JP4183889B2 - Insulated waveguide - Google Patents

Insulated waveguide Download PDF

Info

Publication number
JP4183889B2
JP4183889B2 JP2000186498A JP2000186498A JP4183889B2 JP 4183889 B2 JP4183889 B2 JP 4183889B2 JP 2000186498 A JP2000186498 A JP 2000186498A JP 2000186498 A JP2000186498 A JP 2000186498A JP 4183889 B2 JP4183889 B2 JP 4183889B2
Authority
JP
Japan
Prior art keywords
waveguide
insulated
insulating
adjacent
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000186498A
Other languages
Japanese (ja)
Other versions
JP2002009501A (en
Inventor
英一 北川
弘二 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP2000186498A priority Critical patent/JP4183889B2/en
Publication of JP2002009501A publication Critical patent/JP2002009501A/en
Application granted granted Critical
Publication of JP4183889B2 publication Critical patent/JP4183889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、隣接して相互に対向する導波管が電気絶縁体で絶縁されて接続されている絶縁導波管に関するものである。
【0002】
【従来の技術】
導波管に落雷等により高電圧のサージ電流が流れると、接続されている電気機器が損傷されたり、作業者が感電する恐れがあるので、隣接して相互に対向する導波管を電気絶縁体で絶縁して接続した絶縁導波管が用いられている。
【0003】
従来のこの種の絶縁導波管としては、特開平9−275301号公報に記載された絶縁導波管がある。
【0004】
この絶縁導波管は、図4に示すように、矩形導波管本体1の各先端部にフランジ部2が一体に突設されている構造の導波管3が隣接して相互に対向配置され、対向するフランジ部2の間には電気絶縁体4としてのテトラフロロエチレン等よりなる電気絶縁板5が矩形導波管本体1の孔6を塞いで配置され、相互のフランジ部2が電気絶縁性のボルト7とナット8で締結された連結であった。
【0005】
このような絶縁導波管によれば、導波管3にサージ電流が流れるのを電気絶縁体4で阻止することができる。
【0006】
しかしながら、このような構造の絶縁導波管では、サージ電圧が高くなると、電気絶縁板5の厚みを厚くしなければならず、電気絶縁板5の厚みが厚くなるとマイクロ波の伝送損失が大きくなり、また隣接するフランジ部2の間からのマイクロ波の漏れが大きくなる問題点があった。
【0007】
そこで、マイクロ波の伝送損失の増大を低減する絶縁導波管として、図4に示す構造の絶縁導波管で、図5に示すように矩形導波管本体1の孔6に対応して電気絶縁体4としての電気絶縁板5に結合孔9を貫通させた構造のものが検討されている。
【0008】
【発明が解決しようとする課題】
しかしながら、図5に示す絶縁導波管では、結合孔9を介してのK点間の沿面距離が近くなり、サージ電圧が高くなると、沿面放電が起こり、絶縁導波管の耐電圧が低下する問題点がある。
【0009】
本発明の目的は、マイクロ波の伝送損失の増大を低減でき、耐電圧を増大させることができる絶縁導波管を提供することにある。
【0010】
本発明の他の目的は、マイクロ波の伝送損失の増大を低減でき、耐電圧を要求に応じて倍々に順次増大させることができる絶縁導波管を提供することにある。
【0011】
本発明の他の目的は、隣接するフランジ部の外側での耐電圧を増大させることができる絶縁導波管を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、隣接して相互に対向する導波管が電気絶縁体で絶縁されて接続されている絶縁導波管を改良するものである。
【0013】
本発明に係る絶縁導波管においては、電気絶縁体は隣接して相互に対向する導波管の中に各先端部が挿入される絶縁筒体と、該絶縁筒体の外周に一体に連接されていて隣接する各導波管のフランジ部で挟持される絶縁フランジ部とを有する構造であり、隣接する2つの導波管はその対向端部間にこの電気絶縁体が介在されて電気的に絶縁されて接続されていることを特徴とする。
【0014】
このような絶縁導波管は、隣接する導波管の中に電気絶縁体の絶縁筒体の各先端部を挿入し、隣接するフランジ部間に電気絶縁体の絶縁フランジ部を介在させているので、電気絶縁箇所での耐電圧を増大させることができる。これにより、絶縁フランジ部の厚さが薄くても十分な耐電圧を得ることができ、マイクロ波の伝送損失を増大させないで電気絶縁箇所での耐電圧を増大させることができる。
【0015】
また、本発明に係る絶縁導波管においては、電気絶縁体は隣接して相互に対向する導波管の中に各先端部が挿入される絶縁筒体と、該絶縁筒体の外周に一体に連接されていて隣接する各導波管のフランジ部で挟持される絶縁フランジ部とを有する構造であり、隣接する3つ以上の導波管はそれぞれの対向端部間にこの電気絶縁体がそれぞれ介在されて電気的に絶縁されて接続されていることを特徴とする。
【0016】
このような絶縁導波管でも、隣接する導波管の中に電気絶縁体の絶縁筒体の各先端部を挿入し、隣接するフランジ部間に電気絶縁体の絶縁フランジ部を介在させているので、電気絶縁箇所での耐電圧を増大させることができる。これにより、絶縁フランジ部の厚さが薄くても十分な耐電圧を得ることができ、マイクロ波の伝送損失を増大させないで電気絶縁箇所での耐電圧を増大させることができる。さらに、この絶縁導波管では、隣接する3つ以上の導波管はそれぞれの対向端部間にこの電気絶縁体をそれぞれ介在させて電気的に絶縁して接続しているので、この電気絶縁体の使用個数Nに応じて耐電圧をN倍に増大させることができる。
【0017】
また、本発明に係る絶縁導波管においては、電気絶縁体の絶縁フランジ部が導波管のフランジ部の外に突出する長さを有していることを特徴とする。
【0018】
このような絶縁導波管によれば、導波管のフランジ部の外での沿面放電を絶縁フランジ部の突出長さに応じて防止することができる。
【0019】
【発明の実施の形態】
図1及び図2は本発明に係る絶縁導波管における実施の形態の第1例を示したもので、図1は本例の絶縁導波管の縦断面図、図2は本例で用いている電気絶縁体の斜視図である。
【0020】
本例の絶縁導波管は、図1に示すように、隣接して相互に対向する2つの導波管3が電気絶縁体4で絶縁されて接続されている。電気絶縁体4は、テトラフロロエチレン等の電気絶縁物により図1及び図2に示すように、隣接して相互に対向する導波管3の矩形導波管本体1の中に各先端部が挿入される矩形の絶縁筒体10と、該絶縁筒体10の外周に一体に連接されていて隣接する各導波管3のフランジ部2で挟持される矩形の絶縁フランジ部11とを有して構成されており、隣接する2つの導波管3はその対向端部間にこの電気絶縁体4が図示のように介在されて電気的に絶縁されて接続されている。本実施形態において、導波管3の中に挿入される絶縁筒体10の長さは、該導波管3の長辺の幅の約1/2程度の長さである。隣接する2つの導波管3の機械的接続は、図示しないが、図3の場合と同様に電気絶縁性のボルト7とナット8で締結されて行なわれている。電気絶縁性のボルト7とナット8とは、それぞれが合成樹脂で形成されていてもよく、あるいは金属製のボルト7とナット8を用いて、このボルト7が貫通する各導波管3のフランジ部2と絶縁フランジ部11の孔に絶縁チューブを挿入し、この絶縁チューブにボルト7を通し、各フランジ部2に絶縁ワッシャを当ててナット8で締結する構造等であってもよい。電気絶縁体4の絶縁フランジ部11は、導波管3のフランジ部2の外に所定の長さで突出されている。
【0021】
このような絶縁導波管では、隣接する導波管3の中に電気絶縁体4の絶縁筒体10の各先端部を挿入し、隣接するフランジ部2間に電気絶縁体4の絶縁フランジ部11を介在させているので、電気絶縁箇所での耐電圧を増大させることができる。これにより、絶縁フランジ部11の厚さが薄くても十分な耐電圧を得ることができ、マイクロ波の伝送損失を増大させないで電気絶縁箇所での耐電圧を増大させることができる。
【0022】
また、電気絶縁体4の絶縁フランジ部11が導波管3のフランジ部2の外に突出されているので、導波管3のフランジ部2の外での沿面放電を絶縁フランジ部11の突出長さに応じて防止することができる。
【0023】
図3は本発明に係る絶縁導波管における実施の形態の第2例を示した縦断面図である。
【0024】
本例の絶縁導波管では、隣接する3つの導波管3はそれぞれの対向端部間に、前述した図2に示す構造の電気絶縁体4が、それぞれ介在されて電気的に絶縁されて前述したように接続されて構成されている。相互の電気絶縁体4の中心間の距離Lは、入射マイクロ波の管内波長λの1/4の整数倍に定められている。
【0025】
この例では、3つの導波管3を用いた例に付いて示したが、M(2以上の自然数)個の導波管3を用いた場合でも、(M−1)個の接続部に図2に示す電気絶縁体4を介在させることができる。この場合も、隣接する電気絶縁体4の中心間の距離Lは、入射マイクロ波の管内波長λの1/4の整数倍に定められている。
【0026】
このような絶縁導波管でも、隣接する導波管3の中に電気絶縁体4の絶縁筒体10の各先端部を挿入し、隣接するフランジ部2間に電気絶縁体4の絶縁フランジ部11を介在させているので、電気絶縁箇所での耐電圧を増大させることができる。これにより、絶縁フランジ部11の厚さが薄くても十分な耐電圧を得ることができ、マイクロ波の伝送損失を増大させないで電気絶縁箇所での耐電圧を増大させることができる。さらに、この絶縁導波管では、隣接する3つ以上の導波管3はそれぞれの対向端部間にこの電気絶縁体4をそれぞれ介在させて電気的に絶縁して接続しているので、この電気絶縁体4の使用個数Nに応じて耐電圧をN倍に増大させることができる。
【0027】
また、電気絶縁体4の絶縁フランジ部11を導波管3のフランジ部2の外に突出させているので、導波管3のフランジ部2の外での沿面放電を絶縁フランジ部11の突出長さに応じて防止することができる。
【0028】
さらに、隣接する電気絶縁体4の絶縁フランジ部11の中心間の距離Lを、導波管3へ入射するマイクロ波の管内波長の1/4の奇数倍に定めると、導波管3内への電気絶縁体4の挿入により入射マイクロ波の反射波が発生した場合に、当該反射波を打ち消して、マイクロ波の伝送を支障なく行なわせることができる。
【0029】
なお、図3に示すような例においては、隣接する電気絶縁体4の絶縁フランジ部11の間を同質の絶縁体で導波管3の外周を一体に包囲するように被覆することもできる。
【0030】
上記例では、矩形の絶縁導波管に本発明を適用した例について示したが、本発明はこれに限定されるものではなく、円形の絶縁導波管にも同様に適用できるものである。
【0031】
【発明の効果】
本発明に係る絶縁導波管においては、隣接する導波管の中に電気絶縁体の絶縁筒体の各先端部を挿入し、隣接するフランジ部間に電気絶縁体の絶縁フランジ部を介在させているので、電気絶縁箇所での耐電圧を増大させることができる。これにより、絶縁フランジ部の厚さが薄くても十分な耐電圧を得ることができ、マイクロ波の伝送損失を増大させないで電気絶縁箇所での耐電圧を増大させることができる。
【図面の簡単な説明】
【図1】 本発明に係る絶縁導波管における実施の形態の第1例の縦断面図である。
【図2】 本例で用いている電気絶縁体の斜視図である。
【図3】 本発明に係る絶縁導波管における実施の形態の第2例の縦断面図である。
【図4】 従来の絶縁導波管の縦断面図である。
【図5】 図4の絶縁導波管を改良した絶縁導波管の縦断面図である。
【符号の説明】
1 矩形導波管本体
2 フランジ部
3 導波管
4 電気絶縁体
5 電気絶縁板
6 孔
7 ボルト
8 ナット
9 結合孔
10 絶縁筒体
11 絶縁フランジ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulated waveguide in which adjacent waveguides facing each other are insulated and connected with an electrical insulator.
[0002]
[Prior art]
If a surge current of high voltage flows through the waveguide due to lightning, etc., the connected electrical equipment may be damaged or the operator may be electrocuted. Insulated waveguides that are insulated and connected by a body are used.
[0003]
As this type of conventional insulated waveguide, there is an insulated waveguide described in JP-A-9-275301.
[0004]
As shown in FIG. 4, the insulated waveguide has a structure in which a flange portion 2 is integrally protruded from each end portion of a rectangular waveguide body 1 and is disposed adjacent to each other. An electric insulating plate 5 made of tetrafluoroethylene or the like as an electric insulator 4 is disposed between the opposing flange portions 2 so as to close the holes 6 of the rectangular waveguide body 1, and the mutual flange portions 2 are electrically connected. The connection was fastened with an insulating bolt 7 and a nut 8.
[0005]
According to such an insulated waveguide, it is possible to prevent the surge current from flowing through the waveguide 3 with the electrical insulator 4.
[0006]
However, in the insulated waveguide having such a structure, when the surge voltage is increased, the thickness of the electrical insulating plate 5 must be increased. When the thickness of the electrical insulating plate 5 is increased, the transmission loss of the microwave is increased. In addition, there is a problem that microwave leakage between adjacent flange portions 2 becomes large.
[0007]
Therefore, an insulating waveguide having a structure shown in FIG. 4 is used as an insulating waveguide for reducing an increase in transmission loss of microwaves, and an electric wave corresponding to the hole 6 of the rectangular waveguide main body 1 as shown in FIG. A structure in which a coupling hole 9 is penetrated through an electrical insulating plate 5 as an insulator 4 has been studied.
[0008]
[Problems to be solved by the invention]
However, in the insulated waveguide shown in FIG. 5, when the creepage distance between the K points through the coupling hole 9 becomes close and the surge voltage increases, creeping discharge occurs, and the withstand voltage of the insulated waveguide decreases. There is a problem.
[0009]
An object of the present invention is to provide an insulated waveguide capable of reducing an increase in transmission loss of microwaves and increasing a withstand voltage.
[0010]
Another object of the present invention is to provide an insulated waveguide capable of reducing an increase in transmission loss of microwaves and capable of sequentially increasing a withstand voltage twice as required.
[0011]
Another object of the present invention is to provide an insulated waveguide capable of increasing the withstand voltage outside the adjacent flange portion .
[0012]
[Means for Solving the Problems]
The present invention improves an insulated waveguide in which adjacent waveguides facing each other are insulated and connected by an electrical insulator.
[0013]
In the insulated waveguide according to the present invention, the electrical insulator is integrally connected to the outer periphery of the insulating cylinder, each of which is inserted into the adjacent waveguides facing each other. And an insulating flange portion sandwiched between the flange portions of the adjacent waveguides. The two adjacent waveguides are electrically connected with the electrical insulator interposed between the opposite ends. Insulated and connected to each other.
[0014]
In such an insulating waveguide, each end portion of the insulating cylinder of the electric insulator is inserted into the adjacent waveguide, and the insulating flange portion of the electric insulator is interposed between the adjacent flange portions. As a result, the withstand voltage at the electrically insulated portion can be increased. Thereby, even if the thickness of the insulating flange portion is thin, a sufficient withstand voltage can be obtained, and the withstand voltage at the electrically insulated portion can be increased without increasing the microwave transmission loss.
[0015]
Further, in the insulated waveguide according to the present invention, the electrical insulator is integrally formed on the outer periphery of the insulating cylinder, and the insulating cylinder in which each tip portion is inserted into the waveguides adjacent to each other. And an insulating flange portion sandwiched between flange portions of adjacent waveguides, and the three or more adjacent waveguides are electrically connected to each other between the opposing end portions. Each is interposed and electrically insulated and connected.
[0016]
Even in such an insulated waveguide, each distal end portion of the insulating cylinder of the electrical insulator is inserted into the adjacent waveguide, and the insulating flange portion of the electrical insulator is interposed between the adjacent flange portions. As a result, the withstand voltage at the electrically insulated portion can be increased. Thereby, even if the thickness of the insulating flange portion is thin, a sufficient withstand voltage can be obtained, and the withstand voltage at the electrically insulated portion can be increased without increasing the microwave transmission loss. Furthermore, in this insulated waveguide, since three or more adjacent waveguides are electrically insulated by interposing this electrical insulator between the opposing ends, the electrical insulation is provided. The withstand voltage can be increased N times according to the number N of bodies used.
[0017]
Further, in the insulated waveguide according to the present invention, the insulating flange portion of the electrical insulator has a length protruding outside the flange portion of the waveguide.
[0018]
According to such an insulating waveguide, creeping discharge outside the flange portion of the waveguide can be prevented according to the protruding length of the insulating flange portion .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a first example of an embodiment of an insulated waveguide according to the present invention, FIG. 1 is a longitudinal sectional view of the insulated waveguide of this example, and FIG. 2 is used in this example. It is a perspective view of an electrical insulator.
[0020]
In the insulated waveguide of this example, as shown in FIG. 1, two adjacent waveguides 3 facing each other are insulated and connected by an electrical insulator 4. As shown in FIGS. 1 and 2, the electrical insulator 4 is formed by an electrical insulator such as tetrafluoroethylene, and each distal end portion is placed in the rectangular waveguide body 1 of the waveguide 3 which is adjacent to each other and faces each other. A rectangular insulating cylinder 10 to be inserted; and a rectangular insulating flange 11 that is integrally connected to the outer periphery of the insulating cylinder 10 and is sandwiched between the flanges 2 of the adjacent waveguides 3. The two adjacent waveguides 3 are connected to each other between the opposing end portions thereof, with the electrical insulator 4 interposed between them as shown in the figure. In the present embodiment, the length of the insulating cylinder 10 inserted into the waveguide 3 is about ½ of the width of the long side of the waveguide 3. Although not shown, the mechanical connection between the two adjacent waveguides 3 is performed by fastening with an electrically insulating bolt 7 and a nut 8 as in the case of FIG. The electrically insulating bolts 7 and nuts 8 may each be formed of a synthetic resin, or by using metal bolts 7 and nuts 8, flanges of the respective waveguides 3 through which the bolts 7 pass. The structure etc. which insert an insulation tube in the hole of the part 2 and the insulation flange part 11, pass the volt | bolt 7 to this insulation tube, apply | coat an insulation washer to each flange part 2, and fasten with the nut 8 may be sufficient. The insulating flange portion 11 of the electrical insulator 4 protrudes outside the flange portion 2 of the waveguide 3 with a predetermined length.
[0021]
In such an insulated waveguide, each distal end portion of the insulating cylinder 10 of the electric insulator 4 is inserted into the adjacent waveguide 3, and the insulating flange portion of the electric insulator 4 is interposed between the adjacent flange portions 2. Since 11 is interposed, it is possible to increase the withstand voltage at the electrically insulated location. Thereby, even if the thickness of the insulating flange portion 11 is thin, a sufficient withstand voltage can be obtained, and the withstand voltage at an electrically insulated portion can be increased without increasing the microwave transmission loss.
[0022]
Further, since the insulating flange portion 11 of the electrical insulator 4 protrudes outside the flange portion 2 of the waveguide 3, creeping discharge outside the flange portion 2 of the waveguide 3 is prevented from protruding from the insulating flange portion 11. Depending on the length, it can be prevented.
[0023]
FIG. 3 is a longitudinal sectional view showing a second example of the embodiment of the insulated waveguide according to the present invention.
[0024]
In the insulated waveguide of this example, the three adjacent waveguides 3 are electrically insulated by interposing the aforementioned electrical insulators 4 having the structure shown in FIG. It is connected and configured as described above. The distance L between the centers of the electrical insulators 4 is determined to be an integral multiple of 1/4 of the guide wavelength λ of the incident microwave.
[0025]
In this example, an example using three waveguides 3 is shown, but even when M (natural number of 2 or more) waveguides 3 are used, (M−1) connection parts are used. The electrical insulator 4 shown in FIG. 2 can be interposed. Also in this case, the distance L between the centers of the adjacent electrical insulators 4 is determined to be an integral multiple of 1/4 of the in-tube wavelength λ of the incident microwave.
[0026]
Even in such an insulating waveguide, each end portion of the insulating cylinder 10 of the electric insulator 4 is inserted into the adjacent waveguide 3, and the insulating flange portion of the electric insulator 4 is interposed between the adjacent flange portions 2. Since 11 is interposed, it is possible to increase the withstand voltage at the electrically insulated location. Thereby, even if the thickness of the insulating flange portion 11 is thin, a sufficient withstand voltage can be obtained, and the withstand voltage at an electrically insulated portion can be increased without increasing the microwave transmission loss. Further, in this insulated waveguide, the three or more adjacent waveguides 3 are electrically insulated and connected by interposing the electrical insulator 4 between the opposing ends, respectively. The withstand voltage can be increased N times according to the number N of the electrical insulators 4 used.
[0027]
Further, since the insulating flange portion 11 of the electrical insulator 4 protrudes outside the flange portion 2 of the waveguide 3, creeping discharge outside the flange portion 2 of the waveguide 3 is caused to protrude from the insulating flange portion 11. Depending on the length, it can be prevented.
[0028]
Further, when the distance L between the centers of the insulating flange portions 11 of the adjacent electrical insulators 4 is determined to be an odd multiple of 1/4 of the in-tube wavelength of the microwave incident on the waveguide 3, the distance L enters the waveguide 3. When the reflected wave of the incident microwave is generated by the insertion of the electrical insulator 4, the reflected wave can be canceled and the microwave can be transmitted without any trouble.
[0029]
In the example shown in FIG. 3, the insulating flange portions 11 of adjacent electrical insulators 4 can be covered with a homogeneous insulator so as to integrally surround the outer periphery of the waveguide 3.
[0030]
In the above example, an example in which the present invention is applied to a rectangular insulating waveguide has been described. However, the present invention is not limited to this, and can be similarly applied to a circular insulating waveguide.
[0031]
【The invention's effect】
In the insulated waveguide according to the present invention, each distal end portion of the insulating cylinder of the electrical insulator is inserted into the adjacent waveguide, and the insulating flange portion of the electrical insulator is interposed between the adjacent flange portions. Therefore, the withstand voltage at the electrically insulated location can be increased. Thereby, even if the thickness of the insulating flange portion is thin, a sufficient withstand voltage can be obtained, and the withstand voltage at the electrically insulated portion can be increased without increasing the microwave transmission loss.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first example of an embodiment of an insulated waveguide according to the present invention.
FIG. 2 is a perspective view of an electrical insulator used in this example.
FIG. 3 is a longitudinal sectional view of a second example of the embodiment of the insulated waveguide according to the present invention.
FIG. 4 is a longitudinal sectional view of a conventional insulated waveguide.
5 is a longitudinal sectional view of an insulated waveguide obtained by improving the insulated waveguide shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rectangular waveguide main body 2 Flange part 3 Waveguide 4 Electrical insulator 5 Electrical insulation board 6 Hole 7 Bolt 8 Nut 9 Coupling hole 10 Insulation cylinder 11 Insulation flange part

Claims (3)

隣接して相互に対向する導波管が電気絶縁体で絶縁されて接続されている絶縁導波管において、
前記電気絶縁体は隣接して相互に対向する前記導波管の中に各先端部が挿入される絶縁筒体と、該絶縁筒体の外周に一体に連接されていて隣接する前記各導波管のフランジ部で挟持される絶縁フランジ部とを有する構造であり、隣接する2つの前記導波管はその対向端部間に前記電気絶縁体が介在されて電気的に絶縁されて接続されていることを特徴とする絶縁導波管。
In an insulated waveguide in which adjacent waveguides facing each other are insulated and connected by an electrical insulator,
The electrical insulator is an insulating cylinder in which each tip is inserted into the waveguides adjacent to each other, and the adjacent waveguides integrally connected to the outer periphery of the insulating cylinder. And an insulating flange portion sandwiched between the flange portions of the tube, and the two adjacent waveguides are electrically insulated and connected by interposing the electric insulator between the opposite end portions. An insulated waveguide characterized by comprising:
隣接して相互に対向する導波管が電気絶縁体で絶縁されて接続されている絶縁導波管において、
前記電気絶縁体は隣接して相互に対向する前記導波管の中に各先端部が挿入される絶縁筒体と、該絶縁筒体の外周に一体に連接されていて隣接する前記各導波管のフランジ部で挟持される絶縁フランジ部とを有する構造であり、隣接する3つ以上の前記導波管はそれぞれの対向端部間に前記電気絶縁体がそれぞれ介在されて電気的に絶縁されて接続されていることを特徴とする絶縁導波管。
In an insulated waveguide in which adjacent waveguides facing each other are insulated and connected by an electrical insulator,
The electrical insulator is an insulating cylinder in which each tip is inserted into the waveguides adjacent to each other, and the adjacent waveguides integrally connected to the outer periphery of the insulating cylinder. And an insulating flange portion sandwiched between the flange portions of the tubes, and the three or more adjacent waveguides are electrically insulated by interposing the electrical insulators between the opposing ends. An insulated waveguide characterized by being connected.
前記電気絶縁体の前記絶縁フランジ部は前記導波管の前記フランジ部の外に突出する長さを有していることを特徴とする請求項1または2に記載の絶縁導波管。  3. The insulated waveguide according to claim 1, wherein the insulating flange portion of the electrical insulator has a length protruding outside the flange portion of the waveguide. 4.
JP2000186498A 2000-06-21 2000-06-21 Insulated waveguide Expired - Fee Related JP4183889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186498A JP4183889B2 (en) 2000-06-21 2000-06-21 Insulated waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186498A JP4183889B2 (en) 2000-06-21 2000-06-21 Insulated waveguide

Publications (2)

Publication Number Publication Date
JP2002009501A JP2002009501A (en) 2002-01-11
JP4183889B2 true JP4183889B2 (en) 2008-11-19

Family

ID=18686646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186498A Expired - Fee Related JP4183889B2 (en) 2000-06-21 2000-06-21 Insulated waveguide

Country Status (1)

Country Link
JP (1) JP4183889B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225048B2 (en) * 2011-02-23 2015-12-29 General Electric Company Antenna protection device and system
JP5992945B2 (en) * 2014-03-24 2016-09-14 島田理化工業株式会社 Insulated waveguide
EP3301754B1 (en) 2016-09-29 2021-04-21 Rohde & Schwarz GmbH & Co. KG Hollow conductor system and method for assembling a hollow conductor system
EP3301750B1 (en) * 2016-09-29 2021-03-24 Rohde & Schwarz GmbH & Co. KG Hollow conductor connecting member, hollow conductor system and method for forming a hollow conductor system
WO2022135688A1 (en) * 2020-12-22 2022-06-30 Telefonaktiebolaget Lm Ericsson (Publ) An improved waveguide interface

Also Published As

Publication number Publication date
JP2002009501A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
US7067739B2 (en) Joint structure of superconducting cable and insulating spacer for connecting superconducting cable
EP1072061B1 (en) Control impedance rf pin for extending compressible button interconnect contact distance
JP4183889B2 (en) Insulated waveguide
JP4231001B2 (en) Insulated bus system and method of connecting the bus unit
US7798868B2 (en) Electrical switching apparatus and terminal connector assembly therefor
KR101139943B1 (en) High voltage coaxial cable connector
JP7129263B2 (en) converter
KR20110031955A (en) Surge arrestor arrangement comprising an arrestor current path with a plurality of arrestor columns
EP0181955B2 (en) Electric connector
US11804663B2 (en) Connector and connector connection structure
KR860003365Y1 (en) Terminal device for a circuit breaker
KR101482926B1 (en) Fastening structure of insulator for insulation joint box of ultra high voltage power cable
US4066979A (en) Negative resistance microwave circuit comprising one or more pairs of diodes
JP2004282907A (en) Switchgear
US3255426A (en) Stripline having two ground planes mechanically spaced by removable longitudinal electrical connectors disposed parallel to signal conductor
JP7506534B2 (en) Coaxial Waveguide Converter
CN214044354U (en) Tubular conductor for switch cabinet and switch cabinet
US3371151A (en) Electrical bus structure
JPH0817522A (en) Coaxial connector and its assembly
KR0123113Y1 (en) Condense type cable junction box
KR970006787Y1 (en) An apparatus for preventing corona discharge from penetrating type current transformer
KR200189853Y1 (en) High voltage cable connecting housing by using frp
FI109564B (en) Radiofrekvensanslutningsdon
JPS6029284Y2 (en) conduit electrical equipment
JP3011364B2 (en) Termination connection structure of electrical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees