JP4181904B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4181904B2
JP4181904B2 JP2003072471A JP2003072471A JP4181904B2 JP 4181904 B2 JP4181904 B2 JP 4181904B2 JP 2003072471 A JP2003072471 A JP 2003072471A JP 2003072471 A JP2003072471 A JP 2003072471A JP 4181904 B2 JP4181904 B2 JP 4181904B2
Authority
JP
Japan
Prior art keywords
water guide
water
cooling
copper plate
widened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003072471A
Other languages
Japanese (ja)
Other versions
JP2004276080A (en
Inventor
勇一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2003072471A priority Critical patent/JP4181904B2/en
Publication of JP2004276080A publication Critical patent/JP2004276080A/en
Application granted granted Critical
Publication of JP4181904B2 publication Critical patent/JP4181904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳型本体の裏面側に取付け手段によって支持部材を固定する連続鋳造用鋳型に関するものであり、取付け手段近傍の鋳型本体の冷却効率を高めた連続鋳造用鋳型に関する。
【0002】
【従来の技術】
従来、連続鋳造設備で使用される連続鋳造用鋳型(以下、単に鋳型とも言う)70は、図7に示すように、一対の幅狭冷却部材である短辺部材71、72と、この短辺部材71、72を挟み込むように配置される一対の幅広冷却部材である長辺部材73、74とを備え、この向い合う長辺部材73、74の両端部にそれぞれボルト75を取付け、バネを介してナット76で固定した構成となっている。
この短辺部材71、72は鏡面対称で同じ構成となっており、図7、図8(A)、(B)に示すように、それぞれ裏面側の上下方向に多数の導水溝77が設けられた短辺銅板78と、短辺銅板78の裏面側にボルト79によって固定されたバックプレート80(冷却箱、水箱とも言う)とを有している。そして、バックプレート80の上端部及び下端部にそれぞれ設けられた排水部81及び給水部82を介して導水溝77に冷却水の一例である工業用水を流すことで、短辺銅板78の冷却を行っている。一方、長辺部材73、74も略同じ構成となっているが、長辺部材73、74の長辺銅板81の幅は、短辺部材71、72の短辺銅板78の幅より長く、この長辺銅板81の裏面側にそれぞれ固定されたバックプレート82の幅が、長辺銅板81の幅より長くなっている。
なお、この短辺部材71、72の短辺銅板78と、長辺部材73、74の長辺銅板81とで鋳型本体83が構成されている。
【0003】
連続鋳造作業時においては、上記した連続鋳造鋳型70の上方(短辺銅板78、長辺銅板81の上側)から溶鋼を注ぎ、この鋳型70により製品となる鋳片の初期凝固を行い、凝固した鋳片を鋳型70下方より連続して引抜いて製造している。なお、鋳型70に注がれる溶鋼温度及び鋳型70出口の鋳片の表面温度は操業条件により異なるが、通常、溶鋼温度は約1500℃程度であり、鋳型70出口の鋳片の表面温度は800〜1200℃である。ここでの鋳片の内部は未凝固状態、即ち液体状態となっている。
溶鋼は上述したように高温であり、短辺銅板78及び長辺銅板81を十分冷却しないとその温度が上昇するため、短辺銅板78及び長辺銅板81の温度を、銅の強度が低下しない程度の温度以下に保つ必要がある。
【0004】
そこで、短辺銅板78及び長辺銅板81の温度を十分に低く、且つ均一な温度分布になるようにするため、短辺銅板78及び長辺銅板81の裏面側に設けられている冷却水を通す多数の導水溝77の位置調整を行う色々な技術が提案されてきた。
例えば、特許文献1に記載のように、短辺銅板及び長辺銅板の特にメニスカス部近傍から100mm以内の範囲内におけるボルト間の導水溝を、その間隔が小さくなるようボルト側に所要寸法迂回させて通水し、冷却効率が低下するボルト近傍の冷却を行う方法が開示されている。
また、特許文献2に記載のように、短辺銅板及び長辺銅板の端部に位置する導水溝の断面形状を、短辺銅板及び長辺銅板の厚み方向に対して斜めに傾斜させた形状とし、冷却効率が低下する短辺銅板及び長辺銅板の幅方向端部の冷却効率を高める連続鋳造用鋳型も開示されている。
【0005】
【特許文献1】
特開平2−59144号公報(第1図)
【特許文献2】
実開昭61−36341号公報(第6図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記した連続鋳造用鋳型には、以下の問題がある。
ボルト間の導水溝をその間隔が小さくなるようボルト側に迂回させ、ボルト近傍の冷却を行った場合、ボルト近傍の冷却効率は高められる。しかし、上下のボルト間で隣り合う導水溝の間隔が小さくなるように、導水溝を一側(ボルト側)に迂回させることで、他側に位置する導水溝と迂回した導水溝との間隔が開き、この部分の冷却効率が低下してしまう。
また、短辺銅板及び長辺銅板の端部に設けられる導水溝の断面形状を、短辺銅板及び長辺銅板の厚み方向に対して斜めに傾斜させた形状とし、短辺銅板及び長辺銅板の端部の冷却を行った場合、導水溝を傾斜させないときよりも端部の冷却効率は高められる。しかし、導水溝の断面形状は、斜めに傾斜した形状となったもので、鋳型本体の冷却面側及び冷却効率が低下する部分を適切に冷却できるものではなく、鋳型本体の冷却面側及び端部の冷却効率を必要となる程度まで十分に高められるものではない。
【0007】
このため、鋳型本体の同一高さの冷却面において、他の部分よりも温度が上昇する部分が発生するので、例えば鋳型本体に局部的な摩耗が発生し、鋳型の寿命が低下する問題がある。また、鋳型本体の同一高さの冷却面において、温度分布にばらつきが生じ、鋳片の冷却が不均一となり、製造した製品の品質が低下する問題も生じる。
本発明はかかる事情に鑑みてなされたもので、鋳型本体の寿命を向上させ、しかも良好な品質を備えた鋳片を製造可能な連続鋳造用鋳型を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的に沿う第1の発明に係る連続鋳造用鋳型は、熱伝導性が良好な金属からなり、裏面側に通水部が設けられた鋳型本体と、該鋳型本体の裏面側に取付け手段によって固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記通水部に冷却水を流すことで前記鋳型本体の冷却を行う連続鋳造用鋳型において、
前記通水部は前記鋳型本体の裏面側一面に設けられた多数の導水溝を備え、前記取付け手段を挟んで配置される導水溝に他の導水溝より幅広の拡幅部をそれぞれ設け、しかも前記鋳型本体の裏面側に前記各拡幅部を繋げる連通部を形成し、
前記各拡幅部の深さ方向にそれぞれ配置され、しかも該各拡幅部の一方側の内面と他方側の内面にそれぞれ当接して、前記鋳型本体の冷却面側及び前記取付け手段側の冷却を行う断面L字状の導水部を形成する閉塞部材と、該各閉塞部材をその側部で一体的に接続する連結部を有し、更に前記各閉塞部材と前記連結部の断面形状をコ字状とし、該連結部を前記連通部に取付けて前記支持部材に当接させ、
前記導水部の断面積を該導水部以外の導水溝の断面積以下にして、前記導水部を通過する前記冷却水の速度を前記導水部以外の導水溝を通過する前記冷却水の速度と同等又はそれ以上にし、前記取付け手段近傍の前記鋳型本体の冷却効率を高める。
このように、取付け手段近傍の導水溝に他の導水溝より幅広の拡幅部を設けるので、鋳型本体の冷却面側の冷却を行うと共に、取付け手段側の冷却も行うことが可能になる。
また、拡幅部の深さ方向の一部に閉塞部材を配置して導水部を設け、この導水部を通過する冷却水の速度を導水部以外の導水溝を通過する冷却水の速度と同等又はそれ以上にし、取付け手段近傍の鋳型本体の冷却効率を高めるので、鋳型本体の同一高さ位置における温度分布を略均一にできる。
【0009】
拡幅部は取付け手段を挟んで配置される導水溝にそれぞれ設けられているので、例えば導水溝を取付け手段側へ大きく迂回させることなく、取付け手段近傍の冷却を行うことができる。
各拡幅部にそれぞれ配置される閉塞部材は、連結部によって一体的に接続されているので、各拡幅部に対して個別に閉塞部材を配置する必要性がない。また、鋳型本体の裏面側に形成された連通部に連結部を配置するので、各拡幅部に対する閉塞部材の取付けを、例えばボルト等を用いることなく、確実で容易に行うことができる。
【0010】
導水部の断面形状をL字状として、鋳型本体の冷却面側及び取付け手段側の冷却を行うので、簡単な形状で冷却効率を高めたい部分の冷却を適切に行うことができる。
前記目的に沿う第の発明に係る連続鋳造用鋳型は、第の発明に係る連続鋳造用鋳型において、前記拡幅部は前記鋳型本体の上下方向に隣り合う取付け手段の間に向かって幅広となっている。
このように、拡幅部は隣り合う取付け手段の間に向かって幅広となっているので、例えば新たに導水溝を設けることなく、冷却効率を高めたい部分の冷却を適切に行うことができる。
前記目的に沿う第の発明に係る連続鋳造用鋳型は、第1の発明に係る連続鋳造用鋳型において、前記拡幅部は少なくともメニスカス部に設けられている。
このように、拡幅部は少なくともメニスカス部に設けられているので、鋳型本体で最も高温となる部分の冷却を適切に行うことができる。
【0011】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る連続鋳造用鋳型の鋳型本体の短辺銅板の説明図、図2(A)、(B)はそれぞれ図1のa−a矢視断面図、b−b矢視断面図、図3(A)、(B)はそれぞれ図1のc−c矢視断面図、d−d矢視断面図、図4は数値解析に使用した短辺銅板のメニスカス部の断面形状を示す説明図、図5は同短辺銅板の導水溝を流れる冷却水の数値解析に使用した水路モデルの説明図、図6(A)、(B)はそれぞれ数値解析結果に基づく同短辺銅板のメニスカス部の温度分布の説明図、従来例に係る短辺銅板のメニスカス部の数値解析結果に基づく温度分布の説明図である。
【0012】
図1〜図3に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型とも言う)10は、一対の幅狭冷却部材である短辺部材11、12と、一対の幅広冷却部材である長辺部材(図示しない)とを組合せることで製造されるものである(図7参照)。
【0013】
この連続鋳造用鋳型10の短辺部材11、12は、それぞれ熱伝導性が良好な金属の一例である銅からなり、裏面側に通水部13が設けられた短辺銅板14と、短辺銅板14の裏面側に取付け手段15によって固定された支持部材の一例であるバックプレート(冷却箱、水箱とも言う)16とを有し、バックプレート16に設けられた給水部17及び排水部18を介して通水部13に冷却水の一例である工業用水を流すことで短辺銅板14の冷却を行うものである。この短辺銅板14の表面(冷却面)には、例えばNi、Ni−Co合金等の被覆材が、めっき又は溶射されている。なお、連続鋳造用鋳型10の長辺部材も、上記した短辺部材11、12と略同様の構成であり、短辺部材11、12の短辺銅板14と長辺部材の長辺銅板とで鋳型本体が構成され、しかも鋳型本体の内側には、鋳型空間が形成されている。
このように、長辺銅板は短辺銅板(以下、単に銅板とも言う)14と幅が異なるのみであるため説明を省略し、以下、短辺銅板14についてのみ詳しく説明する。
【0014】
図1、図2(A)、(B)に示すように、銅板14(例えば、厚み10〜100mm程度)は、銅板14に形成されている雌ねじ部(本実施の形態においては14箇所)と、雌ねじ部に螺合してバックプレート16を締着する雄ねじとからなる取付け手段15により、例えばステンレスからなるバックプレート16(例えば、厚み50〜500mm程度)に固定されている。なお、バックプレート16の給水部17、排水部18、及び銅板14の通水部13を囲むバックプレート16の周辺部には溝が形成され、ここにOリング19を配置することで、銅板14とバックプレート16との密着性を向上させ、通水部13からの工業用水の漏れを防止している。また、雄ねじを取付けるため、バックプレート16に形成された孔(本実施の形態においては12箇所)には、予め防水可能なシール座金が配置されており、雄ねじを取付けた部分からの工業用水の漏れを防止している。
これにより、バックプレート16の下側の給水部17に設けられた給水口(図示しない)から工業用水を供給し、給水部17によって通水部13を幅方向に均一に、しかも銅板14の下側から上側にかけて流れた工業用水を、バックプレート16の上側の排水部18に設けられた排水口(図示しない)から排出し、銅板14の冷却を行っている。
【0015】
図1、図2(A)、(B)、図3(A)、(B)に示すように、通水部13は銅板14の裏面側一面に設けられた多数の導水溝20〜22を備えている。これらの導水溝20〜22は、それぞれ通水部13の流水方向に向けて実質的に直線状となっており、しかも所定ピッチ(例えば、10〜40mm程度)で形成されている。
銅板14の中央部に設けられた複数(本実施の形態では5本)の導水溝20は、その下端部から上端部まで実質的に同一の断面形状を備えている。この導水溝20の溝底から銅板14とバックプレート16との接合面(銅板14の裏面)までの距離D1は、例えば銅板14の厚みの1/3〜2/3程度であり、その幅W1は、例えば距離D1の1/10〜1/2程度である。
【0016】
また、取付け手段15近傍、即ち銅板14の幅方向両端部にそれぞれ位置し、取付け手段15を挟んで配置される導水溝21、22も、メニスカス部に位置する部分以外は、上記した導水溝20の形状と実質的に同一である。この導水溝21、22のメニスカス部に位置する部分には、拡幅部23、24がそれぞれ設けられている。この拡幅部23、24は、鋳型本体の上下方向に隣り合う取付け手段15の間に向かってそれぞれ幅広となっており、その幅W2、W3が、上記した導水溝20の幅W1の例えば1.5〜5倍となっている。また、導水溝21、22の底から銅板14の裏面までの距離D2、D3は、上記した導水溝20の距離D1と略同じ程度になっている。
なお、銅板14の幅方向両端部に配置された導水溝22と、更に各導水溝22の外側に配置され、Oリング19の冷却を行う断面円形の通水孔25には、給水部17に連通する通水路26を介して工業用水が送り込まれ、排水部18に連通する通水路27を介して工業用水が排出される。
【0017】
この拡幅部23、24の深さ方向の一部には、錆びにくい素材である例えば、ステンレス板、銅板等で構成された閉塞部材28、29がそれぞれ配置されている。閉塞部材28は、その厚みT1が導水溝21の溝底から銅板14の裏面までの距離D2の例えば1/2〜9/10となっており、また幅W4が、拡幅部23の幅W2の例えば1/3〜9/10となっている。なお、閉塞部材28の一端面は拡幅部23の一方側の内面、即ち銅板14の幅方向中央側の内面に当接している。
また、閉塞部材29は、その厚みT2が導水溝22の底から銅板14の裏面までの距離D3の例えば1/2〜9/10となっており、また幅W5が、拡幅部24の幅W3の例えば1/3〜9/10となっている。なお、閉塞部材29の他端面は拡幅部24の他方側の内面、即ち銅板14の幅方向端側の内面に当接している。
ここで、閉塞部材28、29の上下方向両端部は、それぞれ曲面で構成されているため、短辺部材11、12を下方から上方へかけて流れる工業用水の流れに対する抵抗を小さくできる。
【0018】
これにより、各導水溝21、22の拡幅部23、24に設けられた導水部30、31の断面形状は、それぞれ実質的にL字状となるので、銅板14の冷却面側及び取付け手段15側の銅板14の内部の冷却を適切に行うことが可能になる。
ここで、各導水部30、31の断面積が、導水溝21、22の他の部分(導水部30、31以外の部分)の断面積以下となるように、拡幅部23、24の距離D2、D3及び幅W2、W3と、閉塞部材28、29の厚みT1、T2及び幅W4、W5をそれぞれ設定する。これにより、各導水部30、31を通過する工業用水の速度を、導水部30、31以外の導水溝21、22を通過する工業用水の速度と同等又はそれ以上にできるので、取付け手段15近傍の銅板14の冷却効率を高めることが可能になる。従って、従来と同様の流量の工業用水を利用して、より良い冷却効率が得られ経済的である。
【0019】
各閉塞部材28、29は、その間に配置される連結部32によって一体的に接続され、各閉塞部材28、29、及び連結部32の断面形状が実質的にコ字状になっている。
この連結部32は、バックプレート16に当接可能なように、各閉塞部材28、29の側部に一体的に設けられており、銅板14の裏面側に形成され各拡幅部23、24を繋げる連通部33に、配置可能な構成となっている。
これにより、銅板14の裏面側から、一体となった各閉塞部材28、29、及び連結部32を、各拡幅部23、24及び連通部33に配置し、銅板14の裏面にバックプレート16を取付け固定することで、各閉塞部材28、29、及び連結部32を目的とする場所に確実に固定できる。
【0020】
(数値解析)
続いて、前記した連続鋳造用鋳型10の短辺銅板14を使用し、流体解析(FEM解析)を行った結果について説明する。
流体解析に使用した短辺銅板14の各寸法は、図4に示すように、短辺銅板14の厚みが45mm、導水溝20の幅W1が5mm、導水溝21の導水部30の幅W2が15mm、導水溝22の導水部31の幅W3が10mm、導水溝20の距離D1が23mm、導水部30の{(距離D2)−(厚みT1)}が5mm、導水部31の{(距離D3)−(厚みT2)}が7mm、導水部30の{(幅W2)−(幅W4)}が4mm、導水部31の{(幅W3)−(幅W5)}が5mmである。また、通水孔25の直径は10mmである。なお、冷却水の物性値は、温度が30℃、密度が995.7kg/mm3、粘性が8.00×10-4Pa・sと仮定している。
ここで、銅板14の各導水溝20〜22の本数、及びΔP=1.29(kg/cm2)の圧力で1面当り575(L/min)の冷却水を流した場合の各導水溝20〜22、及び通水孔25の流速、流量を表1にそれぞれ示す。
【0021】
【表1】

Figure 0004181904
【0022】
このとき、給水部17から各導水溝21、22を介して排水部18へ流れる冷却水は、図5に示すような流れになっている。
上記した形状の導水溝20〜22を使用して、伝熱解析を行った結果、図6(A)に示すように、導水溝20の溝底の温度は128℃となり、従来冷却効率が悪かった取付け手段15近傍の導水溝21、22の各溝底の温度でも133℃になる。このように、各導水溝20〜22の溝底の温度は128〜133℃の温度範囲にある。なお、銅板14の表面側の通水孔25の温度は131℃である。これにより、例えば冷却水背圧を0.2(MPa)としたときの水の沸点温度133℃を下回り、スケール付着の促進を抑えることが可能となる。
このとき、銅板14の冷却面側の温度分布は、幅方向の端の温度321℃を除けば、306〜310℃の温度範囲で分布しており、略均一な温度分布が得られることが分かる。
【0023】
一方、従来のように、拡幅部がない導水溝34、35(取付け手段近傍の導水溝35の溝底のみが、他の導水溝34の溝底よりも短辺銅板36の冷却面側へ突出している)を使用して、解析を行った結果、図6(B)に示すように、各導水溝34、35の溝底の温度は120〜142℃となり、例えば冷却水背圧を0.2(MPa)としたときの水の沸点温度133℃を上回り、スケールの付着が促進される。なお、銅板36の表面側の通水孔37の温度は141℃であった。
このとき、銅板36の冷却面側の温度分布も、幅方向の端の温度337℃を除いて、短辺銅板36の幅方向に311〜325℃の温度範囲でばらついている。
以上のことから、連続鋳造用鋳型10を使用することで、鋳型本体の寿命を向上させることができると共に、良好な品質を備えた鋳片を製造できる。
【0024】
以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態においては、熱伝導性が良好な金属として銅を使用した場合について説明したが、熱伝導性が良好であれば、例えば他の金属や銅合金等を使用することも可能である。
また、前記実施の形態においては、取付け手段を挟んで配置される導水溝に、拡幅部をそれぞれ設けた
【0025】
そして、前記実施の形態においては、拡幅部をメニスカス部に設けた場合について説明したが、拡幅部が少なくともメニスカス部に設けられていれば、取付け手段近傍の導水溝の下方から上方へかけて設けることも可能である。このとき、鋳型本体の温度は、鋳型本体の下側からメニスカス部へかけて徐々に高くなり易いので、この温度分布を考慮して鋳型本体の下側からメニスカス部へかけて導水溝の幅を徐々に広くすることも可能である。
更に、前記実施の形態においては、各導水溝の底を、鋳型本体の厚み方向に対して略同一位置とした場合について説明した。しかし、鋳型本体による鋳片の冷却効率を高めるため、各導水溝毎にその深さを変えたり、また各導水溝の深さを部分的に深くしたり、浅くしたりすることも可能である。
【0026】
【発明の効果】
請求項1〜記載の連続鋳造用鋳型においては、取付け手段近傍の導水溝に他の導水溝より幅広の拡幅部を設けるので、鋳型本体の冷却面側の冷却を行うと共に、取付け手段側の冷却も行うことが可能になる。これにより、鋳型本体の同一高さの冷却面において、従来他の部分よりも温度が上昇していた取付け手段近傍の鋳型本体の温度上昇を抑制、更には防止できるので、連続鋳造用鋳型の寿命を向上させることができる。
また、拡幅部の深さ方向の一部に閉塞部材を配置して導水部を設け、この導水部を通過する冷却水の速度を導水部以外の導水溝を通過する冷却水の速度と同等又はそれ以上にし、取付け手段近傍の鋳型本体の冷却効率を高めるので、鋳型本体の同一高さ位置における温度分布を略均一にできる。これにより、鋳片の冷却を略均一に行うことができ、良好な品質を備えた鋳片を製造できる。
【0027】
特に、請求項記載の連続鋳造用鋳型においては、拡幅部が取付け手段を挟んで配置される導水溝にそれぞれ設けられているので、例えば導水溝を取付け手段側へ大きく迂回させることなく、取付け手段近傍の冷却を行うことができる。これにより、導水溝を通過する冷却水も安定に流れるので、鋳型本体の中で最も冷却効率が悪くなる部分の冷却を適切に行うことができる。
請求項記載の連続鋳造用鋳型においては、各拡幅部にそれぞれ配置される閉塞部材は、連結部によって一体的に接続されているので、各拡幅部に対して個別に閉塞部材を配置する必要性がない。また、鋳型本体の裏面側に形成された連通部に連結部を配置するので、各拡幅部に対する閉塞部材の取付けを、例えばボルト等を用いることなく、確実で容易に行うことができる。これにより、連続鋳造用鋳型の構成を簡単にでき、連続鋳造用鋳型の製造時における作業性が良好になる。
【0028】
請求項記載の連続鋳造用鋳型においては、導水部の断面形状をL字状として、鋳型本体の冷却面側及び取付け手段側の鋳型本体の内部の冷却を行うので、簡単な形状で冷却効率を高めたい部分の冷却を適切に行うことができる。これにより、更に良好な品質を備えた鋳片を製造できる。
請求項記載の連続鋳造用鋳型においては、拡幅部が隣り合う取付け手段の間に向かって幅広となっているので、例えば新たに導水溝を設けることなく、冷却効率を高めたい部分の冷却を適切に行うことができる。これにより、導水溝の形状を簡単にできるので、鋳型本体の製造作業が容易になる。
請求項記載の連続鋳造用鋳型においては、拡幅部が少なくともメニスカス部に設けられているので、鋳型本体で最も高温となる部分の冷却を適切に行うことができる。これにより、連続鋳造用鋳型の寿命を向上させることができ、経済的である。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る連続鋳造用鋳型の鋳型本体の短辺銅板の説明図である。
【図2】(A)、(B)はそれぞれ図1のa−a矢視断面図、b−b矢視断面図である。
【図3】(A)、(B)はそれぞれ図1のc−c矢視断面図、d−d矢視断面図である。
【図4】数値解析に使用した短辺銅板のメニスカス部の断面形状を示す説明図である。
【図5】同短辺銅板の導水溝を流れる冷却水の数値解析に使用した水路モデルの説明図である。
【図6】(A)、(B)はそれぞれ数値解析結果に基づく同短辺銅板のメニスカス部の温度分布の説明図、従来例に係る短辺銅板のメニスカス部の数値解析結果に基づく温度分布の説明図である。
【図7】連続鋳造鋳型の平面図である。
【図8】(A)は従来例に係る短辺銅板の説明図、(B)は(A)のe−e矢視断面図である。
【符号の説明】
10:連続鋳造用鋳型、11、12:短辺部材、13:通水部、14:短辺銅板、15:取付け手段、16:バックプレート(支持部材)、17:給水部、18:排水部、19:Oリング、20〜22:導水溝、23、24:拡幅部、25:通水孔、26、27:通水路、28、29:閉塞部材、30、31:導水部、32:連結部、33:連通部、34、35:導水溝、36:短辺銅板、37:通水孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting mold in which a supporting member is fixed to a back surface side of a mold body by an attaching means, and relates to a continuous casting mold having improved cooling efficiency of the mold body in the vicinity of the attaching means.
[0002]
[Prior art]
Conventionally, a continuous casting mold (hereinafter also simply referred to as a mold) 70 used in a continuous casting facility includes a pair of narrow cooling members 71 and 72 as shown in FIG. Long side members 73 and 74 which are a pair of wide cooling members arranged so as to sandwich the members 71 and 72, bolts 75 are attached to both ends of the long side members 73 and 74 facing each other, and a spring is interposed therebetween. The structure is fixed with a nut 76.
The short side members 71 and 72 are mirror-symmetrical and have the same configuration, and as shown in FIGS. 7, 8A and 8B, a large number of water guide grooves 77 are provided in the vertical direction on the back side. The short-side copper plate 78 and a back plate 80 (also referred to as a cooling box or a water box) fixed to the back side of the short-side copper plate 78 with bolts 79 are provided. And the industrial water which is an example of a cooling water is poured into the water guide groove 77 through the drainage part 81 and the water supply part 82 which were each provided in the upper end part and lower end part of the backplate 80, and cooling of the short side copper plate 78 is carried out. Is going. On the other hand, the long side members 73 and 74 have substantially the same configuration, but the width of the long side copper plate 81 of the long side members 73 and 74 is longer than the width of the short side copper plate 78 of the short side members 71 and 72. The width of the back plate 82 fixed to the back side of the long side copper plate 81 is longer than the width of the long side copper plate 81.
A mold body 83 is constituted by the short side copper plate 78 of the short side members 71 and 72 and the long side copper plate 81 of the long side members 73 and 74.
[0003]
During the continuous casting operation, molten steel is poured from above the continuous casting mold 70 (above the short-side copper plate 78 and the long-side copper plate 81), and an initial solidification of the cast slab to be a product is performed by the mold 70 and solidified. The slab is manufactured by continuously drawing from below the mold 70. Although the molten steel temperature poured into the mold 70 and the surface temperature of the slab at the outlet of the mold 70 differ depending on the operating conditions, the molten steel temperature is usually about 1500 ° C., and the surface temperature of the slab at the outlet of the mold 70 is 800 ˜1200 ° C. The inside of the slab here is in an unsolidified state, that is, in a liquid state.
As described above, the molten steel is at a high temperature, and if the short side copper plate 78 and the long side copper plate 81 are not sufficiently cooled, the temperature rises. Therefore, the strength of the copper does not decrease the temperature of the short side copper plate 78 and the long side copper plate 81. It is necessary to keep the temperature below a certain level.
[0004]
Therefore, in order to make the temperature of the short side copper plate 78 and the long side copper plate 81 sufficiently low and to have a uniform temperature distribution, cooling water provided on the back side of the short side copper plate 78 and the long side copper plate 81 is used. Various techniques have been proposed for adjusting the position of a number of water guide grooves 77 that pass therethrough.
For example, as described in Patent Document 1, the water guide groove between the bolts within the range of 100 mm or less from the vicinity of the meniscus portion of the short side copper plate and the long side copper plate is diverted to the bolt side so as to reduce the distance between them. In this way, a method for cooling the vicinity of the bolt, in which the cooling efficiency is lowered, is disclosed.
Moreover, as described in Patent Document 2, the cross-sectional shape of the water guide groove located at the end of the short side copper plate and the long side copper plate is inclined with respect to the thickness direction of the short side copper plate and the long side copper plate. In addition, a continuous casting mold is disclosed in which the cooling efficiency of the short-side copper plate and the long-side copper plate with reduced cooling efficiency is increased.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-59144 (FIG. 1)
[Patent Document 2]
Japanese Utility Model Publication No. 61-36341 (FIG. 6)
[0006]
[Problems to be solved by the invention]
However, the above-described continuous casting mold has the following problems.
When the water guide groove between the bolts is detoured to the bolt side so that the distance between the bolts is reduced and the vicinity of the bolt is cooled, the cooling efficiency in the vicinity of the bolt is increased. However, by diverting the water guide groove to one side (bolt side) so that the distance between the adjacent water guide grooves between the upper and lower bolts is reduced, the distance between the water guide groove located on the other side and the bypass water guide groove is reduced. Opening and the cooling efficiency of this part will fall.
The cross-sectional shape of the water guide groove provided at the end of the short side copper plate and the long side copper plate is inclined with respect to the thickness direction of the short side copper plate and the long side copper plate, and the short side copper plate and the long side copper plate In the case where the cooling of the end portion is performed, the cooling efficiency of the end portion is improved as compared with the case where the water guide groove is not inclined. However, the cross-sectional shape of the water guide groove is an obliquely inclined shape, and it cannot properly cool the cooling surface side of the mold body and the portion where the cooling efficiency is reduced. The cooling efficiency of the part cannot be sufficiently increased to the required level.
[0007]
For this reason, in the cooling surface of the same height of the mold body, there is a part where the temperature rises more than other parts. For example, local wear occurs in the mold body, and there is a problem that the life of the mold is reduced. . In addition, temperature distribution varies on the cooling surface of the mold body at the same height, resulting in non-uniform cooling of the slab and a problem that the quality of the manufactured product is deteriorated.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a continuous casting mold that can improve the life of a mold body and can produce a cast piece having good quality.
[0008]
[Means for Solving the Problems]
The casting mold for continuous casting according to the first invention meeting the above object is made of a metal having good thermal conductivity, and has a mold body provided with a water flow portion on the back surface side, and attachment means on the back surface side of the mold body. A continuous casting mold that cools the mold body by flowing cooling water through the water supply section and the drainage section provided in the support member, and a fixed support member.
The water flow portion includes a large number of water guide grooves provided on one side of the back surface of the mold body, and each of the water guide grooves disposed across the attachment means is provided with a widened portion wider than the other water guide grooves. Forming a communicating part that connects the widened parts on the back side of the mold body,
Each of the widened portions is arranged in the depth direction , and is in contact with the inner surface on one side and the inner surface on the other side of each of the widened portions, thereby cooling the cooling surface side of the mold body and the attachment means side. It has a closing member that forms an L-shaped water guide portion, and a connecting portion that integrally connects each closing member at its side, and the cross-sectional shape of each closing member and the connecting portion is a U-shape. And attaching the connecting part to the communicating part to contact the support member,
The cross-sectional area of the water guide portion is set to be equal to or smaller than the cross-sectional area of the water guide groove other than the water guide portion, and the speed of the cooling water passing through the water guide portion is equal to the speed of the cooling water passing through the water guide groove other than the water guide portion. Alternatively, the cooling efficiency of the mold body in the vicinity of the attachment means is increased.
Thus, since the widened portion wider than the other water guide grooves is provided in the water guide groove in the vicinity of the attachment means, it is possible to cool the cooling surface side of the mold body and also cool the attachment means side.
Also, a blocking member is arranged in a part of the widened portion in the depth direction to provide a water guide, and the speed of the cooling water passing through this water guide is equal to the speed of the coolant passing through the water guide groove other than the water guide or Since the cooling efficiency of the mold body in the vicinity of the attachment means is increased, the temperature distribution at the same height position of the mold body can be made substantially uniform.
[0009]
Since the widened portion is provided in each of the water guide grooves arranged with the attachment means interposed therebetween, for example, the vicinity of the attachment means can be cooled without greatly diverting the water guide groove to the attachment means side.
Since the closing member disposed in each widened portion is integrally connected by the connecting portion, there is no need to individually dispose the closing member for each widened portion. In addition, since the connecting portion is arranged in the communicating portion formed on the back surface side of the mold body, the closing member can be attached to each widened portion reliably and easily without using, for example, a bolt.
[0010]
Since the cross-sectional shape of the water guide section is L-shaped and the cooling surface side and the attachment means side of the mold body are cooled, it is possible to appropriately cool the portion where the cooling efficiency is desired with a simple shape.
The continuous casting mold according to the second invention that meets the above-mentioned object is the continuous casting mold according to the first invention, wherein the widened portion is widened between mounting means adjacent in the vertical direction of the mold body. It has become.
As described above, since the widened portion is widened between the adjacent attaching means, for example, a portion where the cooling efficiency is desired to be increased can be appropriately cooled without newly providing a water guide groove.
The continuous casting mold according to a third aspect of the present invention that meets the above object is the continuous casting mold according to the first and second aspects, wherein the widened portion is provided at least in the meniscus portion.
As described above, since the widened portion is provided at least in the meniscus portion, it is possible to appropriately cool the portion having the highest temperature in the mold body.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a short side copper plate of a mold body of a continuous casting mold according to an embodiment of the present invention, and FIGS. 2A and 2B are cross-sectional views taken along arrows aa in FIG. Fig. 3 is a cross-sectional view taken along arrows bb, Figs. 3A and 3B are cross-sectional views taken along arrows cc and dd in Fig. 1, and Fig. 4 is a short side used for numerical analysis. FIG. 5 is an explanatory diagram showing a cross-sectional shape of a meniscus portion of a copper plate, FIG. 5 is an explanatory diagram of a water channel model used for numerical analysis of cooling water flowing through a water guide groove of the short side copper plate, and FIGS. 6 (A) and 6 (B) are numerical values, respectively. It is explanatory drawing of the temperature distribution of the meniscus part of the short side copper plate based on an analysis result, and explanatory drawing of the temperature distribution based on the numerical analysis result of the meniscus part of the short side copper plate which concerns on a prior art example.
[0012]
As shown in FIGS. 1 to 3, a continuous casting mold (hereinafter simply referred to as a mold) 10 according to an embodiment of the present invention includes a pair of narrow cooling members 11 and 12, which are a pair of narrow cooling members, It is manufactured by combining a long side member (not shown) which is a pair of wide cooling members (see FIG. 7).
[0013]
The short-side members 11 and 12 of the continuous casting mold 10 are each made of copper, which is an example of a metal having good thermal conductivity, and a short-side copper plate 14 having a water passage portion 13 provided on the back side, and a short side. A back plate (also referred to as a cooling box or a water box) 16, which is an example of a support member fixed to the back surface side of the copper plate 14 by an attaching means 15, and a water supply part 17 and a drain part 18 provided on the back plate 16 are provided. The short side copper plate 14 is cooled by flowing industrial water, which is an example of cooling water, through the water passage 13. On the surface (cooling surface) of the short side copper plate 14, for example, a coating material such as Ni or Ni—Co alloy is plated or sprayed. The long-side member of the continuous casting mold 10 has substantially the same configuration as the short-side members 11 and 12 described above, and includes the short-side copper plate 14 of the short-side members 11 and 12 and the long-side copper plate of the long-side member. A mold body is configured, and a mold space is formed inside the mold body.
As described above, the long-side copper plate is different from the short-side copper plate (hereinafter, also simply referred to as a copper plate) 14 in width, and thus the description thereof is omitted. Hereinafter, only the short-side copper plate 14 will be described in detail.
[0014]
As shown in FIG. 1, FIG. 2 (A), (B), the copper plate 14 (for example, about 10-100 mm in thickness) is formed with the internal thread part (14 places in this Embodiment) currently formed in the copper plate 14. The back plate 16 made of, for example, stainless steel (for example, having a thickness of about 50 to 500 mm) is fixed by attachment means 15 comprising a male screw that is screwed into the female screw portion and fastens the back plate 16. A groove is formed in the peripheral portion of the back plate 16 surrounding the water supply portion 17, the drainage portion 18 of the back plate 16, and the water passage portion 13 of the copper plate 14, and an O-ring 19 is disposed here, thereby the copper plate 14. And the back plate 16 are improved in adhesion, and leakage of industrial water from the water passage 13 is prevented. Further, in order to attach the male screw, a seal washer that can be waterproofed is disposed in advance in the holes (12 positions in the present embodiment) formed in the back plate 16, and industrial water from the portion where the male screw is attached. Prevents leakage.
As a result, industrial water is supplied from a water supply port (not shown) provided in the water supply unit 17 below the back plate 16, and the water supply unit 17 makes the water flow unit 13 uniform in the width direction and below the copper plate 14. The industrial water that flows from the side to the upper side is discharged from a drain port (not shown) provided in the drain unit 18 on the upper side of the back plate 16 to cool the copper plate 14.
[0015]
As shown in FIGS. 1, 2 (A), (B), 3 (A), and (B), the water flow portion 13 includes a plurality of water guide grooves 20 to 22 provided on the entire back surface of the copper plate 14. I have. These water guide grooves 20 to 22 are substantially linear in the direction of water flow of the water flow section 13 and are formed at a predetermined pitch (for example, about 10 to 40 mm).
A plurality (five in the present embodiment) of water guide grooves 20 provided at the center of the copper plate 14 have substantially the same cross-sectional shape from the lower end to the upper end. A distance D1 from the groove bottom of the water guide groove 20 to the joint surface (back surface of the copper plate 14) between the copper plate 14 and the back plate 16 is, for example, about 1/3 to 2/3 of the thickness of the copper plate 14, and its width W1. Is, for example, about 1/10 to 1/2 of the distance D1.
[0016]
Further, the water guide grooves 21 and 22 located in the vicinity of the attachment means 15, that is, at both ends in the width direction of the copper plate 14, and arranged with the attachment means 15 interposed therebetween are also the above-described water guide grooves 20 except for the part located in the meniscus portion. The shape is substantially the same. Wide portions 23 and 24 are provided at portions of the water guide grooves 21 and 22 located at the meniscus portion, respectively. The widened portions 23 and 24 are widened between the attachment means 15 adjacent to each other in the vertical direction of the mold body, and the widths W2 and W3 are, for example, 1.. 5 to 5 times. The distances D2 and D3 from the bottoms of the water guide grooves 21 and 22 to the back surface of the copper plate 14 are substantially the same as the distance D1 of the water guide groove 20 described above.
It is to be noted that the water guide grooves 22 arranged at both ends in the width direction of the copper plate 14, and further arranged outside the water guide grooves 22 and having a circular cross-section through holes 25 for cooling the O-ring 19, are connected to the water supply section 17. Industrial water is sent in through the communicating water passage 26, and the industrial water is discharged through the water passage 27 in communication with the drainage section 18.
[0017]
Closed members 28 and 29 made of, for example, a stainless steel plate or a copper plate, which are rust-resistant materials, are disposed in part of the widened portions 23 and 24 in the depth direction. The closing member 28 has a thickness T1 that is, for example, 1/2 to 9/10 of a distance D2 from the bottom of the water guide groove 21 to the back surface of the copper plate 14, and a width W4 is equal to a width W2 of the widened portion 23. For example, it is 1/3 to 9/10. One end surface of the closing member 28 is in contact with the inner surface on one side of the widened portion 23, that is, the inner surface on the center side in the width direction of the copper plate 14.
Further, the closing member 29 has a thickness T2 that is, for example, 1/2 to 9/10 of a distance D3 from the bottom of the water guide groove 22 to the back surface of the copper plate 14, and a width W5 is a width W3 of the widened portion 24. For example, 1/3 to 9/10. The other end surface of the closing member 29 is in contact with the inner surface on the other side of the widened portion 24, that is, the inner surface on the end side in the width direction of the copper plate 14.
Here, since both end portions in the vertical direction of the closing members 28 and 29 are each formed of a curved surface, the resistance to the flow of industrial water flowing from the lower side members 11 and 12 to the upper side can be reduced.
[0018]
Thereby, since the cross-sectional shape of the water conveyance parts 30 and 31 provided in the widening parts 23 and 24 of each water conveyance groove | channel 21 and 22 becomes substantially L shape, respectively, the cooling surface side of the copper plate 14, and the attachment means 15 The inside of the copper plate 14 on the side can be appropriately cooled.
Here, the distance D2 between the widened portions 23 and 24 so that the cross-sectional area of each of the water guide portions 30 and 31 is equal to or less than the cross-sectional area of the other portion of the water guide grooves 21 and 22 (portion other than the water guide portions 30 and 31). , D3 and widths W2 and W3, and thicknesses T1 and T2 and widths W4 and W5 of the closing members 28 and 29, respectively. Thereby, since the speed of the industrial water which passes each water guide part 30 and 31 can be made equal to or more than the speed of the industrial water which passes the water guide grooves 21 and 22 other than the water guide parts 30 and 31, the attachment means 15 vicinity The cooling efficiency of the copper plate 14 can be increased. Therefore, better cooling efficiency can be obtained by using industrial water having the same flow rate as before, which is economical.
[0019]
The closing members 28 and 29 are integrally connected by a connecting portion 32 disposed therebetween, and the cross-sectional shapes of the closing members 28 and 29 and the connecting portion 32 are substantially U-shaped.
The connecting portion 32 is integrally provided on the side portions of the closing members 28 and 29 so as to be in contact with the back plate 16, and is formed on the back surface side of the copper plate 14 so that the widened portions 23 and 24 are connected. It has a configuration that can be arranged in the connecting portion 33 to be connected.
Thereby, from the back surface side of the copper plate 14, the respective closing members 28, 29 and the connecting portion 32 that are integrated are arranged in the respective widened portions 23, 24 and the communication portion 33, and the back plate 16 is placed on the back surface of the copper plate 14. By attaching and fixing, each of the closing members 28 and 29 and the connecting portion 32 can be securely fixed at a target place.
[0020]
(Numerical analysis)
Next, the results of fluid analysis (FEM analysis) using the short-side copper plate 14 of the continuous casting mold 10 described above will be described.
As shown in FIG. 4, the dimensions of the short side copper plate 14 used for the fluid analysis are as follows: the thickness of the short side copper plate 14 is 45 mm, the width W1 of the water guide groove 20 is 5 mm, and the width W2 of the water guide portion 30 of the water guide groove 21. 15 mm, the width W3 of the water guide portion 31 of the water guide groove 22 is 10 mm, the distance D1 of the water guide groove 20 is 23 mm, the {(distance D2)-(thickness T1)} of the water guide portion 30 is 5 mm, and the {(distance D3) of the water guide portion 31 )-(Thickness T2)} is 7 mm, {(width W2)-(width W4)} of the water guide portion 30 is 4 mm, and {(width W3)-(width W5)} of the water guide portion 31 is 5 mm. The diameter of the water passage hole 25 is 10 mm. The physical properties of the cooling water are assumed to be 30 ° C., a density of 995.7 kg / mm 3 , and a viscosity of 8.00 × 10 −4 Pa · s.
Here, the number of each of the water guide grooves 20 to 22 of the copper plate 14 and each water guide groove when 575 (L / min) of cooling water flows per surface with a pressure of ΔP = 1.29 (kg / cm 2 ). Table 1 shows the flow rates and flow rates of 20 to 22 and the water passage holes 25.
[0021]
[Table 1]
Figure 0004181904
[0022]
At this time, the cooling water flowing from the water supply unit 17 to the drainage unit 18 through the water guide grooves 21 and 22 has a flow as shown in FIG.
As a result of conducting heat transfer analysis using the water guide grooves 20 to 22 having the above-described shape, the temperature of the groove bottom of the water guide groove 20 is 128 ° C. as shown in FIG. The temperature at the bottom of each of the water guide grooves 21 and 22 near the attachment means 15 is also 133 ° C. Thus, the temperature of the groove bottom of each water guide groove 20-22 exists in the temperature range of 128-133 degreeC. The temperature of the water passage hole 25 on the surface side of the copper plate 14 is 131 ° C. Thereby, for example, the boiling point temperature of water is lower than 133 ° C. when the cooling water back pressure is 0.2 (MPa), and it becomes possible to suppress the promotion of scale adhesion.
At this time, the temperature distribution on the cooling surface side of the copper plate 14 is distributed in the temperature range of 306 to 310 ° C. excluding the temperature 321 ° C. at the end in the width direction, and it can be seen that a substantially uniform temperature distribution can be obtained. .
[0023]
On the other hand, as in the prior art, the water guide grooves 34 and 35 having no widened portion (only the groove bottom of the water guide groove 35 in the vicinity of the attaching means protrudes to the cooling surface side of the short side copper plate 36 from the groove bottom of the other water guide grooves 34. 6 (B), the temperature of the groove bottom of each of the water guide grooves 34 and 35 is 120 to 142 ° C., for example, the cooling water back pressure is set at 0. 0. The boiling point temperature of water at 2 (MPa) is higher than 133 ° C., and scale adhesion is promoted. The temperature of the water passage hole 37 on the surface side of the copper plate 36 was 141 ° C.
At this time, the temperature distribution on the cooling surface side of the copper plate 36 also varies in the temperature range of 311 to 325 ° C. in the width direction of the short side copper plate 36 except for the temperature 337 ° C. at the end in the width direction.
From the above, by using the continuous casting mold 10, it is possible to improve the life of the mold body and to manufacture a slab having good quality.
[0024]
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
In the above-described embodiment, the case where copper is used as a metal having good thermal conductivity has been described. However, if the thermal conductivity is good, other metals, copper alloys, and the like can be used, for example. .
Moreover, in the said embodiment, the widening part was each provided in the water guide groove arrange | positioned on both sides of an attachment means .
[0025]
And in the said embodiment, although the case where the widening part was provided in the meniscus part was demonstrated, if the widening part is provided in the meniscus part at least, it will provide from the downward direction to the upper part of the water guide groove near attachment means. It is also possible. At this time, the temperature of the mold body tends to gradually increase from the lower side of the mold body to the meniscus portion, so the width of the water guide groove is reduced from the lower side of the mold body to the meniscus portion in consideration of this temperature distribution. It can also be gradually widened.
Furthermore, in the said embodiment, the case where the bottom of each water guide groove was made into the substantially the same position with respect to the thickness direction of a casting_mold | template main body was demonstrated. However, in order to increase the cooling efficiency of the slab by the mold body, it is possible to change the depth for each water guide groove, or to make the depth of each water guide groove partially deeper or shallower. .
[0026]
【The invention's effect】
In the continuous casting mold according to any one of claims 1 to 3, since a widened portion wider than the other water guide grooves is provided in the water guide groove in the vicinity of the attachment means, the cooling surface side of the mold body is cooled, and the attachment means side is also provided. Cooling can also be performed. As a result, on the cooling surface of the same height of the mold body, the temperature rise of the mold body in the vicinity of the mounting means, where the temperature has risen more than other parts, can be suppressed and further prevented. Can be improved.
Also, a blocking member is arranged in a part of the widened portion in the depth direction to provide a water guide, and the speed of the cooling water passing through this water guide is equal to the speed of the coolant passing through the water guide groove other than the water guide or Since the cooling efficiency of the mold body in the vicinity of the attachment means is increased, the temperature distribution at the same height position of the mold body can be made substantially uniform. Thereby, cooling of a slab can be performed substantially uniformly and the slab provided with favorable quality can be manufactured.
[0027]
In particular, in the continuous casting mold according to claim 1 , since the widened portion is provided in each of the water guide grooves arranged with the attachment means interposed therebetween, for example, the attachment of the water guide groove without largely detouring to the attachment means side. The vicinity of the means can be cooled. Thereby, since the cooling water which passes a water guide groove | channel also flows stably, the part with the worst cooling efficiency in a casting_mold | template main body can be cooled appropriately.
In the casting mold for continuous casting according to claim 1, since the closing members respectively disposed in the respective widened portions are integrally connected by the connecting portions, it is necessary to individually arrange the closing members for the respective widened portions. There is no sex. In addition, since the connecting portion is arranged in the communicating portion formed on the back surface side of the mold body, the closing member can be attached to each widened portion reliably and easily without using, for example, a bolt. Thereby, the structure of the casting mold for continuous casting can be simplified, and the workability at the time of manufacturing the casting mold for continuous casting is improved.
[0028]
In the continuous casting mold according to claim 1 , the cooling section side of the mold body and the inside of the mold body on the attachment means side are cooled by making the cross-sectional shape of the water guide portion L-shaped, so that the cooling efficiency is simple and has a cooling efficiency. It is possible to appropriately cool the portion where it is desired to increase the temperature. Thereby, the slab provided with still better quality can be manufactured.
In the continuous casting mold according to claim 2 , since the widened portion is widened between adjacent mounting means, for example, cooling of a portion where cooling efficiency is desired to be increased without newly providing a water guide groove. Can be done appropriately. Thereby, since the shape of the water guide groove can be simplified, the manufacturing operation of the mold body is facilitated.
In the continuous casting mold according to the third aspect , since the widened portion is provided at least in the meniscus portion, it is possible to appropriately cool the portion having the highest temperature in the mold body. Thereby, the lifetime of the casting mold for continuous casting can be improved, which is economical.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a short-side copper plate of a mold body of a continuous casting mold according to an embodiment of the present invention.
2A and 2B are cross-sectional views taken along arrows aa and bb, respectively, in FIG.
3A and 3B are a cross-sectional view taken along a line cc and a cross-sectional view taken along a line dd in FIG. 1, respectively.
FIG. 4 is an explanatory diagram showing a cross-sectional shape of a meniscus portion of a short-side copper plate used for numerical analysis.
FIG. 5 is an explanatory diagram of a water channel model used for numerical analysis of cooling water flowing through a water guide groove of the short side copper plate.
FIGS. 6A and 6B are explanatory diagrams of the temperature distribution of the meniscus portion of the short side copper plate based on the numerical analysis results, respectively, and the temperature distribution based on the numerical analysis result of the meniscus portion of the short side copper plate according to the conventional example. It is explanatory drawing of.
FIG. 7 is a plan view of a continuous casting mold.
8A is an explanatory diagram of a short-side copper plate according to a conventional example, and FIG. 8B is a cross-sectional view taken along the line ee of FIG.
[Explanation of symbols]
10: casting mold for continuous casting, 11, 12: short-side member, 13: water-passing portion, 14: short-side copper plate, 15: attachment means, 16: back plate (supporting member), 17: water supply portion, 18: drainage portion , 19: O-ring, 20-22: Water guide groove, 23, 24: Widened portion, 25: Water passage hole, 26, 27: Water passage, 28, 29: Closure member, 30, 31: Water guide portion, 32: Connection Part, 33: communication part, 34, 35: water guide groove, 36: short side copper plate, 37: water hole

Claims (3)

熱伝導性が良好な金属からなり、裏面側に通水部が設けられた鋳型本体と、該鋳型本体の裏面側に取付け手段によって固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記通水部に冷却水を流すことで前記鋳型本体の冷却を行う連続鋳造用鋳型において、
前記通水部は前記鋳型本体の裏面側一面に設けられた多数の導水溝を備え、前記取付け手段を挟んで配置される導水溝に他の導水溝より幅広の拡幅部をそれぞれ設け、しかも前記鋳型本体の裏面側に前記各拡幅部を繋げる連通部を形成し、
前記各拡幅部の深さ方向にそれぞれ配置され、しかも該各拡幅部の一方側の内面と他方側の内面にそれぞれ当接して、前記鋳型本体の冷却面側及び前記取付け手段側の冷却を行う断面L字状の導水部を形成する閉塞部材と、該各閉塞部材をその側部で一体的に接続する連結部を有し、更に前記各閉塞部材と前記連結部の断面形状をコ字状とし、該連結部を前記連通部に取付けて前記支持部材に当接させ、
前記導水部の断面積を該導水部以外の導水溝の断面積以下にして、前記導水部を通過する前記冷却水の速度を前記導水部以外の導水溝を通過する前記冷却水の速度と同等又はそれ以上にし、前記取付け手段近傍の前記鋳型本体の冷却効率を高めることを特徴とする連続鋳造用鋳型。
The mold body is made of a metal having good thermal conductivity and has a water passage on the back surface side, and a support member fixed to the back surface side of the mold body by attachment means. In the continuous casting mold for cooling the mold body by flowing cooling water through the water supply section and the drainage section to the water flow section,
The water flow portion includes a large number of water guide grooves provided on one side of the back surface of the mold body, and each of the water guide grooves disposed across the attachment means is provided with a widened portion wider than the other water guide grooves. Forming a communicating part that connects the widened parts on the back side of the mold body,
Each of the widened portions is arranged in the depth direction , and is in contact with the inner surface on one side and the inner surface on the other side of each of the widened portions, thereby cooling the cooling surface side of the mold body and the attachment means side. It has a closing member that forms an L-shaped water guide portion, and a connecting portion that integrally connects each closing member at its side, and the cross-sectional shape of each closing member and the connecting portion is a U-shape. And attaching the connecting part to the communicating part to contact the support member,
The cross-sectional area of the water guide portion is set to be equal to or smaller than the cross-sectional area of the water guide groove other than the water guide portion, and the speed of the cooling water passing through the water guide portion is equal to the speed of the cooling water passing through the water guide groove other than the water guide portion. The casting mold for continuous casting characterized in that the cooling efficiency of the mold main body in the vicinity of the attaching means is increased.
請求項記載の連続鋳造用鋳型において、前記拡幅部は前記鋳型本体の上下方向に隣り合う取付け手段の間に向かって幅広となっていることを特徴とする連続鋳造用鋳型。2. The continuous casting mold according to claim 1 , wherein the widened portion is widened between mounting means adjacent in the vertical direction of the mold body. 請求項1及び2のいずれか1項に記載の連続鋳造用鋳型において、前記拡幅部は少なくともメニスカス部に設けられていることを特徴とする連続鋳造用鋳型。 3. The continuous casting mold according to claim 1, wherein the widened portion is provided at least in the meniscus portion. 4.
JP2003072471A 2003-03-17 2003-03-17 Continuous casting mold Expired - Lifetime JP4181904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072471A JP4181904B2 (en) 2003-03-17 2003-03-17 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072471A JP4181904B2 (en) 2003-03-17 2003-03-17 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2004276080A JP2004276080A (en) 2004-10-07
JP4181904B2 true JP4181904B2 (en) 2008-11-19

Family

ID=33288660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072471A Expired - Lifetime JP4181904B2 (en) 2003-03-17 2003-03-17 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4181904B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351248B (en) * 2022-10-18 2023-01-06 东北大学 Crystallizer copper pipe for high-casting-speed continuous casting

Also Published As

Publication number Publication date
JP2004276080A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4610548B2 (en) Tubular mold for continuous casting
CN1978091B (en) Tubular crystallizer for continuous casting metal
KR101175406B1 (en) Cooling Panel for Continuous Casting Mold and Apparatus of Continuous Casting Mold Therewith
TWI244952B (en) Mold-pipe for continuously casting metals
FI121429B (en) Heat sink and method for making the heat sink
JP2008049385A (en) Continuous casting mold
CA2549685C (en) Liquid-cooled permanent mold for the continuous casting of metals
CN115007816A (en) Thin slab continuous casting crystallizer copper plate with cooling structure
JP3443109B2 (en) Assembly mold for continuous casting
TWI268821B (en) Adjustment of heat transfer in continuous casting molds in particular in the region of the meniscus
JP2009056490A (en) Casting mold for continuous casting
JP4181904B2 (en) Continuous casting mold
JP4261272B2 (en) Continuous casting mold
JP3865615B2 (en) Continuous casting mold for high heat flux
CN210098905U (en) Narrow-face crystallizer copper plate and continuous casting crystallizer
JP4611349B2 (en) Continuous casting mold
KR20190017978A (en) Continuous casting method for continuous casting molds and steel
CN215356077U (en) High-pulling-speed sheet billet continuous casting crystallizer and copper plate thereof
CN202239531U (en) Cooling water passage of large-sized shaped blank continuous casting crystallizer
RU194551U1 (en) WALL OF CONTINUOUS CASTING MACHINE CRYSTALLIZER
JP5525966B2 (en) Continuous casting mold
JP4202718B2 (en) High frequency electromagnetic casting mold for continuous casting of molten metal
CN2936497Y (en) Heat top crystallizer formwork of meniscus area broad shallow water channel
JPH03297541A (en) Mold for continuous casting equipment
JP2004034067A (en) Continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4181904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term