向量13は概ね50μmになる。   The amount of deflection of the electron source 4 by applying a voltage to the deflection electrode 3 (the amount indicated by reference numeral 13, hereinafter referred to as “deflection amount 13”) is the Young's modulus of the material constituting the electron source 4. It is determined by the diameter and length of the electron source 4, the amount of charge existing in the electron source 4, the size of the deflection electrode 3, the electrode spacing of the deflection electrode 3, etc. For example, an electron source having a length of 500 μm and a diameter of 10 nm is selected. When the electrode electrode W is deflected by applying a voltage of 4 V to the deflecting electrode 3 having an electrode interval W of 20 μm and a length of L 10 μm as shown in FIG. 1, the deflection amount 13 is approximately 50 μm.

次に、図2中の矢印A方向から電子放出素子100を見た図を示す図3を説明する。図示のように、偏向電極3は、電子源4の周囲の4方向(紙面の上下左右)に設けられている。具体的には、紙面の左右の偏向電極3aと偏向電極3bが一対の偏向電極を構成し、紙面の上下の偏向電極3cと偏向電極3dが一対の偏向電極を構成する。このような偏向電極3を用いることにより、電子源4による照射位置11を紙面の上下左右に移動させることができる。また、対になった偏向電極3に印加する電圧を各々変えることにより、電子源4による照射位置11を紙面の斜め方向にも移動させることができる。これにより、電子源4による照射位置11を、符号16の破線で示す領域内を移動させることができる。なお、本実施例に係る電子放出素子100では、偏向電極3を二対有するものについて示したが、この数には限定はしない。   Next, FIG. 3 which shows the figure which looked at the electron emission element 100 from the arrow A direction in FIG. 2 is demonstrated. As shown in the figure, the deflection electrodes 3 are provided in four directions around the electron source 4 (up, down, left and right on the paper surface). Specifically, the left and right deflection electrodes 3a and 3b on the paper surface constitute a pair of deflection electrodes, and the upper and lower deflection electrodes 3c and 3d on the paper surface constitute a pair of deflection electrodes. By using such a deflection electrode 3, the irradiation position 11 by the electron source 4 can be moved up, down, left and right on the paper surface. Moreover, the irradiation position 11 by the electron source 4 can be moved in an oblique direction on the paper surface by changing the voltage applied to the pair of deflection electrodes 3. Thereby, the irradiation position 11 by the electron source 4 can be moved within a region indicated by a broken line 16. In addition, although the electron-emitting device 100 according to the present embodiment is shown as having two pairs of the deflection electrodes 3, the number is not limited.

以上のように、本発明に係る電子放出素子100は、偏向電極3が発生する偏向電界によって電子源4を屈曲させることにより、電子照射面5上の照射位置11を移動させることができる。これにより、電子照射面5などを移動させたり、電子源4自体を移動させたり(この場合、電子源4が設置された陰極基板1などの構成要素自体を移動させるという意味である)する必要がないので、電子放出素子100を含む装置の構成が複雑化せず、小型で簡便に構成することができる。   As described above, the electron-emitting device 100 according to the present invention can move the irradiation position 11 on the electron irradiation surface 5 by bending the electron source 4 by the deflection electric field generated by the deflection electrode 3. Accordingly, it is necessary to move the electron irradiation surface 5 or the like or move the electron source 4 itself (in this case, it means that the component itself such as the cathode substrate 1 on which the electron source 4 is installed is moved). Therefore, the configuration of the apparatus including the electron-emitting device 100 is not complicated, and can be configured in a small and simple manner.

更に、電子源4自体を屈曲させるため、電子源4の先端部と電子照射面5を近接させることができる。よって、電子放出素子100を記録再生装置などに適用する場合には、照射位置11におけるビームスポットの面積を一定に維持することができる。したがって、このビームスポットの面積を補正するための特別な機構を設けなくてもよい。これによって、電子放出素子100を含む装置を、更に簡便に構成することができる。   Furthermore, since the electron source 4 itself is bent, the tip of the electron source 4 and the electron irradiation surface 5 can be brought close to each other. Therefore, when the electron-emitting device 100 is applied to a recording / reproducing apparatus or the like, the area of the beam spot at the irradiation position 11 can be maintained constant. Therefore, it is not necessary to provide a special mechanism for correcting the area of the beam spot. Thereby, a device including the electron-emitting device 100 can be configured more simply.

[第2実施例]
次に、本発明の第2実施例に係る電子放出素子101について、図4を用いて説明する。
[Second Embodiment]
Next, an electron-emitting device 101 according to a second embodiment of the present invention will be described with reference to FIG.

図4(a)に示すように、電子放出素子101も、第1実施例に示したものと同様に、陰極基板1と、電子引出電極2と、偏向電極3と、電子源4と、電子照射面5と、を備える。これらは、その材料や、電子放出素子内での機能は第1実施例で示したものと同様であるため、説明を省略する。   As shown in FIG. 4A, the electron-emitting device 101 also has a cathode substrate 1, an electron extraction electrode 2, a deflection electrode 3, an electron source 4, and an electron, as in the first embodiment. Irradiation surface 5. Since these materials and functions in the electron-emitting device are the same as those shown in the first embodiment, description thereof will be omitted.

図4(b)は、図4(a)の矢印B方向から電子放出素子101を見た図を示す。図4(b)に示すように、第2実施例に係る電子放出素子101も、電子源4の周囲に偏向電極3a、3bを一対とする偏向電極3、偏向電極3c、3dを一対とする偏向電極3を備えている。以上から、電子源4は偏向電極3によって屈曲され、その照射位置11は領域16を移動することが可能となる。   FIG. 4B shows a view of the electron-emitting device 101 seen from the direction of arrow B in FIG. As shown in FIG. 4B, the electron-emitting device 101 according to the second embodiment also has a pair of deflection electrodes 3a and 3d and a pair of deflection electrodes 3c and 3d around the electron source 4. A deflection electrode 3 is provided. From the above, the electron source 4 is bent by the deflection electrode 3, and the irradiation position 11 can move in the region 16.

第2実施例に係る電子放出素子101では、電子引出電極2及び電子照射面5の形状が第1実施例にて示したものと異なる。図4(a)に示すように、電子引出電極2及び電子照射面5は、電子源4の屈曲点18を中心とした略球面の一部からなる形状を有している。この屈曲点18は、電子源4が屈曲する際の中心点である。   In the electron-emitting device 101 according to the second embodiment, the shapes of the electron extraction electrode 2 and the electron irradiation surface 5 are different from those shown in the first embodiment. As shown in FIG. 4A, the electron extraction electrode 2 and the electron irradiation surface 5 have a shape formed of a part of a substantially spherical surface with the bending point 18 of the electron source 4 as the center. The bending point 18 is a center point when the electron source 4 is bent.

以上のように、電子引出電極2及び電子照射面5の形状を屈曲点18を中心とする略球面の一部とすると、電子源4は屈曲点18を中心に屈曲するため、電子源4の先端部と電子照射面5との距離20は一定に保たれることになる。これにより、電子源4をどの方向に屈曲させても、照射位置11におけるビームスポットの面積を一定に維持することができる。よって、例えば電子放出素子101が記録再生装置に適用された場合、情報の記録精度の向上や記録媒体への高密度記録などを実現することができる。   As described above, when the shape of the electron extraction electrode 2 and the electron irradiation surface 5 is a part of a substantially spherical surface with the bending point 18 as the center, the electron source 4 bends with the bending point 18 as the center. The distance 20 between the tip and the electron irradiation surface 5 is kept constant. Thereby, the area of the beam spot at the irradiation position 11 can be kept constant regardless of the direction in which the electron source 4 is bent. Therefore, for example, when the electron-emitting device 101 is applied to a recording / reproducing apparatus, it is possible to improve information recording accuracy and perform high-density recording on a recording medium.

[第3実施例]
次に、本発明の第3実施例に係る電子放出素子102について、図5を用いて説明する。
[Third embodiment]
Next, an electron emitter 102 according to a third embodiment of the present invention will be described with reference to FIG.

図5に示すように、電子放出素子102は、陰極基板1と、電子引出電極2と、偏向電極3、6と、電子源4と、電子照射面5と、を備える。第3実施例に係る電子放出素子102は、上記した第1実施例及び第2実施例で示したものとは、偏向電極を電子源4の長さ方向に2段設けている点で異なる。その他の電子放出素子102の構成要素は、前述のものと同様であるため説明を省略する。   As shown in FIG. 5, the electron-emitting device 102 includes a cathode substrate 1, an electron extraction electrode 2, deflection electrodes 3 and 6, an electron source 4, and an electron irradiation surface 5. The electron-emitting device 102 according to the third embodiment differs from that shown in the first and second embodiments in that two deflection electrodes are provided in the length direction of the electron source 4. Since the other components of the electron-emitting device 102 are the same as those described above, description thereof is omitted.

第3実施例に係る偏向電極は、電子源4の長さ方向に設けられる偏向電極3と偏向電極6から構成される。偏向電極3は偏向電極3a、3bから構成され、偏向電極6は偏向電極6a、6bから構成される。即ち、偏向電極3は第1の偏向電極として機能し、偏向電極6は第2の偏向電極として機能する。   The deflection electrode according to the third embodiment includes a deflection electrode 3 and a deflection electrode 6 provided in the length direction of the electron source 4. The deflection electrode 3 is composed of deflection electrodes 3a and 3b, and the deflection electrode 6 is composed of deflection electrodes 6a and 6b. That is, the deflection electrode 3 functions as a first deflection electrode, and the deflection electrode 6 functions as a second deflection electrode.

具体的に、偏向電極3、6に電圧を印加したときの、電子源4が屈曲する様子を説明する。図5に示すように、偏向電極3a、3bは、電圧を印加されることにより偏向電界を発生し、電子源4に対して矢印22で示す力を与える。また、偏向電極3の紙面下方に位置する偏向電極6a、6bは、電子源4に矢印24で示す力を与える。このように、電子源4は、偏向電極3、6によって2箇所に力が加えられる。したがって、電子源4を2箇所で屈曲させることが可能となる。   Specifically, how the electron source 4 bends when a voltage is applied to the deflection electrodes 3 and 6 will be described. As shown in FIG. 5, the deflection electrodes 3 a and 3 b generate a deflection electric field by applying a voltage, and apply a force indicated by an arrow 22 to the electron source 4. Further, the deflection electrodes 6 a and 6 b located below the plane of the deflection electrode 3 apply a force indicated by an arrow 24 to the electron source 4. In this way, the electron source 4 is applied with force at two locations by the deflection electrodes 3 and 6. Therefore, the electron source 4 can be bent at two locations.

本実施例の動作を具体的に説明する。図5(a)のように大きな偏向を行う場合には、偏向電極3と偏向電極6に同一の極性の電圧を印加する。第1実施例の構成の場合には、偏向量13の減少とともに電子源4の先端と電子照射面5の距離26が小さくなるが、本実施例の構成の場合は、偏向電極3と偏向電極6に逆の極性の電圧を印加することで、図5のように電子源4に2箇所の屈曲を発生させることができる。その結果、図5(b)に示すように、偏向量13が大きい場合の電子源4の先端と照射面5の距離26を保ったまま、偏向量13を減少させることが可能となる。更に、偏向量13を小とする場合には、印加電圧を適切に制御することで、図5(c)のように、前記2箇所の偏向量13を増加させて電子源4の電子源4の先端と電子照射面5の距離26を保つことができる。   The operation of this embodiment will be specifically described. When a large deflection is performed as shown in FIG. 5A, a voltage having the same polarity is applied to the deflection electrode 3 and the deflection electrode 6. In the case of the configuration of the first embodiment, the distance 26 between the tip of the electron source 4 and the electron irradiation surface 5 decreases as the deflection amount 13 decreases, but in the case of the configuration of the present embodiment, the deflection electrode 3 and the deflection electrode. By applying a voltage of opposite polarity to 6, two bends can be generated in the electron source 4 as shown in FIG. 5. As a result, as shown in FIG. 5B, the deflection amount 13 can be reduced while maintaining the distance 26 between the tip of the electron source 4 and the irradiation surface 5 when the deflection amount 13 is large. Further, when the deflection amount 13 is small, by appropriately controlling the applied voltage, the deflection amount 13 at the two locations is increased as shown in FIG. The distance 26 between the tip of the electron beam and the electron irradiation surface 5 can be maintained.

なお、偏向電極3及び偏向電極6に印加する電圧の制御は、図示しない制御装置が行うことができる。また、電子放出素子102が他の装置に搭載される場合には、その装置が有するCPU等が制御を行うことができる。   Control of the voltage applied to the deflection electrode 3 and the deflection electrode 6 can be performed by a control device (not shown). Further, when the electron-emitting device 102 is mounted on another device, a CPU or the like included in the device can perform control.

以上のように、第3実施例に係る電子放出素子102では、電子源4の長さ方向に2段に設けた偏向電極3、6にて電子源4を2箇所で屈曲させることにより、電子源4の先端部と電子照射面5との距離26を一定に維持させる。したがって、照射位置11のビームスポットの面積、ビーム電流を一定に維持することができる。また、第2実施例で示したように電子照射面5及び電子引出電極2を略球面の一部とする形状にせず、電子照射面5及び電子引出電極2を平面とすることができるため、電子放出素子102を安価で容易に作成することが可能となる。   As described above, in the electron-emitting device 102 according to the third embodiment, the electron source 4 is bent at two locations by the deflection electrodes 3 and 6 provided in two stages in the length direction of the electron source 4. The distance 26 between the tip of the source 4 and the electron irradiation surface 5 is kept constant. Therefore, the area of the beam spot at the irradiation position 11 and the beam current can be maintained constant. In addition, as shown in the second embodiment, the electron irradiation surface 5 and the electron extraction electrode 2 are not formed into a part of a substantially spherical surface, and the electron irradiation surface 5 and the electron extraction electrode 2 can be flat. The electron-emitting device 102 can be easily manufactured at low cost.

なお、第3実施例に係る電子放出素子102も、図3及び図4(b)に示すように、電子源4の周囲に二対の偏向電極を配置させてもよい。即ち、偏向電極3、6のそれぞれが二対の偏向電極から構成させるようにしてもよい。また、偏向電極3は二対で構成し、偏向電極6は一対で構成するなど、上下で偏向電極の組数を変えてもよい。更に、電子源4の長さ方向に設ける偏向電極の段数も、上述したものには限定しない。   In the electron-emitting device 102 according to the third embodiment, two pairs of deflection electrodes may be arranged around the electron source 4 as shown in FIGS. 3 and 4B. That is, each of the deflection electrodes 3 and 6 may be constituted by two pairs of deflection electrodes. Further, the number of sets of deflection electrodes may be changed up and down, for example, the deflection electrodes 3 may be configured in two pairs and the deflection electrodes 6 may be configured in pairs. Further, the number of deflection electrodes provided in the length direction of the electron source 4 is not limited to the above.

本発明の電子放出素子は、例えば記録媒体に情報を記録する記録再生装置や、電子線露光装置や、微小領域電子線硬化樹脂硬化装置など、微小領域に電子を照射するための装置一般に適用することができる。但し、本発明の電子放出素子の適用は上記の例に限定されるものではない。   The electron-emitting device of the present invention is generally applied to a device for irradiating electrons to a minute region, such as a recording / reproducing device for recording information on a recording medium, an electron beam exposure device, a minute region electron beam curing resin curing device. be able to. However, the application of the electron-emitting device of the present invention is not limited to the above example.

本発明の第1実施例に係る電子放出素子の概略構成を示す図である。It is a figure which shows schematic structure of the electron emission element which concerns on 1st Example of this invention. 偏向電極に電圧を印加することによって、電子源が屈曲する様子を示す図である。It is a figure which shows a mode that an electron source is bent by applying a voltage to a deflection | deviation electrode. 図2中の矢印A方向から電子放出素子を見た図を示す。The figure which looked at the electron-emitting element from the arrow A direction in FIG. 2 is shown. 本発明の第2実施例に係る電子放出素子の概略構成を示す図である。It is a figure which shows schematic structure of the electron emitter which concerns on 2nd Example of this invention. 本発明の第3実施例に係る電子放出素子の概略構成を示す図である。It is a figure which shows schematic structure of the electron emitter which concerns on 3rd Example of this invention.

符号の説明Explanation of symbols

1 陰極基板
2 電子引出電極
3、6 偏向電極
4 電子源(電子放出部)
5 電子照射面
100、101、102 電子放出素子
DESCRIPTION OF SYMBOLS 1 Cathode substrate 2 Electron extraction electrode 3, 6 Deflection electrode 4 Electron source (electron emission part)
5 Electron irradiation surface 100, 101, 102 Electron emitting device

Claims (4)

陰極基板と、
前記陰極基板上に設けられ、前記陰極基板に対向配置された電子照射面に電子を照射する細線型の電子放出部と、
前記電子放出部の周辺に電界を発生させることにより、前記電子放出部を偏向させる偏向手段と、を備えることを特徴とする電子放出素子。
A cathode substrate;
A thin-line electron emitting portion that is provided on the cathode substrate and irradiates electrons onto an electron irradiation surface disposed opposite to the cathode substrate;
An electron-emitting device comprising: deflection means for deflecting the electron-emitting portion by generating an electric field around the electron-emitting portion.
前記偏向手段は、前記電子放出部の周囲の、前記陰極基板と前記電子照射面との空間に設けられた少なくとも一対の偏向電極を備えていることを特徴とする請求項1に記載の電子放出素子。 2. The electron emission according to claim 1, wherein the deflection unit includes at least a pair of deflection electrodes provided in a space between the cathode substrate and the electron irradiation surface around the electron emission portion. element. 前記電子照射面は、前記電子放出部の屈曲点を中心とする略球面を有することを特徴とする請求項1又は2に記載の電子放出素子。 The electron-emitting device according to claim 1, wherein the electron-irradiation surface has a substantially spherical surface centered on a bending point of the electron-emitting portion. 前記偏向手段は、前記電子放出部の長さ方向に、第1の偏向電極と、第2の偏向電極と、を備え、
前記偏向手段は、前記電子放出部の先端部と前記電子照射面との距離を一定に保つように、前記第1の偏向電極及び前記第2の偏向電極に電圧を印加して前記電子放出部を偏向させることを特徴とする請求項1又は2に記載の電子放出素子。
The deflection means includes a first deflection electrode and a second deflection electrode in the length direction of the electron emission portion,
The deflection means applies a voltage to the first deflection electrode and the second deflection electrode so as to keep a constant distance between a tip portion of the electron emission portion and the electron irradiation surface, and thereby the electron emission portion. The electron-emitting device according to claim 1, wherein the electron-emitting device is deflected.
JP2004078311A 2004-03-18 2004-03-18 Electron emitter Expired - Fee Related JP4184306B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004078311A JP4184306B2 (en) 2004-03-18 2004-03-18 Electron emitter
US11/083,095 US7486011B2 (en) 2004-03-18 2005-03-18 Thread-type electron emission element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078311A JP4184306B2 (en) 2004-03-18 2004-03-18 Electron emitter

Publications (2)

Publication Number Publication Date
JP2005268025A JP2005268025A (en) 2005-09-29
JP4184306B2 true JP4184306B2 (en) 2008-11-19

Family

ID=34988963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078311A Expired - Fee Related JP4184306B2 (en) 2004-03-18 2004-03-18 Electron emitter

Country Status (2)

Country Link
US (1) US7486011B2 (en)
JP (1) JP4184306B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1874986B1 (en) * 2005-04-25 2013-01-23 Smoltek AB Controlled growth of a nanostructure on a substrate, and electron emission devices based on the same
US7777291B2 (en) 2005-08-26 2010-08-17 Smoltek Ab Integrated circuits having interconnects and heat dissipators based on nanostructures
JP5535915B2 (en) 2007-09-12 2014-07-02 スモルテック アーベー Connection and bonding of adjacent layers by nanostructures
JP4303308B2 (en) 2007-11-20 2009-07-29 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP4314307B1 (en) * 2008-02-21 2009-08-12 シャープ株式会社 Heat exchanger
CN102007571B (en) * 2008-02-25 2016-01-20 斯莫特克有限公司 Conduction in nanostructure manufacture process helps the deposition of layer and selectivity to remove
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
CN101814405B (en) 2009-02-24 2012-04-25 夏普株式会社 Electron emitting element, method for producing electron emitting element and each device using the same
JP4732534B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
JP4732533B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP5073721B2 (en) * 2009-05-19 2012-11-14 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
JP4777448B2 (en) * 2009-05-19 2011-09-21 シャープ株式会社 Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
CN101930884B (en) 2009-06-25 2012-04-18 夏普株式会社 Electron emitting element and method for producing electron emitting element, electron emitting device, self luminescence device and image display device
JP4880740B2 (en) 2009-12-01 2012-02-22 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822382A (en) * 1971-08-17 1974-07-02 Jeol Ltd Apparatus for analyzing electron energy
US4904895A (en) * 1987-05-06 1990-02-27 Canon Kabushiki Kaisha Electron emission device
RU2028692C1 (en) * 1990-11-26 1995-02-09 Шумский Александр Леонидович Method of formation of belt electron beam
JP3044433B2 (en) 1993-12-22 2000-05-22 キヤノン株式会社 Electron emission device, electron source and image forming device
US5557596A (en) 1995-03-20 1996-09-17 Gibson; Gary Ultra-high density storage device

Also Published As

Publication number Publication date
US7486011B2 (en) 2009-02-03
US20050212398A1 (en) 2005-09-29
JP2005268025A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US7486011B2 (en) Thread-type electron emission element
US7012266B2 (en) MEMS-based two-dimensional e-beam nano lithography device and method for making the same
US6897458B2 (en) Electron beam exposure system
JP5281004B2 (en) Emitter design method, electron beam generator, and device using the same
JP6608367B2 (en) Field emission device, system and method
KR20080056341A (en) Carbon nano tube based x-ray tube structure for enhancement of the electron beam focal spot size by varying tube
US7471542B2 (en) Information storage apparatus storing and reading information by irradiating a storage medium with electron beam
US5631113A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US6643248B2 (en) Data storage device
US7576341B2 (en) Lithography systems and methods for operating the same
US6822241B2 (en) Emitter device with focusing columns
JP3929877B2 (en) Electron beam drawing apparatus and manufacturing method of main part thereof
JP4382790B2 (en) Electron emission display
KR102475249B1 (en) High resolution multiple beam source
US20050017624A1 (en) Electron emitter with epitaxial layers
KR101818079B1 (en) Micro-electron column having nano structure tip with easily aligning
JP2004327024A (en) Data storage device and electron beam alignment method
US20050040383A1 (en) Data storage device
KR20210119130A (en) Field emission device
JPH07296755A (en) Electron beam source, and electron beam applying device using it
JP2000021288A (en) Thermal field emission type electron gun
JP2011040341A (en) Electron gun, charged particle beam lithography system, and charged particle beam lithography method
JP3802538B2 (en) Focus detection emitter, electronic data storage device, electron beam focus adjustment method, and electron beam focus determination method
JPH09205063A (en) Charged particle beam exposing method
JP2006294884A (en) Blanking mechanism of charged particle beam and charged particle beam device having it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees