JP4182399B2 - Machine tool operation information collection system - Google Patents

Machine tool operation information collection system Download PDF

Info

Publication number
JP4182399B2
JP4182399B2 JP2002225099A JP2002225099A JP4182399B2 JP 4182399 B2 JP4182399 B2 JP 4182399B2 JP 2002225099 A JP2002225099 A JP 2002225099A JP 2002225099 A JP2002225099 A JP 2002225099A JP 4182399 B2 JP4182399 B2 JP 4182399B2
Authority
JP
Japan
Prior art keywords
machine tool
determination
category
operating state
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002225099A
Other languages
Japanese (ja)
Other versions
JP2004070424A (en
Inventor
島 高 英 中
荻 康 博 赤
Original Assignee
シムックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シムックス株式会社 filed Critical シムックス株式会社
Priority to JP2002225099A priority Critical patent/JP4182399B2/en
Publication of JP2004070424A publication Critical patent/JP2004070424A/en
Application granted granted Critical
Publication of JP4182399B2 publication Critical patent/JP4182399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械、主として、NC工作機械の稼働情報を収集するシステムに係り、特に、生産ライン上での稼働効率を向上するため、また、適切な保守のタイミングを得るための情報収集を主眼とする工作機械の稼働情報収集システムに関するものである。
【0002】
【従来の技術】
機械加工の工場において、工作機械の稼働状態、特に、数値制御工作機械(以下、NC工作機械と称す)の稼働状態を逐次、記録して置くことは、生産管理における原価計算、実績収集のために、また、作業時の電力の変動量についての負荷配分、更には、作業過程での省エネルギー対策上、必要である。既に、NC工作機械の稼働状況は、加工時における、その加工ヘッドの移動、加工具の送り、主軸の回転数などの検出により、稼働状況を監視するシステムは存在するが、加工対象の相違による工具交換、加工工程に係る入力データの選択などの、段取りや休止における時間的な遷移情報までは、自動的に把握していない。まして、汎用の工作機械においては、NC工作機械のように、加工工程での一切の情報を自動的に把握できない。
【0003】
【発明が解決しようとする課題】
そこで、上述の段取りやNC工作機械の運転休止などを含めた情報の収集は、作業者による、逐次的な稼働状態(休止中、段取り中、加工中など)の記録に依存している。しかしながら、作業者による、このような人為的な記録では、記録漏れ、記録ミスなどの発生が避けられず、生産ライン上での稼働効率向上のため、また、保守のタイミングを得、更には、工程での省エネルギー対策に有効で正確な情報収集が達成されない。
【0004】
本発明は、上記事情に基づいてなされたもので、その目的とするところは、NC工作機などの工作機械の稼働状態を全運転・作業工程において自動的に取得し、稼働データの実績収集を容易かつ正確に行い、保守のタイミングを得、工程での省エネルギー対策に有効な、そして、生産管理における原価計算、生産効率の向上のための基礎データの蓄積を行うことにある。
【0005】
【課題を解決するための手段】
このため、本発明による請求項1に記載の工作機械の稼働情報収集システムは、工作機械の稼働状態を特定する稼働信号として工作機械の消費電力の波形データをリアルタイムで計測する稼働状態計測手段と、前記稼働状態の各カテゴリーは、少なくとも、工作機械への電力供給、工作機械の運転、加工状態、工具交換操作、主軸回転を各センサによって検出し、前記波形データの経時的変化との対応で分析することにより、前記稼働状態に係る各カテゴリーについての前記稼働信号の特性を、予め工作機械の機種別に、前記稼働状態の判定基準に設定する判定基準設定手段と、前記稼働信号の波形データの経時的変化から、その時間的遷移の特性についての前記稼働状態の各カテゴリーとの対応をモニタすることにより、カテゴリー別の稼働状態を前記判定基準と対比して判定する判定手段と、前記判定手段による判定結果を、各カテゴリー別の稼働情報としてストックする稼働情報収集手段と、を備えることを特徴とする。
【0006】
請求項2は、工作機械の稼働情報収集に際して前記判定手段で取得した波形データにより、所要の学習条件で、前記判定基準設定手段での判定基準を補正することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を、NC平面研削盤の制御系について、図面を参照して具体的に説明する。ここでの稼働情報収集システムは、図1に示すような、以下の構成要件▲1▼〜▲4▼を備えている。
▲1▼ NC工作機械Tの稼働状態(稼働ステータス)を特定する稼働信号をリアルタイムで計測する稼働状態計測手段100、
▲2▼ NC工作機械Tの機種別に、前記稼働状態に係る各カテゴリー(後述する)についての前記稼働信号の特性を、予め、前記稼働状態の判定基準に設定する判定基準設定手段200、
▲3▼ 前記稼働状態計測手段で計測する対象のNC工作機械Tの機種に対応した稼働状態のカテゴリー毎に、その計測信号の特性により、前記稼働信号についてカテゴリー別の稼働状態を前記判定基準と対比して判定する判定手段300、
▲4▼ 前記判定手段による判定結果を、各カテゴリー別の稼働情報としてストックする稼働情報収集手段400、
更に、この実施の形態では、▲5▼ LANやインターネットを介してデータ中継サーバや操作端末に情報を送信し、また、必要な情報(加工データなど)をNC工作機械の主装置に送信するための伝送手段500。
なお、上述の制御系では、周知のように、NC工作機械における実稼働時には、主装置側からNCデータ(運転スケジュール、工具選択、加工深度などの一連の加工指示データ)をNC工作機械に与える機能の他、稼働状態のモニタリングや、負荷計測値の異常発生の受信装置なども含まれる。
【0010】
稼働状態計測手段100は、この実施の形態では、NC工作機械Tでの消費電力の電力波形を、その時間的経過において、前記稼働信号の波形データとして計測する(図2を参照)。前記波形データは、NC工作機械での消費電力の電力波形から取得する。なお、この実施の形態では、電力波形を稼働信号として収集しているが、NC工作機械の機種によっては、そこで使用される空気流量、油圧変動、油圧制御での流量などを時系列で取得し、これを稼働信号として適用することもでき、また、電力波形データも含めて、その複合情報を採用することもできる。
【0011】
稼働状態計測手段100の具体的構成として、図3に示すような回路構成が採用できる。ここで、アナログセンサA−1、A−2は電力計測専用であり、平均自乗回路RMSを介してCPUに接続され、アナログセンサA−3は0〜20mAの汎用出力形センサで前記CPUに接続され、また、デジタルセンサD−1〜D−8は、各機種について、判定基準を得るために、学習用のNC工作機械Tの所要箇所における機械接点入力用センサで、前記CPUに接続される。なお、図中、符号RS−422は、NC工作機械Tの稼働管理を行う主装置側への通信用モデムである。なお、電流計測では、センサから、例えば、1分毎に電力、漏洩電流、その他のアナログデータをASCII文字列で送信する。また、デジタル入力を行う際には、センサからチャンネル番号を送信し、それがカウンターモードのチャンネルでは、1分毎の、その間のカウント数を送信する。
【0012】
また、判定基準設定手段200は、前記稼働信号の波形データおよびその時間的遷移の特性から、前記稼働状態の各カテゴリーとの対応を分析することにより、判定基準を設定するが、この実施の形態では、予め、NC工作機械Tの機種毎に、稼働信号を取り込み、各カテゴリー別に分析し、これを繰り返して、そこでの基準情報を取得し、実稼働における稼働状態の判定基準とする。
【0013】
この実施の形態におけるカテゴリーは、例えば、少なくとも、NC工作機械への電力供給、NC工作機械の運転、加工状態、工具交換操作、主軸回転を各センサによって検出し、波形データとの対応で分析することにより、取得することになる。
即ち、NC工作機械Tを稼働するために、周辺機器を含めて、その主電源に電流が流れている(通電中)か、否(非通電中)かを検出するための第1ステージ用センサ(例えば、主電源に設置した電流トランスからの信号を検出するセンサ)、NC工作機械Tの起動準備状態を含む待機中(非運転中)か、加工中などの運転中かを検出するための第2ステージ用センサ(例えば、NC工作機械に付属する加工中での、オン信号となる接点スイッチなどのセンサ)、運転中における、例えば、切削加工中か、否(非切削加工中:加工台移動中、工具交換中、スキャニング中、その他)かを検出するための第3ステージ用センサ(例えば、当該工作機械の主軸モータの電流値を測る電流トランスからの信号を検出するセンサ)からの、それぞれの検出信号を、前記稼働信号との対比により、前記稼働信号の特性(波形、信号レベルなど)毎に取得される(図4を参照)。なお、非切削加工中のその他には、NC工作機械の空転中、段取り中(非加工物のチャッキング、NC制御のためのプログラム選択など)が含まれる。
【0014】
このカテゴリーと稼働信号の特性との対比による基準情報の設定のためには、各信号を、電力波形の状態遷移図の形で、例えばモニタ上で可視化する(図1を参照)。そして、分析者(熟練者)により、前記稼働信号と検出信号とを分析し、カテゴリー毎の基準情報として把握する。その結果、稼働信号のレベルが、例えば、電源オフでは0V(ボルト)、起動準備状態では0.5〜0.6V、待機中では1.7〜1.8V、運転中では1.9〜2.0V、その中、切削中では2.0V以上(例えば、切削深度の差異による負荷値も含めて)などに識別され、基準情報として取得される。
【0015】
この種の電力波形分析には、例えば、音声認識システムにおいて、各音素(「すがも」であれば、s−u−g−a−m−o のそれぞれの子音と母音)の特徴(ケプストラム係数列など)を定義する操作を援用する。
例1. 加工台移動中の電流値:それまでの状態の平均値から、x1A=4アンペア以上で、x2A=10アンペア以下であり、その持続時間:上に凸でz=2秒以下のパルス波形およびそれに続く4から10アンペアで下に凸で1秒以下のパルス波形(条件1)
例2. 切削中の電流値:主軸回転中で、非切削状態の電流値よりも、x3A=1アンペア以上で、x4A=1.5アンペア以下の大きな値の電流であり、その周波数:f1X=0.5HZ以上で、f2X=3HZ以下の周波数成分を有する。この場合、細かい変動成分の振幅は0.5アンペア以下である(条件2)。
なお、実際の運用に際しては、一定時間窓(タイムシェア)で波形の特徴量を計算することになる。
【0016】
前述の分析者による稼働状態の定義(識別ラベル付け)には、各状態間の遷移の契機となるイベントを波形の特徴量で表している前記状態遷移図が用いられるが、これを表形式に整理するとよい。上述の例によれば、稼働信号から稼働状態=運転中であって、波形の特徴量が条件2を満たす場合、状態の把握は「切削中」となる。なお、波形分析には、長時間にわたる電力波形データの取得が必要となるので、特定のグラフ表示ソフト(例えば「カレイダグラフ」)を採用することになる。図5には、状態を定義した学習用電力波形が、その状態判定の条件を示す領域指定と共に示されている。
【0017】
熟練した分析者による分析結果を、電力波形データの状態遷移図上で表示したのが、図6に示されている。図面下部の定期的なピークを含む台形状の連なりの波形が電力波形であり、画面上部の櫛形の折れ線グラフが基準情報となる分析結果である。なお、稼働状態計測手段100からの情報(学習用電力波形データ)を基に、熟練者による識別ラベルの取付けを行うことで、例えば、判定基準設定手段200における機械機種別学習データが構築され、各カテゴリーについての判定基準となる。そして、ここでの前処理プログラムは、この学習データを読み込み、機種別分析プログラムを生成することになる。
【0018】
このようにして生成された機種別分析プログラムにおいて、現に実行しているNC工作機械の分析対象波形データ(稼働信号)を入力し、電力波形分析する(図7を参照)。
即ち、判定手段300は、前記稼働信号の波形データおよびその時間的遷移の特性から、前記稼働状態の各カテゴリーとの対応をモニタすることにより、実稼働状態を判定することになる。その実行結果は、図8に示すような情報源として、稼働情報収集手段400に収集、蓄積される。
このように、予め、機種毎にNC工作機械Tの判定基準を学習により取得して置くことで、例えば、上述のような電力波形の状態遷移から、各カテゴリーを判定することができる。この場合、実稼働において、使用されるNC工作機械に、直接、センサを取り付けて、情報を取得する必要がなくなり、稼働状態の管理、運営上に有利となる。
【0019】
NC工作機械の稼働情報収集に際して、制御系からの加工指示データと前記判定手段で取得した波形データにより、所要の学習条件(各NC工作機械の固有の特性により生じる判定基準との誤差の程度を、例えば、0.1の範囲に修正するような学習条件)で、前記判定基準設定手段での判定基準を補正することは、情報収集過程での学習効果が得られる点で有効である。
【0020】
【発明の効果】
本発明は、以上詳述したように構成したので、工作機械、特に、NC工作機の稼働状態を全運転・作業工程において自動的に取得し、稼働データの実績収集を容易かつ正確に行い、保守のタイミングを得、工程での省エネルギー対策に有効で、しかも、生産管理における原価計算、生産効率の向上のための基礎データの蓄積を行うことができる。
【図面の簡単な説明】
【図1】本発明の稼働情報収集システムの構成を示すブロック図である。
【図2】稼働状態の判定基準を学習する際の、電力波形を時系列で示す図である。
【図3】前記稼働情報収集システムにおける稼働状態計測手段の構成を示すブロック図である。
【図4】稼働ステータスの判断項目を例示する図である。
【図5】判定基準設定手段での稼働状態を定義した学習用電力波形の一例を示す状態遷移図である。
【図6】電力波形と、その分析結果とを相対して示す時系列の図である。
【図7】判定基準設定手段、判定手段でのプロセスを概念的に示すブロック図である。
【図8】NC工作機械の実稼働における判定結果(稼働状態解析結果)を示す図である。
【符号の説明】
100 稼働状態計測手段
200 判定基準設定手段
300 判定手段
400 稼働情報収集手段
500 伝送手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for collecting operation information of machine tools, mainly NC machine tools, and in particular, to collect information for improving operation efficiency on a production line and obtaining appropriate maintenance timing. The present invention relates to a machine tool operation information collection system.
[0002]
[Prior art]
In a machining factory, the operation status of machine tools, in particular, the operation status of numerically controlled machine tools (hereinafter referred to as NC machine tools) is recorded and recorded sequentially for cost calculation and performance collection in production management. In addition, it is necessary for load distribution with respect to the amount of power fluctuation during work, and for energy saving measures in the work process. The operating status of NC machine tools has already been monitored, but there is a system that monitors the operating status by detecting the movement of the processing head, the feed of the processing tool, the number of rotations of the spindle, etc. during processing. It does not automatically grasp the temporal transition information during setup and suspension, such as tool change and input data selection related to the machining process. Moreover, general-purpose machine tools cannot automatically grasp any information in the machining process, unlike NC machine tools.
[0003]
[Problems to be solved by the invention]
Therefore, the collection of information including the above-mentioned setup and the operation stoppage of the NC machine tool depends on the records of the sequential operation states (stopping, setting up, processing, etc.) by the operator. However, in such an artificial recording by an operator, the occurrence of a recording omission, a recording mistake, etc. is unavoidable, to improve the operation efficiency on the production line, to obtain the timing of maintenance, Effective information collection for energy saving measures in the process is not achieved.
[0004]
The present invention has been made on the basis of the above circumstances. The purpose of the present invention is to automatically acquire the operating state of a machine tool such as an NC machine tool in all operations and work processes, and collect results of operation data. It is easy and accurate to obtain maintenance timing, effective for energy saving measures in the process, cost calculation in production management, and accumulation of basic data for improving production efficiency.
[0005]
[Means for Solving the Problems]
Therefore, the machine tool operation information collection system according to claim 1 according to the present invention, the operating state measurement means for measuring the waveform data of the power consumption of the machine tool in real time as operating signal for identifying the operating state of the machine tool Each category of the operating state includes at least the power supply to the machine tool, the operation of the machine tool, the machining state, the tool change operation, the spindle rotation detected by each sensor, and the correspondence with the change with time of the waveform data. By analyzing, the criterion of the operating signal for each category related to the operating state, the criterion setting means for setting the operating state determination criterion in advance for each machine tool model, and the waveform data of the operating signal from time-dependent change, by monitoring the correspondence between the category of the operation status of the characteristics of the temporal transition of categories稼Determining means for determining the state by comparing with the criterion, the determination result by the determination means, characterized in that it comprises the operation information collecting means for the stock as the operation information by each category, a.
[0006]
According to a second aspect of the present invention, the determination criterion in the determination criterion setting unit is corrected under a required learning condition based on the waveform data acquired by the determination unit when collecting machine tool operation information.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings for a control system of an NC surface grinding machine. The operation information collection system here has the following constituent requirements (1) to (4) as shown in FIG.
(1) An operating state measuring means 100 for measuring an operating signal specifying the operating state (operating status) of the NC machine tool T in real time;
{Circle around (2)} A criterion setting means 200 for setting the characteristics of the operating signal for each category (to be described later) related to the operating state in advance as a criterion for determining the operating state for each model of the NC machine tool T.
(3) For each category of operating state corresponding to the model of the NC machine tool T to be measured by the operating state measuring means, according to the characteristics of the measurement signal, the operating state for each category of the operating signal is defined as the determination criterion. Determination means 300 for determination in comparison,
(4) An operation information collection unit 400 that stocks the determination result by the determination unit as operation information for each category;
Furthermore, in this embodiment, (5) To transmit information to a data relay server or operation terminal via a LAN or the Internet, and to transmit necessary information (such as machining data) to the main machine of the NC machine tool. Transmission means 500.
In the above-described control system, as is well known, NC data (a series of machining instruction data such as operation schedule, tool selection, machining depth, etc.) is given to the NC machine tool from the main unit side during actual operation of the NC machine tool. In addition to the functions, it also includes a monitoring device for operating conditions and a receiving device for abnormal occurrence of load measurement values.
[0010]
In this embodiment, the operating state measuring unit 100 measures the power waveform of the power consumption in the NC machine tool T as the waveform data of the operating signal over time (see FIG. 2). The waveform data is acquired from a power waveform of power consumption in an NC machine tool. In this embodiment, the power waveform is collected as an operation signal. However, depending on the model of the NC machine tool, the air flow rate used, the hydraulic pressure fluctuation, the flow rate in hydraulic control, etc. are acquired in time series. This can be applied as an operation signal, and the composite information including the power waveform data can also be adopted.
[0011]
As a specific configuration of the operating state measuring unit 100, a circuit configuration as shown in FIG. Here, the analog sensors A-1 and A-2 are exclusively used for power measurement, and are connected to the CPU via the mean square circuit RMS, and the analog sensor A-3 is connected to the CPU by a general-purpose output sensor of 0 to 20 mA. The digital sensors D-1 to D-8 are mechanical contact input sensors at required portions of the learning NC machine tool T and are connected to the CPU in order to obtain determination criteria for each model. . In the figure, reference numeral RS-422 is a modem for communication to the main apparatus side that manages the operation of the NC machine tool T. In the current measurement, for example, power, leakage current, and other analog data are transmitted as ASCII character strings from the sensor every minute. When digital input is performed, a channel number is transmitted from the sensor, and in a counter mode channel, the count number is transmitted every minute.
[0012]
In addition, the determination criterion setting unit 200 sets the determination criterion by analyzing the correspondence with each category of the operating state from the waveform data of the operating signal and the characteristics of its temporal transition. Then, in advance, for each model of the NC machine tool T, an operation signal is captured and analyzed for each category, and this is repeated to obtain reference information therefor as a determination criterion for the operation state in actual operation.
[0013]
In this embodiment, for example, at least power supply to the NC machine tool, operation of the NC machine tool, machining state, tool change operation, and spindle rotation are detected by each sensor and analyzed in correspondence with waveform data. As a result, it is acquired.
That is, in order to operate the NC machine tool T, a sensor for the first stage for detecting whether a current flows through the main power source including peripheral devices (while energizing) or not (not energizing). (For example, a sensor that detects a signal from a current transformer installed in the main power source), for detecting whether the NC machine tool T is in standby (not operating) including the start-up preparation state, or in operation such as during machining. Second stage sensor (for example, a sensor such as a contact switch that becomes an ON signal during machining attached to the NC machine tool), during operation, for example, during cutting or not (during non-cutting: work table) From a third stage sensor (for example, a sensor that detects a signal from a current transformer that measures the current value of the spindle motor of the machine tool) for detecting whether the tool is moving, changing tools, scanning, etc. each The output signal, in contrast with the operation signal, the operation signal characteristics (waveform, such as a signal level) is obtained for each (see Figure 4). Others during non-cutting include idling and setup of NC machine tools (chucking of non-workpiece, program selection for NC control, etc.).
[0014]
In order to set the reference information by comparing the category with the characteristics of the operation signal, each signal is visualized on a monitor, for example, in the form of a power waveform state transition diagram (see FIG. 1). Then, the operation signal and the detection signal are analyzed by an analyst (expert) and grasped as reference information for each category. As a result, the level of the operation signal is, for example, 0 V (volts) when the power is off, 0.5 to 0.6 V in the startup preparation state, 1.7 to 1.8 V during standby, and 1.9 to 2 during operation. 0.0V, of which 2.0V or higher (for example, including a load value due to a difference in cutting depth) during cutting is identified and acquired as reference information.
[0015]
For this type of power waveform analysis, for example, in a speech recognition system, the characteristics (cepstrum of each consonant and vowel of su-ga-mo if it is "Sugamo"). Use operations to define the coefficient sequence.
Example 1. Current value during movement of the work table: From the average value of the state so far, x1A = 4 amperes or more and x2A = 10 amperes or less, and its duration: a pulse waveform of convex upward and z = 2 seconds or less, and Consecutive 4 to 10 amps, convex downward and pulse waveform of 1 second or less (Condition 1)
Example 2. Current value during cutting: A current with a large value of x3A = 1 ampere or more and x4A = 1.5 ampere or less than the current value in the non-cutting state during rotation of the spindle, and its frequency: f1X = 0.5HZ Thus, it has a frequency component of f2X = 3HZ or less. In this case, the amplitude of the fine fluctuation component is 0.5 ampere or less (condition 2).
In actual operation, the waveform feature amount is calculated in a certain time window (time share).
[0016]
The above-described state transition diagram in which the event that triggers the transition between the states is represented by a waveform feature amount is used for the definition of the operating state (identification labeling) by the analyst. Organize it. According to the above-described example, when the operating state is in operation from the operating signal and the waveform feature amount satisfies the condition 2, the grasping of the state is “cutting”. Since waveform analysis requires acquisition of power waveform data over a long period of time, specific graph display software (for example, “Kaleida graph”) is employed. FIG. 5 shows a learning power waveform that defines a state, together with a region designation that indicates the condition determination condition.
[0017]
FIG. 6 shows the result of analysis by a skilled analyst on the state transition diagram of the power waveform data. The trapezoidal continuous waveform including a regular peak at the bottom of the drawing is the power waveform, and the comb-shaped line graph at the top of the screen is the analysis result as the reference information. Note that, by attaching an identification label by an expert based on information from the operating state measuring unit 100 (learning power waveform data), for example, machine type learning data in the determination criterion setting unit 200 is constructed, It becomes a criterion for each category. The preprocessing program here reads this learning data and generates a model-specific analysis program.
[0018]
In the machine type analysis program generated in this way, the analysis target waveform data (operation signal) of the NC machine tool currently being executed is input, and the power waveform is analyzed (see FIG. 7).
That is, the determination unit 300 determines the actual operation state by monitoring the correspondence with each category of the operation state from the waveform data of the operation signal and the characteristics of its temporal transition. The execution results are collected and accumulated in the operation information collecting means 400 as an information source as shown in FIG.
As described above, by acquiring and setting the determination criteria of the NC machine tool T in advance for each model by learning, for example, each category can be determined from the state transition of the power waveform as described above. In this case, in actual operation, it is not necessary to directly attach a sensor to the NC machine tool to be used to acquire information, which is advantageous in operating state management and operation.
[0019]
When collecting the operation information of the NC machine tool, the degree of error from the required learning conditions (determination criteria caused by the unique characteristics of each NC machine tool) is determined based on the processing instruction data from the control system and the waveform data acquired by the determination means. For example, it is effective to correct the determination criterion in the determination criterion setting means under a learning condition that is corrected to a range of 0.1 in that the learning effect is obtained in the information collecting process.
[0020]
【The invention's effect】
Since the present invention is configured as described in detail above, the operating state of machine tools, particularly NC machine tools, is automatically acquired in all operations and work processes, and the performance data is collected easily and accurately. It is possible to obtain maintenance timing, and is effective for energy-saving measures in the process. Further, cost calculation in production management and accumulation of basic data for improving production efficiency can be performed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an operation information collection system of the present invention.
FIG. 2 is a diagram showing power waveforms in time series when learning a criterion for determining an operating state.
FIG. 3 is a block diagram showing a configuration of an operating state measuring unit in the operating information collection system.
FIG. 4 is a diagram illustrating an operation status determination item;
FIG. 5 is a state transition diagram showing an example of a learning power waveform that defines an operating state in the determination criterion setting means.
FIG. 6 is a time-series diagram showing power waveforms and the analysis results relative to each other.
FIG. 7 is a block diagram conceptually showing processes in the determination criterion setting means and the determination means.
FIG. 8 is a diagram showing determination results (operation state analysis results) in actual operation of the NC machine tool.
[Explanation of symbols]
100 operation state measuring unit 200 determination criterion setting unit 300 determination unit 400 operation information collecting unit 500 transmission unit

Claims (2)

工作機械の稼働状態を特定する稼働信号として工作機械の消費電力の波形データをリアルタイムで計測する稼働状態計測手段と、
前記稼働状態の各カテゴリーは、少なくとも、工作機械への電力供給、工作機械の運転、加工状態、工具交換操作、主軸回転を各センサによって検出し、前記波形データの経時的変化との対応で分析することにより、前記稼働状態に係る各カテゴリーについての前記稼働信号の特性を、予め工作機械の機種別に、前記稼働状態の判定基準に設定する判定基準設定手段と、
前記稼働信号の波形データの経時的変化から、その時間的遷移の特性についての前記稼働状態の各カテゴリーとの対応をモニタすることにより、カテゴリー別の稼働状態を前記判定基準と対比して判定する判定手段と、
前記判定手段による判定結果を、各カテゴリー別の稼働情報としてストックする稼働情報収集手段と、を備えることを特徴とする工作機械の稼働情報収集システム。
An operating state measuring means for measuring in real time the waveform data of the power consumption of the machine tool as an operating signal for specifying the operating state of the machine tool ;
For each category of the operating state, at least the power supply to the machine tool, the operation of the machine tool, the machining state, the tool change operation, and the spindle rotation are detected by each sensor and analyzed in correspondence with the change with time of the waveform data. By setting the criteria of the operating signal for each category related to the operating state, in advance, for each machine tool model, a criterion setting means for setting the criterion of the operating state ,
From the change over time in the waveform data of the operation signal, by monitoring the correspondence of the operation state with each category with respect to the characteristics of the temporal transition, the operation state for each category is determined in comparison with the determination criterion. A determination means ;
An operation information collection unit that stocks the determination result by the determination unit as operation information for each category , and a machine tool operation information collection system.
工作機械の稼働情報収集に際して前記判定手段で取得した波形データにより、所要の学習条件で、前記判定基準設定手段での判定基準を補正することを特徴とする請求項1に記載の工作機械の稼働情報収集システム。2. The machine tool operation according to claim 1 , wherein the determination criterion in the determination criterion setting unit is corrected under a required learning condition based on the waveform data acquired by the determination unit when collecting machine tool operation information. Information collection system.
JP2002225099A 2002-08-01 2002-08-01 Machine tool operation information collection system Expired - Lifetime JP4182399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225099A JP4182399B2 (en) 2002-08-01 2002-08-01 Machine tool operation information collection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225099A JP4182399B2 (en) 2002-08-01 2002-08-01 Machine tool operation information collection system

Publications (2)

Publication Number Publication Date
JP2004070424A JP2004070424A (en) 2004-03-04
JP4182399B2 true JP4182399B2 (en) 2008-11-19

Family

ID=32012870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225099A Expired - Lifetime JP4182399B2 (en) 2002-08-01 2002-08-01 Machine tool operation information collection system

Country Status (1)

Country Link
JP (1) JP4182399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160346A (en) * 2012-03-06 2014-11-19 西门子公司 Method and device for the energy-efficient control of a plant
CN109564251A (en) * 2016-07-29 2019-04-02 株式会社岛津制作所 Analysis and Control system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097128A (en) * 2006-10-06 2008-04-24 Cimx Kk Management apparatus, analysis apparatus and program
JP2008139950A (en) * 2006-11-30 2008-06-19 Jr East Japan Information Systems Co Equipment history management display system
JP2010237774A (en) * 2009-03-30 2010-10-21 Omron Corp System, method, device, and program for supporting consumed energy improvement, and recording medium
JP2010250383A (en) * 2009-04-10 2010-11-04 Omron Corp Consumption rate calculation device, method for controlling the same, and control program
WO2010116599A1 (en) 2009-04-10 2010-10-14 オムロン株式会社 Operation information output device, method for controlling operation information output device, monitoring device, method for controlling monitoring device, and control program
JP5099066B2 (en) 2009-04-10 2012-12-12 オムロン株式会社 Energy monitoring apparatus, control method therefor, and energy monitoring program
JP5402896B2 (en) * 2009-10-30 2014-01-29 オムロン株式会社 Equipment state detection device and equipment state detection method
CN102621945B (en) * 2012-03-05 2014-03-26 内蒙古自治区电力科学研究院 Efficiency dynamic optimizing operation closed-loop optimization control method based on optimum operating conditions of thermal generator set
CN103558837B (en) * 2013-10-10 2015-11-18 浙江大学 A kind of restorative procedure of air separation plant fluctuation of operating conditions
WO2016117021A1 (en) * 2015-01-20 2016-07-28 株式会社日立製作所 Machine diagnosis device and machine diagnosis method
DE102017205308A1 (en) 2017-03-29 2018-10-04 Robert Bosch Gmbh Method for detecting at least one characteristic of at least one tool
CN110612393B (en) 2017-05-16 2020-12-22 株式会社岛津制作所 Analysis system and network system
JP6710232B2 (en) * 2018-02-27 2020-06-17 三菱重工業株式会社 Management device, management method and program.
JP6777672B2 (en) * 2018-04-03 2020-10-28 Dmg森精機株式会社 Information processing equipment, information processing methods and information processing programs
JP7002411B2 (en) * 2018-06-18 2022-01-20 株式会社日立製作所 Equipment status judgment device, equipment status judgment method, and equipment management system
JP7349712B2 (en) * 2019-08-08 2023-09-25 i Smart Technologies株式会社 Production management system and production management method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160346A (en) * 2012-03-06 2014-11-19 西门子公司 Method and device for the energy-efficient control of a plant
CN104160346B (en) * 2012-03-06 2017-03-29 西门子公司 For the method and apparatus of energy-conservation ground control device
US10281886B2 (en) 2012-03-06 2019-05-07 Siemens Aktiengesellschaft Method and device for the energy-efficient control of a plant
CN109564251A (en) * 2016-07-29 2019-04-02 株式会社岛津制作所 Analysis and Control system
CN109564251B (en) * 2016-07-29 2021-07-20 株式会社岛津制作所 Analysis control system

Also Published As

Publication number Publication date
JP2004070424A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4182399B2 (en) Machine tool operation information collection system
US6308138B1 (en) Diagnostic rule base tool condition monitoring system
CN110059442B (en) Turning tool changing method based on part surface roughness and power information
US7571022B2 (en) System and method for monitoring machine health
CN106514434B (en) A kind of milling cutter wear monitoring method based on data
US20040179915A1 (en) Dynamical instrument for machining
CN108620950B (en) Method and system for monitoring machining state of turning tool
CA2098943A1 (en) System and method for dectecting cutting tool failure
CN205362716U (en) Intelligent cutter
CN105094077B (en) Band saw machine performance monitoring system
CN109434559A (en) NC cutting tool working loss automatic measurement compensation control system
CN113305644A (en) Cutter state monitoring and early warning method and system based on part measurement data
JP2019207542A (en) Analyzer, analyzing method and analysis program
CN104503361B (en) Gear Processing process tool change decision method based on multi-pattern Fusion
CN109240253B (en) Online equipment diagnosis and preventive maintenance method and system
CN105807716B (en) Remanufacture lathe health monitoring systems
CN117260386A (en) Intelligent production line mechanical type numerical control cnc engraving and milling machine cutter wear monitoring system
JP2001205545A (en) Tool replacement timing judging system
US20220373999A1 (en) Pattern Recognition for Part Manufacturing Processes
CN111308960A (en) Load monitoring method and system
Sampath et al. Tool health monitoring using acoustic emission
CN111774932B (en) Cutter health condition online monitoring method, device and system
CN104308060B (en) A kind of method for supervising of the on-line monitoring system for steel ball cold heading shaping
CN111805303A (en) Device and method for detecting performance of moving shaft of numerical control machine tool
CN204159809U (en) A kind of on-line monitoring system be shaped for steel ball cold heading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term