JP4183765B2 - Manufacturing method of flexible printed wiring board - Google Patents

Manufacturing method of flexible printed wiring board Download PDF

Info

Publication number
JP4183765B2
JP4183765B2 JP22595795A JP22595795A JP4183765B2 JP 4183765 B2 JP4183765 B2 JP 4183765B2 JP 22595795 A JP22595795 A JP 22595795A JP 22595795 A JP22595795 A JP 22595795A JP 4183765 B2 JP4183765 B2 JP 4183765B2
Authority
JP
Japan
Prior art keywords
resin
polyimide precursor
solvent
wiring board
precursor resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22595795A
Other languages
Japanese (ja)
Other versions
JPH0955567A (en
Inventor
克文 平石
智之 入江
忠夫 小泉
尚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP22595795A priority Critical patent/JP4183765B2/en
Publication of JPH0955567A publication Critical patent/JPH0955567A/en
Application granted granted Critical
Publication of JP4183765B2 publication Critical patent/JP4183765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリイミド前駆体樹脂溶液を導体上に直接塗布してなるフレキシブルプリント配線用基板の製法に関するものである。
【0002】
【従来の技術】
フレキシブルプリント配線用基板は一般に導体とポリイミド樹脂の絶縁体とを接着剤で接着して製造されている。しかし、この方法では耐熱性、耐薬品性、難燃性、電気特性、あるいは密着性といった特性は接着剤に支配されてしまい、ポリイミドの優れた諸特性を充分に生かすことができず高機能化の点で十分なものでなかった。
【0003】
接着剤を用いず、銅箔等の導体上にポリイミド前駆体樹脂溶液を直接塗布し、乾燥および硬化してフレキシブルプリント配線用基板を製造することは特開昭58−190093号公報、特開昭61−182941号公報等で知られている。しかし、一般に樹脂の線膨張係数は導体より大きい値であるため、この方法においては、高温で乾燥硬化ののち室温に冷却すると樹脂と導体の線膨張係数の差に起因する熱応力のためカールをしたり、フレキシブルプリント配線用基板の導体をエッチングするとひずみの解除により寸法が大きく変化するという問題があるため、樹脂の線膨張係数を小さくすることがより望まれている。
【0004】
熱膨張係数を小さくする手段として特開昭63−245988号公報に開示されているような低熱膨張性のポリイミド樹脂を用いる方法が提案されている。
【0005】
一方、ポリイミド前駆体樹脂の合成には極性溶媒が用いられるが、このポリイミド前駆体樹脂中に含まれる残存溶媒が硬化後のポリイミド樹脂の熱膨張係数に影響を及ぼすことが本願発明者等によって明らかになってきた。
【0006】
溶媒の回収を目的とし、ポリイミドフィルムを水系の媒体中で脱溶媒させることは特公昭62−4409号公報で知られている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、樹脂の線膨張係数を小さくし、カールがなく、良好な寸法安定性を有するフレキシブル配線用基板の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
すなわち本発明は、導体上に直接ポリイミド前駆体樹脂溶液を塗布し、形成されたフィルム中の樹脂のイミド閉環率が30%未満で、樹脂濃度が50重量%以上となるまで加熱乾燥を行ったのち、導体上にポリイミド前駆体樹脂が保持されている状態のままポリイミド前駆体樹脂溶液を構成している溶媒と親和性があり、ポリイミド前駆体樹脂に対しては貧溶媒である極性溶媒の媒体中に浸漬したのち取り出し、次いで120℃以上に加熱してイミド化することを特徴とするフレキシブルプリント配線用基板の製造方法である。
【0009】
【発明の実施の形態】
本発明に用いる導体は任意の金属箔で可能であり、好ましくは銅、アルミ、および、SUS箔であり、さらに好ましくは5〜150μmの厚みの銅箔である。
【0010】
ポリイミド前駆体樹脂はジアミン化合物と酸無水物化合物とを極性溶媒中0〜200℃で反応させて合成される。この際イミド化反応が起きると溶解性が低下し、好ましくない。
【0011】
極性溶媒としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルフォキサイド(DMSO)、硫酸ジメチル、スルホラン、ブチロラクトン、クレゾ−ル、フェノール、ハロゲン化フェノール、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ダイグライム、等が挙げられる。
【0012】
ジアミン化合物としてはp−フェニレンジアミン、m−フェニレンジアミン、2'−メトキシ−4,4'−ジアミノベンズアニリド、4,4'−ジアミノジフェニルエ−テル、ジアミノトルエン、4,4'−ジアミノジフェニルメタン、3,3'−ジメチル−4,4'−ジアミノジフェニルメタン、3,3'−ジメチル−4,4'−ジアミノジフェニルメタン、2,2 −ビス〔4-(4−アミノフェノキシ)フェニル〕プロパン、1,2-ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエード、ジアミノジフェニルスルフィド、2,2-ビス(p-アミノフェニル)プロパン、2,2-ビス(p-アミノフェニル)ヘキサフルオロプロパン、1,5-ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4-ビス(p-アミノフェノキシ)ベンゼン、4,4'−(p-アミノフェノキシビフェニル、ジアミノアントラキノン、4,4'−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3-ビス(アニリノ)ヘキサフルオロプロパン、1,4-ビス(アニリノ)オクタフルオロプロパン、1,5-ビス(アニリノ)デカフルオロプロパン、1,7-ビス(アニリノ)テトラデカフルオロプロパン、
下記一般式
【化1】

Figure 0004183765
で表されるジアミノシロキサン、2,2-ビス〔4-(p-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔4-(2-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)−3,5-ジメチルフェニル〕ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)−3,5-ジトリフルオロメチルフェニル〕ヘキサフルオロプロパン、p-ビス(4-アミノ−2-トリフルオロメチルフェノキシ)ベンゼン、4,4'−ビス(4-アミノ−2-トリフルオロメチルフェノキシ)ビフェニル、4,4'−ビス(4-アミノ−3-トリフルオロメチルフェノキシ)ビフェニル、4,4'−ビス(4-アミノ−2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4'−ビス(4-アミノ−5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス〔4-(4-アミノ−3-トリフルオロメチルフェノキシ)フェニル〕ヘキサフルオロプロパン、ベンジジン、3,3',5,5'-テトラメチルベンジジン、オクタフルオロベンジジン、3,3'−メトキシベンジジン、o-トリジン、m-トリジン、2,2',5,5',6,6'−ヘキサフルオロトリジン、4,4"−ジアミノターフェニル、4,4"'-ジアミノクォーターフェニル等のジアミン類、並びにこれらのジアミンとホスゲン等の反応によって得られるジイソシアネート類がある。
【0013】
またテトラカルボン酸無水物並びにその誘導体としては次の様なものが挙げられる。なお、ここではテトラカルボン酸として例示するが、これらのエステル化物、酸無水物、酸塩化物も勿論使用できる。ピロメリット酸、3,3',4,4' −ビフェニルテトラカルボン酸、3,3',4,4' −ベンゾフェノンテトラカルボン酸、3,3',4,4' −ジフェニルスルホンテトラカルボン酸、3,3',4,4' −ジフェニルエーテルテトラカルボン酸、2,3,3',4'-ベンゾフェノンテトラカルボン酸、2,3,6,7 −ナフタレンテトラカルボン酸、1,2,5,6 −ナフタレンテトラカルボン酸、3,3',4,4' −ジフェニルメタンテトラカルボン酸、2,2-ビス(3,4−ジカルボキシフェニル) プロパン、2,2-ビス(3,4−ジカルボキシフェニル) ヘキサフルオロプロパン、3,4,9,10- テトラカルボキシペリレン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ) フェニル] プロパン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ) フェニル] ヘキサフルオロプロパン、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸等がある。また、トリメリット酸及びその誘導体も挙げられる。
【0014】
また、反応性官能基を有する化合物で変成し、架橋構造やラダー構造を導入することもできる。例えば、次のような方法がある。
(1)下記一般式で表される化合物で変成することによって、ピロロン環やイソインドロキナゾリンジオン環等を導入する。
【化2】
Figure 0004183765
(2)重合性不飽和結合を有するアミン、ジアミン、ジカルボン酸、トリカルボン酸、テトラカルボン酸の誘導体で変成して硬化時に橋かけ構造を形成する。不飽和化合物としては、マレイン酸、ナジック酸、テトラヒドロフタル酸、エチニルアニリン等が使用できる。
(3)フェノール性水酸基あるいはカルボン酸を有する芳香族アミンで変成し、この水酸基又はカルボキシル基と反応しうる橋かけ剤を形成する。
【0015】
線膨張係数のコントロール、あるいは機械的特性の調整等を目的として、前記化合物等を用いて共重合あるいはブレンドすることも可能である。また種々の特性改良を目的として無機質、有機質、または金属等の粉末、繊維等を混合して使用することもできる。また導体の酸化を防ぐ目的で酸化防止剤等の添加剤あるいは接着性の向上を目的としてシランカップリング剤を加えることも可能である。また、接着性の向上等を目的として異種のポリマーをブレンドすることも可能である。
【0016】
ポリイミド樹脂層の厚みは2μmから300μmが好ましく、それ未満であると、回路の絶縁に対する信頼性に乏しく、また折り曲げ等の機械的特性が低い。300μmを越えると加熱の際、発泡が生じやすく好ましくない。
【0017】
前記極性溶媒中でジアミン化合物と酸無水物とを反応させて得られたポリイミド前駆体樹脂溶液は任意の塗工装置を用いて導体上に塗布される。塗工装置としては、グラビアコーター、リバースロールコーター、バーリバースロールコーター、バーコーター、ドクターブレードコーター、カーテンフローコーター、ダイコーター及び多層ダイコーター等を用いることができるが、特性の向上等を目的として複数種のポリイミド前駆体樹脂溶液を多層になるように塗布することも可能である。
【0018】
本発明に使用する媒体は、樹脂に対しては貧溶媒でありポリイミド前駆体樹脂溶液を構成している溶媒とは親和性のある液体のことである。極性溶媒として使用することが可能な液体として、例えば、低級アルコール、アセトニトリル、酢酸、アセトン、炭酸プロピレン等の単独、混合物、およびこれらの極性溶媒とポリイミド前駆体樹脂溶液を構成している溶媒との混合物等が挙げられる。水系の媒体として使用することが可能な液体として、例えば水単独、水とポリイミド前駆体樹脂溶液を構成している溶媒との混合物、水と低級アルコール、酢酸、アセトン等の混合物等が挙げられる。浸漬処理を行うことにより、樹脂中の溶媒を抽出し加熱による閉環前の溶媒含有率を下げることができる。
【0019】
また、樹脂の加水分解を防止することなどを目的として添加剤を加えることも可能である。
【0020】
導体上にポリイミド前駆体樹脂溶液を塗布し、形成されたフィルム中の樹脂濃度が50重量%以上となるまで加熱乾燥を行ったのち、ポリイミド前駆体樹脂溶液を構成している溶媒と親和性のある媒体に浸漬したのち取り出し、次いで120℃以上、好ましくは完全に閉環させる温度(通常220℃以上)に加熱されるわけであるが、加熱後の樹脂の線膨張係数は、乾燥時間および温度、媒体への浸漬時間および温度、浸漬後の加熱温度、樹脂の厚みなどによって決まる。
【0021】
乾燥温度および時間は特に限定されないが、乾燥後のフィルム中の樹脂濃度が50重量%以下であると、媒体への浸漬時にフィルムが不均一になり十分な強度が得られない。また、乾燥後の閉環率が高くなるほど線膨張係数は小さくなりにくいため、線膨張係数を小さくする効果を十分に得るためには、樹脂の閉環率は30%以下であることが好ましい。本発明においては、媒体に浸漬する際、導体上に樹脂が保持されているため樹脂の自己支持性は必要でなく、媒体中で樹脂が析出せず均質な最終フィルムが得られる範囲で、浸漬前の樹脂の含有溶媒濃度を高く、樹脂の閉環率を低くすることがより好ましい。浸漬前の樹脂の含有溶媒濃度が低いと線膨張係数を十分小さくするためには媒体中への浸漬時間を長くする必要がある。
【0022】
媒体への浸漬時間は特に限定されないが、線膨張係数を小さくする効果を十分に得るためには浸漬時間は1分以上60分以下とすることが好ましい。浸漬時間が1分以下であると媒体への浸漬を行わないものと比較し線膨張係数はあまり小さくならず、浸漬時間が60分以上では浸漬時間がそれより短いものより線膨張係数は小さくならない。
【0023】
媒体への浸漬処理後は、媒体からフィルムを取り出し、次いで加熱オーブン等による通常の加熱処理によりイミド化を行う。加熱温度は少なくとも120℃以上、好ましくは220℃以上である。加熱に際しては、一気に高温に晒すのではなく、徐々に昇温するか、または段階的に昇温していくようにするのが好ましい。
【0024】
【実施例】
以下、本発明を実施例をもって説明する。
なお、例における略語は以下の通りである。
MABA:2’−メチル−4,4’−ジアミノベンズアニリド
DDE:4,4’−ジアミノジフェニルエーテル
PMDA:ピロメリット酸二無水物
DMAC:ジメチルアセトアミド
【0025】
イミド閉環率は、ポリイミド前駆体のみである場合を0、完全にポリイミドに転化した場合を100とし、赤外吸収スペクトルにより求めた。
【0026】
含有溶媒濃度は、熱重量測定により20℃/分で昇温したときの試料の100℃と300℃のときの重量差からイミド化生成水の重量分を除き求めた。
【0027】
合成例1
MABA5.2kgとDDE4.0kgをDMAC102kgに溶解した後、10℃に冷却し、PMDA8.8kgを徐々に加えて反応させ、ポリイミド前駆体樹脂溶液を得た。
【0028】
実施例1
厚み35μmの電解銅箔の粗化面にダイコーターを用いて合成例1で調整したポリイミド前駆体樹脂溶液を完全に硬化した後の厚みが15μmになるように塗工し、110℃にて1.2分間の乾燥を行ったところ、樹脂の含有溶媒濃度40%、閉環率は0であった。これを極性溶媒であるメタノールに20℃で10分間浸漬を行ったのち取り出し、220℃、360℃にてそれぞれ2分間加熱して、閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂は実用上十分な強度があり、樹脂の線膨張係数は1.0×10-5/℃と小さく、高品質なものであった。
【0029】
実施例2
実施例1と同様の塗工、乾燥を行ったものを、極性溶媒であるアセトニトリルに20℃で60分間浸漬を行ったのち取り出し、220℃、360℃にてそれぞれ2分間加熱して閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂は実用上十分な強度があり、樹脂の線膨張係数は1.2×10-5/℃と小さく、高品質なものであった。
【0030】
比較例1
実施例1と同様の塗工、乾燥を行ったものを、非極性溶媒であるノルマルヘキサンおよびトルエンに20℃で10分間浸漬を行ったのち取り出し、220℃、360℃にてそれぞれ2分間加熱して閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂の線膨張係数はそれぞれ3.9×10-5/℃、3.8×10-5/℃と大きかった。
【0031】
比較例2
実施例1と同様の塗工、乾燥を行ったものを、さらに220℃、360℃にてそれぞれ2分間加熱して閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂の線膨張係数は3.8×10-5/℃と大きかった。
【0032】
実施例3
実施例1と同様の塗工、乾燥を行ったものを、40℃の水に4分間浸漬を行ったのち取り出し、220℃、360℃にてそれぞれ2分間加熱して閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂は実用上十分な強度があり、樹脂の線膨張係数は1.1×10-5/℃と小さく、高品質なものであった。
【0033】
実施例4
厚み35μmの電解銅箔の粗化面にダイコーターを用いて合成例1で調整したポリイミド前駆体樹脂溶液を完全に硬化した後の厚みが25μmになるように塗工し、110℃にて2分間の乾燥を行ったところ、樹脂の含有溶媒濃度38%、閉環率は0であった。これを20℃の水に60分間浸漬を行ったのち取り出し、220℃、360℃にてそれぞれ2分間加熱して、閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂は実用上十分な強度があり、樹脂の線膨張係数は1.0×10-5/℃と小さく、高品質なものであった。
【0034】
実施例5
実施例4と同様の塗工を行った後、145℃にて30分間の乾燥行ったところ、樹脂の含有溶媒濃度18%、閉環率30%であった。これを20℃の水に60分間浸漬を行った後取り出し、110℃、220℃、360℃にてそれぞれ2分間加熱して閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂は実用上十分な強度があり、樹脂の線膨張係数は2.3×10-5/℃と比較的小さく、高品質なものであった。
【0035】
比較例3
実施例4と同様の塗工、乾燥を行ったものを、さらに220℃、360℃にてそれぞれ2分間加熱して閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂の線膨張係数は4.2×10-5/℃と大きかった。
【0036】
比較例4
実施例5と同様の塗工、乾燥を行ったものを、さらに110℃、220℃、360℃にてそれぞれ2分間加熱して閉環率が100%のフレキシブル配線用基板が得られた。このフレキシブル配線用基板の樹脂の線膨張係数は3.2×10-5/℃と大きかった。
【0037】
【発明の効果】
本発明の積層体は加工精度が高くかつ信頼性に優れた絶縁体を導体上で極めて容易に加工しうるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a substrate for flexible printed wiring formed by directly applying a polyimide precursor resin solution onto a conductor.
[0002]
[Prior art]
A flexible printed wiring board is generally manufactured by adhering a conductor and a polyimide resin insulator with an adhesive. However, with this method, properties such as heat resistance, chemical resistance, flame retardancy, electrical properties, and adhesion are governed by the adhesive, making it impossible to fully utilize the excellent properties of polyimide, resulting in higher functionality. The point was not enough.
[0003]
A flexible printed wiring board can be produced by directly applying a polyimide precursor resin solution onto a conductor such as a copper foil without using an adhesive, and drying and curing. It is known in Japanese Patent No. 61-182941. However, since the linear expansion coefficient of the resin is generally larger than that of the conductor, in this method, when it is dried and cured at a high temperature and then cooled to room temperature, curling occurs due to thermal stress due to the difference in the linear expansion coefficient between the resin and the conductor. However, when the conductor of the flexible printed wiring board is etched, there is a problem that the size is greatly changed by releasing the strain. Therefore, it is more desirable to reduce the linear expansion coefficient of the resin.
[0004]
As a means for reducing the thermal expansion coefficient, a method using a low thermal expansion polyimide resin as disclosed in JP-A-63-245988 has been proposed.
[0005]
On the other hand, a polar solvent is used for the synthesis of the polyimide precursor resin, but it is clear by the inventors of the present application that the residual solvent contained in the polyimide precursor resin affects the thermal expansion coefficient of the cured polyimide resin. It has become.
[0006]
For the purpose of recovering the solvent, it is known in Japanese Patent Publication No. 62-4409 to remove the solvent from the polyimide film in an aqueous medium.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for manufacturing a flexible wiring board having a low linear expansion coefficient of resin, no curling, and good dimensional stability.
[0008]
[Means for Solving the Problems]
That is, in the present invention, the polyimide precursor resin solution was directly applied on the conductor, and the resin in the formed film was heat-dried until the imide ring closure rate of the resin was less than 30% and the resin concentration was 50% by weight or more. Later, it is compatible with the solvent that makes up the polyimide precursor resin solution while the polyimide precursor resin is held on the conductor, and is a poor solvent for the polyimide precursor resin. It is a method for producing a substrate for flexible printed wiring, wherein the substrate is taken out after being immersed therein and then heated to 120 ° C. or higher to imidize.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The conductor used in the present invention can be any metal foil, preferably copper, aluminum, and SUS foil, and more preferably a copper foil having a thickness of 5 to 150 μm.
[0010]
The polyimide precursor resin is synthesized by reacting a diamine compound and an acid anhydride compound in a polar solvent at 0 to 200 ° C. In this case, if an imidization reaction occurs, the solubility is lowered, which is not preferable.
[0011]
Examples of polar solvents include N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol, halogenated phenol, Examples include cyclohexanone, dioxane, tetrahydrofuran, diglyme, and the like.
[0012]
Examples of the diamine compound include p-phenylenediamine, m-phenylenediamine, 2′-methoxy-4,4′-diaminobenzanilide, 4,4′-diaminodiphenyl ether, diaminotoluene, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1, 2-bis (anilino) ethane, diaminodiphenylsulfone, diaminobenzanilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoro Propane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluoride, 1,4-bis (p-aminophenoxy) benzene, 4,4 '-(P-aminophenoxybiphenyl, diaminoanthraquinone, 4,4'-bis (3-aminophenoxyphenyl) diphenylsulfone, 1,3-bis (anilino) hexafluoropropane, 1,4-bis (anilino) octafluoro Propane, 1,5-bis (anilino) decafluoropropane, 1,7-bis (anilino) tetradecafluoropropane,
The following general formula
Figure 0004183765
2,2-bis [4- (p-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] hexafluoropropane, 2,2 -Bis [4- (2-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] hexafluoropropane, 2,2-bis [4 -(4-Aminophenoxy) -3,5-ditrifluoromethylphenyl] hexafluoropropane, p-bis (4-amino-2-trifluoromethylphenoxy) benzene, 4,4'-bis (4-amino-2 -Trifluoromethylphenoxy) biphenyl, 4,4'-bis (4-amino-3-trifluoromethylphenoxy) biphenyl, 4,4'-bis (4-amino-2-trifluoromethylphenoxy) diphenyl sulfone, 4 , 4'-bis (4-amino -5-trifluoromethylphenoxy) diphenylsulfone, 2,2-bis [4- (4-amino-3-trifluoromethylphenoxy) phenyl] hexafluoropropane, benzidine, 3,3 ', 5,5'-tetra Methylbenzidine, octafluorobenzidine, 3,3'-methoxybenzidine, o-tolidine, m-tolidine, 2,2 ', 5,5', 6,6'-hexafluorotolidine, 4,4 "-diaminoterphenyl Diamines such as 4,4 "'-diaminoquaterphenyl, and diisocyanates obtained by reaction of these diamines with phosgene and the like.
[0013]
Examples of tetracarboxylic acid anhydrides and derivatives thereof include the following. In addition, although illustrated here as tetracarboxylic acid, these esterified products, acid anhydrides, and acid chlorides can of course be used. Pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,3 ', 4,4'-diphenyl ether tetracarboxylic acid, 2,3,3', 4'-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalene tetracarboxylic acid, 1,2,5,6 -Naphthalenetetracarboxylic acid, 3,3 ', 4,4'-Diphenylmethanetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) ) Hexafluoropropane, 3,4,9,10-tetracarboxyperylene, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 2,2-bis [4- (3,4 -Dicarboxyphenoxy) phenyl] hexafluoropropane, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid and the like. Also included are trimellitic acid and its derivatives.
[0014]
Further, it can be modified with a compound having a reactive functional group to introduce a crosslinked structure or a ladder structure. For example, there are the following methods.
(1) A pyrrolone ring, an isoindoloquinazolinedione ring, or the like is introduced by modification with a compound represented by the following general formula.
[Chemical 2]
Figure 0004183765
(2) It is modified with a derivative of amine, diamine, dicarboxylic acid, tricarboxylic acid or tetracarboxylic acid having a polymerizable unsaturated bond to form a crosslinked structure at the time of curing. As the unsaturated compound, maleic acid, nadic acid, tetrahydrophthalic acid, ethynylaniline and the like can be used.
(3) Modification with an aromatic amine having a phenolic hydroxyl group or carboxylic acid to form a crosslinking agent capable of reacting with the hydroxyl group or carboxyl group.
[0015]
For the purpose of controlling the linear expansion coefficient or adjusting the mechanical properties, it is possible to copolymerize or blend using the above compounds. In addition, for the purpose of improving various properties, it is also possible to use a mixture of inorganic, organic, or metal powders, fibers and the like. It is also possible to add an additive such as an antioxidant or a silane coupling agent for the purpose of improving adhesiveness in order to prevent the conductor from being oxidized. It is also possible to blend different types of polymers for the purpose of improving adhesiveness.
[0016]
The thickness of the polyimide resin layer is preferably 2 μm to 300 μm, and if it is less than that, the reliability of circuit insulation is poor, and mechanical properties such as bending are low. If it exceeds 300 μm, foaming is likely to occur during heating, which is not preferable.
[0017]
A polyimide precursor resin solution obtained by reacting a diamine compound and an acid anhydride in the polar solvent is applied onto a conductor using an arbitrary coating apparatus. As the coating device, gravure coater, reverse roll coater, bar reverse roll coater, bar coater, doctor blade coater, curtain flow coater, die coater, multilayer die coater, etc. can be used. It is also possible to apply a plurality of types of polyimide precursor resin solutions so as to form a multilayer.
[0018]
The medium used in the present invention is a liquid which is a poor solvent for the resin and has an affinity for the solvent constituting the polyimide precursor resin solution. As a liquid that can be used as a polar solvent, for example, a lower alcohol, acetonitrile, acetic acid, acetone, propylene carbonate and the like alone, a mixture, and these polar solvents and a solvent constituting a polyimide precursor resin solution A mixture etc. are mentioned. Examples of the liquid that can be used as the aqueous medium include water alone, a mixture of water and a solvent constituting the polyimide precursor resin solution, a mixture of water and a lower alcohol, acetic acid, acetone, and the like. By performing the immersion treatment, it is possible to extract the solvent in the resin and reduce the solvent content before ring closure by heating.
[0019]
It is also possible to add an additive for the purpose of preventing hydrolysis of the resin.
[0020]
After applying the polyimide precursor resin solution on the conductor and drying by heating until the resin concentration in the formed film is 50% by weight or more, it has affinity with the solvent constituting the polyimide precursor resin solution. It is taken out after being immersed in a certain medium, and then heated to 120 ° C. or higher, preferably to a temperature for complete ring closure (usually 220 ° C. or higher). The linear expansion coefficient of the resin after heating is determined by the drying time and temperature, It depends on the immersion time and temperature in the medium, the heating temperature after immersion, the thickness of the resin, and the like.
[0021]
The drying temperature and time are not particularly limited, but if the resin concentration in the dried film is 50% by weight or less, the film becomes non-uniform when immersed in the medium and sufficient strength cannot be obtained. Further, since the linear expansion coefficient is less likely to decrease as the ring closing ratio after drying becomes higher, the ring closing ratio of the resin is preferably 30% or less in order to sufficiently obtain the effect of reducing the linear expansion coefficient. In the present invention, when the resin is immersed in the medium, the resin is held on the conductor, so that the resin does not need to be self-supporting. It is more preferable to increase the solvent concentration of the previous resin and lower the ring closure rate of the resin. If the solvent concentration of the resin before immersion is low, it is necessary to lengthen the immersion time in the medium in order to sufficiently reduce the linear expansion coefficient.
[0022]
The immersion time in the medium is not particularly limited, but the immersion time is preferably 1 minute or more and 60 minutes or less in order to sufficiently obtain the effect of reducing the linear expansion coefficient. When the immersion time is 1 minute or less, the linear expansion coefficient is not so small as compared with the case where the immersion in the medium is not performed, and when the immersion time is 60 minutes or more, the linear expansion coefficient is not smaller than that when the immersion time is shorter than that. .
[0023]
After the immersion treatment in the medium, the film is taken out from the medium, and then imidized by a normal heat treatment using a heating oven or the like. The heating temperature is at least 120 ° C or higher, preferably 220 ° C or higher. In heating, it is preferable not to be exposed to a high temperature at once, but to raise the temperature gradually or stepwise.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Abbreviations in the examples are as follows.
MABA: 2′-methyl-4,4′-diaminobenzanilide DDE: 4,4′-diaminodiphenyl ether PMDA: pyromellitic dianhydride DMAC: dimethylacetamide
The imide cyclization rate was determined from an infrared absorption spectrum, assuming that the polyimide precursor alone was 0, and the complete polyimide conversion was 100.
[0026]
The solvent concentration was determined by excluding the weight of imidized product water from the weight difference between 100 ° C. and 300 ° C. of the sample when the temperature was raised at 20 ° C./min by thermogravimetry.
[0027]
Synthesis example 1
MABA 5.2 kg and DDE 4.0 kg were dissolved in DMAC 102 kg, cooled to 10 ° C., PMDA 8.8 kg was gradually added and reacted to obtain a polyimide precursor resin solution.
[0028]
Example 1
A 35 μm thick electrolytic copper foil was coated on the roughened surface of the polyimide precursor resin solution prepared in Synthesis Example 1 using a die coater so that the thickness after completely curing was 15 μm. After drying for 2 minutes, the solvent concentration of the resin was 40% and the ring closure rate was 0. This was immersed in methanol as a polar solvent at 20 ° C. for 10 minutes and then taken out and heated at 220 ° C. and 360 ° C. for 2 minutes, respectively, to obtain a flexible wiring substrate with a ring closure rate of 100%. The resin for this flexible wiring board had a sufficient strength for practical use, and the linear expansion coefficient of the resin was as small as 1.0 × 10 −5 / ° C., which was high quality.
[0029]
Example 2
The same coating and drying as in Example 1 were immersed in polar solvent acetonitrile at 20 ° C. for 60 minutes and then taken out and heated at 220 ° C. and 360 ° C. for 2 minutes, respectively. A 100% flexible wiring board was obtained. The resin for this flexible wiring board had a sufficient strength for practical use, and the linear expansion coefficient of the resin was as small as 1.2.times.10.sup.- 5 / .degree.
[0030]
Comparative Example 1
The same coating and drying as in Example 1 were immersed in normal hexane and toluene, which are nonpolar solvents, at 20 ° C. for 10 minutes, then taken out and heated at 220 ° C. and 360 ° C. for 2 minutes, respectively. Thus, a flexible wiring substrate having a ring closure rate of 100% was obtained. Linear expansion coefficient of the resin of the flexible wiring board was as large as 3.9 × 10 -5 /℃,3.8×10 -5 / ℃ respectively.
[0031]
Comparative Example 2
The substrate coated and dried in the same manner as in Example 1 was further heated at 220 ° C. and 360 ° C. for 2 minutes, respectively, to obtain a flexible wiring substrate with a ring closure rate of 100%. The linear expansion coefficient of the resin for this flexible wiring board was as large as 3.8 × 10 −5 / ° C.
[0032]
Example 3
The same coating and drying as in Example 1 were immersed in water at 40 ° C. for 4 minutes and then taken out and heated at 220 ° C. and 360 ° C. for 2 minutes, respectively. A wiring board was obtained. The resin of this flexible wiring board had a sufficient strength for practical use, and the linear expansion coefficient of the resin was as small as 1.1 × 10 −5 / ° C., which was high quality.
[0033]
Example 4
The surface of the 35 μm thick electrolytic copper foil was coated on the roughened surface of the polyimide precursor resin solution prepared in Synthesis Example 1 using a die coater so that the thickness after completely curing was 25 μm. When drying was performed for a minute, the resin-containing solvent concentration was 38% and the ring closure rate was 0. This was immersed in water at 20 ° C. for 60 minutes and then taken out and heated at 220 ° C. and 360 ° C. for 2 minutes, respectively, to obtain a flexible wiring board with a ring closure rate of 100%. The resin for this flexible wiring board had a sufficient strength for practical use, and the linear expansion coefficient of the resin was as small as 1.0 × 10 −5 / ° C., which was high quality.
[0034]
Example 5
When the same coating as in Example 4 was performed and dried at 145 ° C. for 30 minutes, the resin-containing solvent concentration was 18% and the ring closure rate was 30%. This was immersed in water at 20 ° C. for 60 minutes and then taken out and heated at 110 ° C., 220 ° C. and 360 ° C. for 2 minutes, respectively, to obtain a flexible wiring board with a ring closure rate of 100%. The resin for this flexible wiring board had a sufficient strength in practical use, and the linear expansion coefficient of the resin was relatively small, 2.3 × 10 −5 / ° C., and was of high quality.
[0035]
Comparative Example 3
What was coated and dried in the same manner as in Example 4 was further heated at 220 ° C. and 360 ° C. for 2 minutes, respectively, to obtain a flexible wiring substrate with a ring closure rate of 100%. The linear expansion coefficient of the resin for this flexible wiring board was as large as 4.2 × 10 −5 / ° C.
[0036]
Comparative Example 4
What was coated and dried in the same manner as in Example 5 was further heated at 110 ° C., 220 ° C., and 360 ° C. for 2 minutes, respectively, to obtain a flexible wiring substrate with a ring closure rate of 100%. The linear expansion coefficient of the resin for this flexible wiring board was as large as 3.2 × 10 −5 / ° C.
[0037]
【The invention's effect】
The laminated body of the present invention can process an insulator having high processing accuracy and excellent reliability on a conductor very easily.

Claims (3)

導体上に直接ポリイミド前駆体樹脂溶液を塗布し、形成されたフィルム中の樹脂のイミド閉環率が30%未満で、樹脂濃度が50重量%以上となるまで加熱乾燥を行ったのち、導体上にポリイミド前駆体樹脂が保持されている状態のままポリイミド前駆体樹脂溶液を構成している溶媒と親和性があり、ポリイミド前駆体樹脂に対しては貧溶媒である極性溶媒の媒体中に浸漬したのち取り出し、次いで120℃以上に加熱してイミド化することを特徴とするフレキシブルプリント配線用基板の製造方法。The polyimide precursor resin solution is applied directly onto the conductor, and after drying by heating until the imide ring closure rate of the resin in the formed film is less than 30% and the resin concentration is 50% by weight or more, It has affinity with the solvent that constitutes the polyimide precursor resin solution while the polyimide precursor resin is held, and after being immersed in a polar solvent medium that is a poor solvent for the polyimide precursor resin A method for manufacturing a substrate for flexible printed wiring, which is taken out and then imidized by heating to 120 ° C. or higher. ポリイミド前駆体樹脂溶液を構成している溶媒と親和性のある媒体が、溶解度パラメーターが9.4(cal/cm3 1/2 より大きい極性溶媒であることを特徴とする請求項1記載のフレキシブルプリント配線用基板の製造方法。The medium having an affinity for the solvent constituting the polyimide precursor resin solution is a polar solvent having a solubility parameter of greater than 9.4 (cal / cm 3 ) 1/2 . A method for manufacturing a flexible printed wiring board. ポリイミド前駆体樹脂溶液を構成している溶媒と親和性のある媒体が、水系の媒体であることを特徴とする請求項1記載のフレキシブルプリント配線用基板の製造方法。2. The method for producing a flexible printed wiring board according to claim 1, wherein the medium having affinity for the solvent constituting the polyimide precursor resin solution is an aqueous medium.
JP22595795A 1995-08-10 1995-08-10 Manufacturing method of flexible printed wiring board Expired - Fee Related JP4183765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22595795A JP4183765B2 (en) 1995-08-10 1995-08-10 Manufacturing method of flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22595795A JP4183765B2 (en) 1995-08-10 1995-08-10 Manufacturing method of flexible printed wiring board

Publications (2)

Publication Number Publication Date
JPH0955567A JPH0955567A (en) 1997-02-25
JP4183765B2 true JP4183765B2 (en) 2008-11-19

Family

ID=16837546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22595795A Expired - Fee Related JP4183765B2 (en) 1995-08-10 1995-08-10 Manufacturing method of flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP4183765B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867909A4 (en) 1996-09-18 2000-01-19 Technology Trade & Transfer Plasma display discharge tube and method for driving the same
JP4667675B2 (en) * 2001-09-11 2011-04-13 三井化学株式会社 Polyimide metal foil laminate
JP4817165B2 (en) * 2004-03-25 2011-11-16 大阪府 Method for producing porous polyimide membrane
JP5998994B2 (en) * 2012-03-16 2016-09-28 日本ゼオン株式会社 Method for producing polyimide laminate
JP2014133783A (en) * 2013-01-08 2014-07-24 Nippon Zeon Co Ltd Resin composition, insulating film, laminated body and method for manufacturing laminated body
JP5994694B2 (en) * 2013-03-19 2016-09-21 日本ゼオン株式会社 Manufacturing method of semiconductor device
JP6875252B2 (en) * 2017-10-26 2021-05-19 信越化学工業株式会社 Method of drying polyimide paste and method of manufacturing high photoelectric conversion efficiency solar cell

Also Published As

Publication number Publication date
JPH0955567A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
US5601905A (en) Laminate for insulation protection of circuit boards
JP2907598B2 (en) Flexible multilayer polyimide film laminates and methods for their manufacture
JPH0522399B2 (en)
JP2746555B2 (en) Flexible printed circuit board
JP2006068920A (en) Manufacturing method of flexible copper foil/polyimide laminate
JP5163126B2 (en) Flexible laminated board, manufacturing method thereof, and flexible printed wiring board
TW202140622A (en) Resin film, metal-clad laminate and circuit board wherein the resin film includes a liquid crystal polymer layer, a first adhesive layer, and a second adhesive layer
US4939039A (en) Flexible base materials for printed circuits and method of making same
JP3586468B2 (en) Laminate
JP2738453B2 (en) Manufacturing method of copper clad laminate
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
KR20230117670A (en) Metal clad laminate and circuit board
JP4941407B2 (en) Copper-clad laminate and method for producing copper-clad laminate
JP2001105530A (en) Flexible metal laminate and production method therefor
JP3090768B2 (en) Laminate
JPH0543314B2 (en)
JPS63264632A (en) Low-thermal expansion resin
JP3205588B2 (en) Manufacturing method of printed wiring board
JP3781381B2 (en) Laminated body and wiring board using the same
JPH0366824B2 (en)
JP4684601B2 (en) Manufacturing method of flexible laminated substrate
JP3059248B2 (en) Manufacturing method of flexible printed circuit board
JPH0555716A (en) Manufacture of flexible wiring board
JP4360956B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP3065388B2 (en) Manufacturing method of flexible printed circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees