JP4182438B2 - Optical imprint method - Google Patents

Optical imprint method Download PDF

Info

Publication number
JP4182438B2
JP4182438B2 JP2004366972A JP2004366972A JP4182438B2 JP 4182438 B2 JP4182438 B2 JP 4182438B2 JP 2004366972 A JP2004366972 A JP 2004366972A JP 2004366972 A JP2004366972 A JP 2004366972A JP 4182438 B2 JP4182438 B2 JP 4182438B2
Authority
JP
Japan
Prior art keywords
exposure
resist
mold
crosslinking
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004366972A
Other languages
Japanese (ja)
Other versions
JP2006173508A (en
Inventor
淳 関口
義之 河野
晃一 服部
成雄 荒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PULSA CO., LTD.
Original Assignee
PULSA CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PULSA CO., LTD. filed Critical PULSA CO., LTD.
Priority to JP2004366972A priority Critical patent/JP4182438B2/en
Publication of JP2006173508A publication Critical patent/JP2006173508A/en
Application granted granted Critical
Publication of JP4182438B2 publication Critical patent/JP4182438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規な光インプリント方法に関する。   The present invention relates to a novel optical imprint method.

100nmノード以下のリソグラフィー技術の候補としてはF2リソグラフィー、193nm Immersion、EB、EUV、インプリントの適用が考えられている。その中で、高価な露光装置を必要としないインプリントリソグラフィー(Inprint Lithograpy)が注目を集めている。
インプリントリソグラフィーは熱インプリントと光インプリントに大別できる。熱インプリントとは樹脂をTg以上の温度で軟化させ、モールドを押し付け、冷却して樹脂を固める方法である。一方、光インプリントとは液状樹脂に透明モールドを押しつけて、紫外線(UV)などの電磁波の照射を行い樹脂を硬化させる方法である。
熱インプリントはTg以上の温度でプレス圧力20MPa以上を必要とし、大型のプレス機構が必要となる。また、熱プロセスを行うため昇温と降温に時間がかかり、スループットが低下する。
光インプリントはモールド内に樹脂が充填されれば良いので、プレス圧力はそれほど必要としない。また、熱プロセスが不要なためスループットの点でも熱インプリントに比べ有利である。しかし、光インプリントは樹脂が低粘度の液状であるためステージとモールドの平坦度に敏感であり、残膜分布が不均一となり、そのためUV等の照射時に干渉縞が発生するという問題があった。
As candidates for lithography technology of 100 nm node or less, application of F2 lithography, 193 nm immersion, EB, EUV, and imprint is considered. Among them, imprint lithography that does not require an expensive exposure apparatus is attracting attention.
Imprint lithography can be broadly divided into thermal imprint and optical imprint. Thermal imprinting is a method in which a resin is softened at a temperature of Tg or higher, a mold is pressed, and the resin is hardened by cooling. On the other hand, optical imprinting is a method in which a transparent mold is pressed against a liquid resin, and the resin is cured by irradiation with electromagnetic waves such as ultraviolet rays (UV).
Thermal imprinting requires a press pressure of 20 MPa or higher at a temperature of Tg or higher, and requires a large press mechanism. Further, since the thermal process is performed, it takes time to raise and lower the temperature, and the throughput is reduced.
Since optical imprinting only needs to be filled with resin in the mold, the press pressure is not so much required. In addition, since a thermal process is unnecessary, it is more advantageous than thermal imprinting in terms of throughput. However, optical imprinting is sensitive to the flatness of the stage and the mold because the resin is a low-viscosity liquid, resulting in a non-uniform distribution of the remaining film, which causes interference fringes during UV irradiation. .

光インプリントにおける上記の課題を解決し、均一な残膜分布を与え、UV等の照射時に干渉縞が発生しない方法を開発することを目的とする。   The object of the present invention is to solve the above-mentioned problems in optical imprinting, to provide a uniform residual film distribution, and to develop a method in which no interference fringes are generated during irradiation with UV or the like.

本発明者らは、光インプリントにおいてプレスする前に、レジストの粘度を大きくする工程を設けることにより、上記の課題を解決することができることを見いだした。
すなわち、本発明は、
1)基板に塗布されたレジストの粘度を大きくする工程、
2)モールドをレジストに押しつけて型押しする工程、および
3)レジストを露光する工程を含む、
光インプリント方法に関する。
本発明は、その好ましい態様として、
1)基板に塗布されたレジストに対して、レジストの架橋度が0.1−0.7になるような露光量で露光を行う予備露光工程、
2)モールドをレジストに押しつけて型押しする工程、および
3)レジストを露光してレジストの架橋度を0.8以上とする本露光工程、
を含む、光インプリント方法を提供する。
本発明の一態様においては、予備露光工程において、基板側から露光が行われる。本発明のさらなる一態様においては、本露光工程においても基板側から露光が行われる。
The present inventors have found that the above-described problems can be solved by providing a step of increasing the viscosity of the resist before pressing in optical imprinting.
That is, the present invention
1) increasing the viscosity of the resist applied to the substrate;
2) including a step of pressing the mold against the resist and 3) exposing the resist.
The present invention relates to an optical imprint method.
As a preferred embodiment of the present invention,
1) A pre-exposure step for exposing the resist applied to the substrate with an exposure amount such that the degree of crosslinking of the resist is 0.1-0.7;
2) a step of pressing the mold against the resist and embossing; and 3) a main exposure step of exposing the resist to a degree of crosslinking of the resist of 0.8 or more,
An optical imprint method is provided.
In one embodiment of the present invention, exposure is performed from the substrate side in the preliminary exposure step. In the further one aspect | mode of this invention, exposure is performed from the board | substrate side also in this exposure process.

本発明により、熱インプリントの場合のように好適な樹脂の柔軟性を維持しつつ光インプリントを行うことが可能となり、ステージとモールドの平坦度に関する感受性が緩和され、残膜分布が均一となり、UV等による露光時の干渉縞の発生を防止できる。   According to the present invention, it is possible to perform optical imprinting while maintaining the flexibility of a suitable resin as in the case of thermal imprinting, the sensitivity regarding the flatness of the stage and the mold is reduced, and the residual film distribution becomes uniform. Generation of interference fringes during exposure by UV or the like can be prevented.

基板としては任意のものが使用できるが、一般的には半導体基板として通常使用されるガラス、セラミックス、シリコンおよび各種化合物の基板が使用される。
本発明でいうレジストはフォトレジストであり、露光エネルギーに暴露された時に化学反応を起こす感光性材料をいい、ポジ型およびネガ型の任意の公知のフォトレジストを使用することができる。たとえば、ポジ型レジストとしてはPMMAおよびノボラック−ナフトキノンジアジト系レジストなどが使用でき、ネガ型レジストとしては、ポリヒドキシスチレン系レジスト、およびアクリル系レジストなどが使用できる。また、化学増幅系フォトレジストも使用できる。
Any substrate can be used, but generally, substrates of glass, ceramics, silicon and various compounds that are usually used as semiconductor substrates are used.
The resist referred to in the present invention is a photoresist and refers to a photosensitive material that undergoes a chemical reaction when exposed to exposure energy, and any known positive or negative photoresist can be used. For example, PMMA and novolak-naphthoquinonediazite resists can be used as positive resists, and polyhydroxystyrene resists and acrylic resists can be used as negative resists. A chemically amplified photoresist can also be used.

ポジ型の場合には、加熱による溶剤の除去等の方法により、粘度を大きくすることができる。ネガ型の場合にも同様に加熱により粘度を大きくすることができるが、好ましくは極弱い露光を行い、レジストをわずかに硬化させることにより粘度を大きくする。尚、露光によっては直接架橋しない化学増幅型のレジストでは、ポジ型と同様に加熱により、粘度を大きくすることができる。   In the case of the positive type, the viscosity can be increased by a method such as removal of the solvent by heating. Similarly, in the case of the negative type, the viscosity can be increased by heating, but preferably the exposure is performed with extremely weak exposure and the viscosity is increased by slightly curing the resist. In the case of a chemically amplified resist that is not directly cross-linked by exposure, the viscosity can be increased by heating as in the positive type.

レジストは、熱インプリントにおけるモールド型押し時の樹脂と同等のレオロジー挙動を示す程度まで粘度が大きくされ、十分にモールドの形状に追従するとともに、あまりに変形しやすくモールドや基板の平坦度に敏感すぎない状態にされる。このような状態にするための加熱条件などは使用する樹脂により異なるので、あらかじめ実験により条件を決定することが望ましい。当業者で有れば、そのような条件を実験的に求めることは容易な事項である。   Resist is thickened to the extent that it exhibits rheological behavior equivalent to that of resin during mold imprinting in thermal imprinting, sufficiently follows the shape of the mold, and is easily deformed and too sensitive to the flatness of the mold and substrate There is no state. Since the heating conditions and the like for achieving such a state vary depending on the resin used, it is desirable to determine the conditions in advance through experiments. Those skilled in the art can easily determine such conditions experimentally.

レジストの粘度を大きくした後、モールドをレジストに押しつけて型押しする。その後レジストを露光し、画像形成のための所定の化学反応を起こさせる。
露光条件やモールドの材質などについては後述のとおりである。
After increasing the viscosity of the resist, the mold is pressed against the resist and embossed. Thereafter, the resist is exposed to cause a predetermined chemical reaction for image formation.
The exposure conditions, mold material, etc. are as described below.

ポリヒドキシスチレン系レジスト、およびアクリル系レジストなどの、露光により架橋反応を行うネガ型レジストについては、レジストを弱く露光することに若干の架橋反応を起こさせ、粘度を大きくする。
すなわち、レジストの架橋度が0.1−0.7になるような露光量で露光を行う予備露光工程が行われる。
本明細書において、架橋度とは、未架橋の状態を0とし、完全に架橋した時を1とした、架橋の程度を表す尺度をいう。具体的には、FT−IRを使用し、架橋に関与する官能基のピーク面積の変化を測定することにより求められる。たとえば、光量を一定として露光を行い、未露光時の架橋されていない状態(架橋度0)から、架橋反応が終了し、架橋に関与する官能基のピーク面積が変化しなくなる状態(架橋度1)までの変化を測定し、データベース化することにより、官能基のピーク面積から架橋度を求めることができる。また、露光量と官能基のピーク面積の関係をデータベース化しておけば、露光量から架橋度を決定することができる。
For negative resists such as polyhydroxystyrene resists and acrylic resists that undergo a crosslinking reaction by exposure, a slight crosslinking reaction is caused by weakly exposing the resist to increase the viscosity.
That is, a pre-exposure step is performed in which exposure is performed with an exposure amount such that the degree of crosslinking of the resist is 0.1-0.7.
In the present specification, the degree of cross-linking refers to a scale representing the degree of cross-linking, with 0 being an uncross-linked state and 1 being completely cross-linked. Specifically, it is obtained by using FT-IR and measuring the change in the peak area of the functional group involved in crosslinking. For example, exposure is performed with a constant amount of light, and the state in which the crosslinking reaction is completed and the peak area of the functional group involved in crosslinking does not change (crosslinking degree 1) from the uncrosslinked state (crosslinking degree 0) when not exposed. The degree of cross-linking can be determined from the peak area of the functional group by measuring the changes up to) and creating a database. If the relationship between the exposure amount and the peak area of the functional group is stored in a database, the degree of crosslinking can be determined from the exposure amount.

予備露光工程終了時の架橋度は、0.1−0.7,好ましくは0.2から0.6、より好ましくは0.3から0.5である。このような架橋度にするための必要な露光量は使用する樹脂の種類により異なるが、上記の方法を用いれば当業者には容易に決定できるものである。
予備露光後のレジストは、熱インプリントにおけるモールド型押し時の樹脂と同等のレオロジー挙動を示すことが好ましい。すなわち、十分にモールドの形状に追従するとともに、あまりに変形しやすくモールドや基板の平坦度に敏感すぎないことが望ましい。使用する樹脂により上記のレオロジー挙動を示す架橋度も異なる場合があるので、樹脂に応じて最も好ましい架橋度を実験的に決定することが望ましい。
The degree of crosslinking at the end of the pre-exposure step is 0.1-0.7, preferably 0.2 to 0.6, more preferably 0.3 to 0.5. The amount of exposure necessary to achieve such a degree of crosslinking varies depending on the type of resin used, but can be easily determined by those skilled in the art using the above method.
It is preferable that the resist after the pre-exposure exhibits a rheological behavior equivalent to that of the resin when the mold is pressed in the thermal imprint. That is, it is desirable to follow the shape of the mold sufficiently and not to be too sensitive to the flatness of the mold or the substrate because it is easily deformed. Since the degree of crosslinking that exhibits the above rheological behavior may differ depending on the resin used, it is desirable to experimentally determine the most preferred degree of crosslinking depending on the resin.

露光は、紫外線およびX線などの電磁波により行うことができる。たとえば、XeFエキシマレーザー光(351nm)、XeClエキシマレーザー光(308nm)、KrFエキシマレーザー光(248nm)、KrClエキシマレーザー光(222nm)、ArFエキシマレーザー光(193nm)、F2レーザー光(157nm)、Arレーザー光(126nm)、紫外線ランプ、真空紫外光(13nm)、エレクトロンビーム、およびX線を使用することができ、好ましくは紫外線ランプが使用される。
モールドは、露光エネルギーを透過する材料で作られることが好ましく、たとえば石英またはサファイアなどが使用される。
モールドの型押し圧力は任意に調節することができるが、一般的には1−50MPa程度である。
モールドをレジストに押しつけて型押しした後、レジストを本露光して硬化させる本露光工程が行われる。本露光により、レジストはほぼ完全に架橋され、架橋度は0.8以上、好ましくは0.9以上、最も好ましくはほぼ1とされる。
The exposure can be performed by electromagnetic waves such as ultraviolet rays and X-rays. For example, XeF excimer laser light (351 nm), XeCl excimer laser light (308 nm), KrF excimer laser light (248 nm), KrCl excimer laser light (222 nm), ArF excimer laser light (193 nm), F2 laser light (157 nm), Ar Laser light (126 nm), ultraviolet lamp, vacuum ultraviolet light (13 nm), electron beam, and X-ray can be used, and preferably an ultraviolet lamp is used.
The mold is preferably made of a material that transmits exposure energy. For example, quartz or sapphire is used.
The pressing pressure of the mold can be arbitrarily adjusted, but is generally about 1-50 MPa.
After the mold is pressed against the resist and pressed, a main exposure process is performed in which the resist is fully exposed and cured. By this exposure, the resist is almost completely crosslinked, and the degree of crosslinking is 0.8 or more, preferably 0.9 or more, and most preferably about 1.

本露光後、モールドを離型させ、基板上にレジストのパターンが形成される。
その後、レジストの残膜除去、エッチング等の工程を行い、基板上に所望のパターンを形成することができる。
また、基板が透明な場合、予備露光を基板側から行うことができる。レジストは露光された側から硬化が始まるので、基板側から露光を行った場合、レジストと基板との間の密着性が向上し、モールドを離型する際に、レジストが基板から剥がれてモールドに張り付いてしまうことを防止できる。
また、本露光も基板側から行うことができる。
After the main exposure, the mold is released to form a resist pattern on the substrate.
Thereafter, a desired pattern can be formed on the substrate by performing steps such as removal of a residual resist film and etching.
Further, when the substrate is transparent, pre-exposure can be performed from the substrate side. Since the resist begins to cure from the exposed side, when exposure is performed from the substrate side, the adhesion between the resist and the substrate is improved, and when the mold is released, the resist is peeled off from the substrate and becomes a mold. It can prevent sticking.
Also, the main exposure can be performed from the substrate side.

実施例1
東洋合成工業社製のPAK−01をSi基板上にスピン塗布法で塗布した。
光源として高圧水銀ランプを使用し、照射エネルギーが1mW/cmになるように、光量をアパーチャーで調節した。1655−1690cm−1のCOOH(カルボン酸)に由来する吸収の、露光時間にともなう変化を、FT−IRを使用して測定した。露光時間と強度との関係を図1に示す。この結果に基づいて、露光量と架橋度との関係を求めた結果を図2に示す。
Example 1
PAK-01 manufactured by Toyo Gosei Co., Ltd. was applied on a Si substrate by a spin coating method.
A high-pressure mercury lamp was used as a light source, and the amount of light was adjusted with an aperture so that the irradiation energy was 1 mW / cm 2 . The change with time of exposure of the absorption derived from 1655 to 1690 cm −1 COOH (carboxylic acid) was measured using FT-IR. The relationship between exposure time and intensity is shown in FIG. FIG. 2 shows the result of determining the relationship between the exposure amount and the degree of crosslinking based on this result.

実施例2
東洋合成工業社製のPAK−01をSi基板上にスピン塗布法で塗布した。
光源として高圧水銀ランプを使用し、照射エネルギーが1mW/cmになるように、光量をアパーチャーで調節し、2.5秒照射して、照度約2.5mJ/cmの露光を行った。
ついで、モールドによる型押しを行い、本露光を行った。
その結果、干渉縞のない良好なパターンが得られた。
Example 2
PAK-01 manufactured by Toyo Gosei Co., Ltd. was applied on a Si substrate by a spin coating method.
A high pressure mercury lamp was used as the light source, the light intensity was adjusted with an aperture so that the irradiation energy was 1 mW / cm 2 , irradiation was performed for 2.5 seconds, and exposure with an illuminance of about 2.5 mJ / cm 2 was performed.
Next, the mold was pressed to perform main exposure.
As a result, a good pattern without interference fringes was obtained.

実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例2で得られたパターンの電子顕微鏡写真である。2 is an electron micrograph of a pattern obtained in Example 2. FIG.

Claims (3)

1)基板に塗布されたレジストを露光して、レジストの架橋度を0.1−0.7とする予備露光工程、
2)モールドをレジストに押しつけて型押しする工程、および
3)レジストを露光してレジストの架橋度を0.8以上とする本露光工程、
を含むことを特徴とする、光インプリント方法。
1) A pre-exposure step in which a resist applied to a substrate is exposed to make the degree of crosslinking of the resist 0.1-0.7,
2) a step of pressing the mold against the resist and embossing; and 3) a main exposure step of exposing the resist to a degree of crosslinking of the resist of 0.8 or more,
A method for optical imprinting, comprising:
予備露光工程において、基板側から露光が行われる、請求項1記載の方法。 The method according to claim 1, wherein in the preliminary exposure step, exposure is performed from the substrate side. 露光工程において、基板側から露光が行われる、請求項1記載の方法。 The method according to claim 1, wherein exposure is performed from the substrate side in the exposure step.
JP2004366972A 2004-12-20 2004-12-20 Optical imprint method Active JP4182438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004366972A JP4182438B2 (en) 2004-12-20 2004-12-20 Optical imprint method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366972A JP4182438B2 (en) 2004-12-20 2004-12-20 Optical imprint method

Publications (2)

Publication Number Publication Date
JP2006173508A JP2006173508A (en) 2006-06-29
JP4182438B2 true JP4182438B2 (en) 2008-11-19

Family

ID=36673892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366972A Active JP4182438B2 (en) 2004-12-20 2004-12-20 Optical imprint method

Country Status (1)

Country Link
JP (1) JP4182438B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997550B2 (en) * 2007-02-27 2012-08-08 独立行政法人理化学研究所 Fine pattern forming method
KR20090049022A (en) 2007-11-12 2009-05-15 도오꾜오까고오교 가부시끼가이샤 Cathode substrate
JP5231785B2 (en) * 2007-11-12 2013-07-10 東京応化工業株式会社 Negative electrode base material for lithium secondary battery
JP5733747B2 (en) * 2011-03-23 2015-06-10 学校法人早稲田大学 Method for manufacturing article having fine pattern on surface
JP6084055B2 (en) * 2013-02-05 2017-02-22 東京応化工業株式会社 Pattern formation method by imprint
JP7374666B2 (en) * 2019-08-29 2023-11-07 キヤノン株式会社 Imprint method, pretreatment device, imprint substrate, and substrate manufacturing method
JP7407579B2 (en) 2019-12-04 2024-01-04 キヤノン株式会社 Imprint device, imprint method, and article manufacturing method

Also Published As

Publication number Publication date
JP2006173508A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
TW200540941A (en) Compliant template for uv imprinting
JP2000194142A (en) Pattern forming method and production of semiconductor device
JP2009190300A (en) Imprint device and imprint method
JP4717623B2 (en) Method for producing pattern forming body
JP4182438B2 (en) Optical imprint method
JP4867423B2 (en) Imprint mold member, imprint mold member manufacturing method, and imprint method
TW279978B (en)
TWI435177B (en) Composition for forming pattern and in-plane printing method using the same
JP2002093748A (en) Imprinting apparatus and imprinting method
CN113126428A (en) Nano-imprinting method
KR100515369B1 (en) Apparatus for forming fine patterns of semiconductor wafer by electric field and the method of the same
CN101133365A (en) Exposure method, method for forming irregular pattern, and method for manufacturing optical element
JP2006305800A (en) Mold and manufacturing method of resin molded product
JP2002184718A (en) Method and device for imprinting
JP3676947B2 (en) Semiconductor device manufacturing equipment, semiconductor device pattern forming method using the same, and semiconductor device manufacturing photoresist using the same
KR100944336B1 (en) Method of Forming Fine Pattern of Semiconductor Device
JP4858030B2 (en) Imprint mold, imprint mold manufacturing method, and pattern forming method
KR20100042424A (en) Method for forming pattern of semiconductor device
JP2008003502A (en) Exposure method, method for forming pattern and method for manufacturing optical element
JP6733163B2 (en) Imprint mold, manufacturing method thereof, and imprint method
JP2006227609A (en) Exposure method, method for forming irregular pattern, and method for manufacturing optical element
KR102615655B1 (en) Positive photoresist composition and photolithography method using thereof
CN1476053A (en) Material and method for forming pattern
TW486740B (en) Improved method for controlling critical dimension during high temperature photoresist reflow process by ultraviolet light irradiation
KR20080098212A (en) Lithography combined nanoimprint photolithography

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070704

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250