JP4181373B2 - Internal combustion engine drive method, internal combustion engine control device computer program, and internal combustion engine control device - Google Patents

Internal combustion engine drive method, internal combustion engine control device computer program, and internal combustion engine control device Download PDF

Info

Publication number
JP4181373B2
JP4181373B2 JP2002284115A JP2002284115A JP4181373B2 JP 4181373 B2 JP4181373 B2 JP 4181373B2 JP 2002284115 A JP2002284115 A JP 2002284115A JP 2002284115 A JP2002284115 A JP 2002284115A JP 4181373 B2 JP4181373 B2 JP 4181373B2
Authority
JP
Japan
Prior art keywords
value
fuel pump
driving
fuel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002284115A
Other languages
Japanese (ja)
Other versions
JP2003176745A (en
Inventor
シューラー ペーター
キーフェルレ シュテファン
ケルナー アンドレアス
ハマー ユルゲン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2003176745A publication Critical patent/JP2003176745A/en
Application granted granted Critical
Publication of JP4181373B2 publication Critical patent/JP4181373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料蓄積器から燃料を燃料ポンプにより予圧をかけて調量ユニットを介して高圧ポンプへポンプ圧送し、ここで制御ユニットによって設定された燃料量を供給するための駆動量により前記調量ユニットを駆動し、前記燃料ポンプを該調量ユニットの駆動量に依存して駆動する、車両の内燃機関の駆動方法に関する。
【0002】
また本発明は前述の方法を実行するのに適した内燃機関の制御装置に関する。
【0003】
さらに本発明は前述の方法を実行するのに適した内燃機関に関する。
【0004】
【従来の技術】
冒頭に言及した形式の駆動方法は公知であり、例えば燃料が高圧ポンプを介して蓄圧器へ圧送される燃料供給システムで使用される。ここでは蓄圧器は複数の噴射弁に共通に燃料を供給するために用いられる。このような燃料供給システムをコモンレールシステムと称する。
【0005】
コモンレールシステムの高圧ポンプは吸入側で燃料ポンプにより所定の燃料量(以下では圧送量と称する)を燃料蓄積器から供給される。高圧ポンプによって蓄圧器へポンプ圧送される燃料量を制御するために、燃料ポンプと高圧ポンプとのあいだには調量ユニットが設けられており、このユニットが所定の駆動量により駆動される。
【0006】
圧送量は3つの部分量から成っている。圧送量の第1の成分は高圧ポンプにより蓄圧器へポンプ圧送される燃料量である。この量は内燃機関の動作点に依存している。
【0007】
圧送量の第2の成分は、たいていの場合機械式に構成された高圧ポンプの潤滑化および冷却に必要とされる量であり、ほぼ一定である。高圧ポンプの寿命期間にわたって劣化の効果に基づき潤滑剤および冷却剤の需要量は増大する。
【0008】
圧送量の第3の成分はいわゆる高圧ポンプの流入圧制御に必要な量であり、これは燃料が高圧ポンプの吸入側で流入圧制御部によって定められた所定の圧力レベルに達してから当該の燃料を高圧ポンプへ流れさせるように作用する。言い換えれば、高圧ポンプの吸入側での燃料圧が予圧となる。
【0009】
燃料ポンプの寿命期間にわたる摩耗により、圧送量の需要は著しく増大する。したがって燃料ポンプの静的な駆動の際には燃料ポンプの出力を調整して、少なくとも高圧ポンプの供給に予測される最大必要な圧送量および予測される最大必要な予圧が全寿命期間にわたって全ての動作条件および噴射システム全体の経年変化およびトレランスを考慮したうえでもつねに形成されるようにしなければならない。
【0010】
最大必要な圧送量を計算するには、最大の燃料需要での内燃機関の動作点を考慮しなければならない。さらに経年変化に起因して増大する潤滑剤および冷却剤の需要に対するリザーブ量も考慮しなければならない。
【0011】
なお燃料ポンプの摩耗は最大必要な予圧を求める際にも考慮しなければならない。
【0012】
【発明が解決しようとする課題】
本発明の基礎とする課題は、冒頭に言及した形式の方法において、燃料ポンプの負荷を低減し、ポンプの寿命を延長できるように改善することである。
【0013】
【課題を解決するための手段】
この課題は、調量ユニットの駆動量を用いて、該駆動量に基づいて圧送量示す第1の特性曲線により圧送量値計算し、さらに該駆動量に基づいて予圧を示す第2の特性曲線により予圧値を計算し、計算された圧送量値と予圧値とから成る値の組にそれぞれ1つずつ燃料ポンプを駆動する駆動値の割り当てられた燃料ポンプの特性マップにより当該の燃料ポンプを駆動する駆動値を求めることにより解決される。
【0014】
【発明の実施の形態】
これにより燃料ポンプの圧送量または予圧を制御でき、燃料ポンプの静的な駆動の場合のように、持続的に最大の予圧を形成し、大抵の場合不必要分として燃料蓄積器へ戻ってしまう量まで含めて燃料ポンプから最大の圧送量を送出する必要はない。これに代えて燃料ポンプにより内燃機関の動作に必要な燃料量を圧送し、必要な予圧のみを形成して、燃料ポンプのエネルギ消費量を低下させることができる。さらなる利点は、本発明の方法を実現するために予圧を検出する付加的な低圧センサが必要ないということである。
【0015】
特に有利には、内燃機関の動作点での圧送量および/または予圧のダイナミックな適応化が行われ、これにより燃料ポンプの平均負荷が低減される。ここから燃料ポンプの寿命の増大が達成される。
【0016】
したがって本発明の方法を使用すれば、同じ出力の燃料ポンプをより小さなローバスト性で構成でき、製造コストおよび重量が節約される。また同時に従来の装置に比べて長い寿命を得ることができる。
【0017】
逆に本発明の方法により、従来の燃料ポンプを用いてより大きな圧送量で駆動することもできる。
【0018】
有利にはフィルタ流量が小さくなり、これによりきわめて低い燃料温度で駆動される場合にパラフィン沈殿のために生じる燃料フィルタの粘度の高まりが低減される。
【0019】
本発明では、圧送量を求めるために調量ユニットの駆動量の第1の特性曲線を使用し、予圧を求めるために調量ユニットの駆動量の第2の特性曲線を使用する。
【0020】
本発明によれば、圧送量および予圧の知識のもとに燃料ポンプの特性マップを使用して、当該の燃料ポンプを駆動する駆動値を求める。この駆動値は調量ユニットの駆動量と第1の特性曲線および第2の特性曲線とに依存している。
【0021】
ここで特性マップは圧送量値と予圧値とから成る値の組を有しており、当該の値の組には特性マップにより燃料ポンプを駆動するためのそれぞれ1つの駆動値が割り当てられている。この駆動値により所望の燃料ポンプの駆動が可能となり、この駆動値に基づいて圧送量および予圧から成る値の組が形成される。
【0022】
本発明の別の実施形態では、特性マップは内燃機関の駆動中、例えば内燃機関の始動時または始動後に補償される。これにより特性マップに含まれる対応関係を後から適応化することができる。
【0023】
本発明の方法の別の実施形態によれば、燃料ポンプは電気式燃料ポンプとして構成され、当該の燃料ポンプの駆動はパルス幅変調された駆動信号により行われる。
【0024】
特に重要なのは、本発明の方法が内燃機関の制御装置用コンピュータプログラム、例えば車両の内燃機関の制御装置用コンピュータプログラムのかたちで実現される点である。ここでこのコンピュータプログラムは例えばマイクロプロセッサ上で動作可能であり、本発明の方法を実行するのに適している。この場合本発明は本発明の方法を実行するのに適したコンピュータプログラムと同じものと見なすことができる。当該のコンピュータプログラムは電気的な記憶媒体、例えばフラッシュメモリまたは読み出し専用メモリROM上に記憶されている。
【0025】
本発明の別の特徴、適用例、および利点は以下に説明する本発明の実施例と図とから得られる。ここで全ての特徴はそれ自体でも任意に組み合わせても本発明の対象となることができる。つまり本発明の特徴は特許請求の範囲、発明の詳細な説明、数式、または図のいずれによって表されているかによらず発明の対象となりうる。
【0026】
【実施例】
図1には内燃機関の燃料供給システム10が示されている。燃料供給システム10は通常はコモンレールシステムと称され、燃料を内燃機関の燃焼室へ高圧で直接噴射するのに適している。
【0027】
燃料は燃料蓄積器11から第1のフィルタ12を介して燃料ポンプ13によって吸入される。燃料ポンプ13は例えば電気式燃料ポンプである。
【0028】
燃料ポンプ13で吸入された燃料は第2のフィルタ14を介して調量ユニット15、冷却剤および潤滑剤流路28、および過流領域22へ圧送される。調量ユニット15は例えば電磁制御式比例弁として構成することができる。
【0029】
調量ユニット15の後方に高圧ポンプ16が配置されている。通常は高圧ポンプ16として機械式ポンプが使用され、これは直接にまたはトランスミッションを介して内燃機関により駆動される。
【0030】
高圧ポンプ16は蓄圧器17に接続されており、この蓄圧器はしばしばレールと称される。この蓄圧器17は燃料管路を介して複数の噴射弁18と接触接続されている。これらの噴射弁を介して燃料が内燃機関の燃焼室へ噴射される。圧力センサ19は蓄圧器17に結合されている。
【0031】
制御装置20には複数の入力信号が印加される。この入力信号はアクセルペダル位置から導出された内燃機関のトルク要求値Mまたは内燃機関の機関温度Tである。同様に圧力センサ19によって測定される蓄圧器17の圧力を供給してもよい。これらの入力信号に依存して制御装置20は複数の出力信号を形成する。その際に例えば燃料ポンプ13を制御する信号または調量ユニット15を駆動する信号を形成することができる。
【0032】
以下に図1に示した燃料供給システム10の機能を説明する。
【0033】
燃料蓄積器11に存在する燃料は燃料ポンプ13によって吸入され、調量ユニット15へ圧送される。燃料供給システム10のこの領域の圧力は通常は約2bar〜約5barの範囲であり、以下これを予圧と称する。
【0034】
調量ユニット15は駆動量A_Zにより制御ユニット20によって設定された燃料量を高圧ポンプ16の吸入側へ送る。この燃料量が高圧ポンプ16から蓄圧器17へ圧送され、そこから噴射弁18を介して内燃機関のそれぞれの燃焼室へ噴射される。
【0035】
噴射に対して定められる燃料量に加えて、燃料ポンプ13は所定の燃料量を高圧ポンプ16の潤滑化または冷却のために送出する。この付加的な燃料量は燃料ポンプ13から冷却剤および潤滑剤流路28を介して高圧ポンプ16へ供給される。この冷却剤および潤滑剤を燃料蓄積器11へ戻すには戻し管路30を用いる。予圧の調整に必要な過流量は、前述のように、過流領域22へ流れる。過流量も戻し管路30を介して燃料蓄積器11へ戻される。
【0036】
燃料ポンプ13から圧送される燃料量を内燃機関の動作点に適応化させるために、図2に示した本発明の方法の第1のステップで、調量ユニット15の駆動量A_Zと第1の特性曲線KLとから圧送量値F_Wが計算される。
【0037】
予圧を内燃機関の動作点に適応化させるために、第2のステップで、調量ユニット15の駆動量A_Zと第2の特性曲線KLとから予圧値V_Wが計算される。
【0038】
本発明の方法の第2のステップの後、圧送量値F_Wと予圧値V_Wとが既知となる。これらの値は燃料ポンプ13について、調量ユニット15の駆動量A_Zと間接的に内燃機関の動作点とに依存して取り出されているはずである。これにより内燃機関の動作が保証される。
【0039】
圧送量F_Wと予圧V_Wとに駆動値A_Wに関連しており、これにより燃料ポンプ13をF_W、V_Wを取り出せるように駆動しなければならない。
【0040】
駆動値A_Wは本発明の方法の第3のステップで特性マップKFから求められる。この特性マップは例えば制御装置20のメモリに格納されている。特性マップKFは内燃機関の駆動中、例えば内燃機関の始動時または始動後に補償される。
【0041】
第3のステップに続いて、燃料ポンプ13は第4のステップで駆動値A_Wで駆動される。電気式燃料ポンプでは駆動量はパルス幅変調により提供され、ここで駆動値A_Wは電気式燃料ポンプの給電電圧のパルス幅比により表される。
【0042】
前述の方法では燃料ポンプ13が内燃機関の動作点に依存して必要な出力によってしか駆動されず、従来のシステムにおけるようにつねに最大出力で駆動されるのではないことが保証される。
【0043】
これにより燃料ポンプ13はの駆動時間は最大出力で明らかに低減される。
【0044】
燃料ポンプ13はしたがって、本発明の方法を使用すれば、同じ寿命または同じ出力では僅かなローバスト性で構成することができ、また同じ寿命および同じローバスト性では高い出力で駆動することができる。
【0045】
なお従来の構成の燃料ポンプ13を本発明の方法にしたがって駆動すると一層高い圧送量を提供することができ、これにより燃料供給システム10の高い出力が達成される。
【0046】
駆動値A_Wを求めるために使用される調量ユニットの駆動量A_Zは内燃機関の高圧制御回路の調整量である。このパラメータは例えば高圧ポンプ16の全需要量が上昇するとき高圧回路内の圧力制御により燃料需要量のこうした変化分に適応化される。
【0047】
これにより燃料需要量の変化分を補償するのに必要なリザーブ量を燃料ポンプ13の駆動時に考慮する必要ももはやなく、これを調量ユニット15の駆動量A_Zにより適応的に適応化してA_Wに作用させることができる。
【0048】
本発明の別の利点は、圧送量のオンデマンド型制御または燃料ポンプ13のオンデマンド型制御を燃料ポンプ13後方に付加的な圧力センサを設けることなく行うことができる点である。
【図面の簡単な説明】
【図1】本発明の車両内燃機関の燃料供給システムの概略的なブロック回路図である。
【図2】本発明の方法の1つの実施例を示すフローチャートである。
【符号の説明】
10 燃料供給システム
11 燃料蓄積器
12、14 フィルタ
13 燃料ポンプ
15 調量ユニット
16 高圧ポンプ
17 蓄圧器
18 噴射弁
19 圧力センサ
20 制御装置
22 過流領域
28 冷却剤および潤滑剤流路
30 戻し管路
M トルク要求値
T 機関温度
A_W 駆動値
A_Z 駆動量
[0001]
BACKGROUND OF THE INVENTION
The present invention preloads fuel from a fuel accumulator with a fuel pump and pumps the fuel to a high-pressure pump through a metering unit, where the adjustment is performed by a drive amount for supplying a fuel amount set by a control unit. The present invention relates to a method for driving an internal combustion engine of a vehicle, in which a quantity unit is driven and the fuel pump is driven depending on a drive amount of the metering unit .
[0002]
The invention also relates to a control device for an internal combustion engine suitable for carrying out the method described above.
[0003]
The invention further relates to an internal combustion engine suitable for carrying out the method described above.
[0004]
[Prior art]
Driving methods of the type mentioned at the beginning are known and are used, for example, in fuel supply systems in which fuel is pumped to the accumulator via a high-pressure pump. Here, the pressure accumulator is used to supply fuel to a plurality of injection valves in common. Such a fuel supply system is called a common rail system.
[0005]
A high pressure pump of the common rail system is supplied with a predetermined amount of fuel (hereinafter referred to as a pumping amount) from a fuel accumulator by a fuel pump on the suction side. In order to control the amount of fuel pumped by the high pressure pump to the accumulator, a metering unit is provided between the fuel pump and the high pressure pump, and this unit is driven by a predetermined drive amount.
[0006]
The pumping amount consists of three partial quantities. The first component of the pumping amount is the amount of fuel pumped by the high pressure pump to the accumulator. This amount depends on the operating point of the internal combustion engine.
[0007]
The second component of the pumping amount is the amount required for lubrication and cooling of the mechanically constructed high-pressure pump, which is almost constant. The demand for lubricants and coolants increases based on the effects of degradation over the lifetime of the high pressure pump.
[0008]
The third component of the pumping amount is an amount necessary for the so-called inflow pressure control of the high-pressure pump, and this is the amount of the fuel after the fuel reaches the predetermined pressure level determined by the inflow pressure control unit on the suction side of the high-pressure pump. Acts to allow fuel to flow to the high pressure pump. In other words, the fuel pressure on the suction side of the high-pressure pump is a preload.
[0009]
Due to wear over the life of the fuel pump, the demand for pumping volume increases significantly. Therefore, when the fuel pump is driven statically, the output of the fuel pump is adjusted so that at least the maximum required pumping amount and the predicted maximum required preload for the supply of the high pressure pump are It must always be formed taking into account operating conditions and aging and tolerance of the entire injection system.
[0010]
To calculate the maximum required pumping volume, the operating point of the internal combustion engine at the maximum fuel demand must be taken into account. Furthermore, the amount of reserve for increasing lubricant and coolant demand due to aging must also be considered.
[0011]
Fuel pump wear must also be taken into account when determining the maximum required preload.
[0012]
[Problems to be solved by the invention]
The problem underlying the present invention is to improve the method of the type mentioned at the beginning so that the load on the fuel pump can be reduced and the life of the pump can be extended.
[0013]
[Means for Solving the Problems]
This object is achieved with a drive amount of the metering unit calculates the pumping quantity value by a first characteristic curve showing the pumping quantity based on the driving amount, the second showing the preload further based on the drive amount A preload value is calculated from a characteristic curve, and a fuel pump characteristic map to which a drive value for driving the fuel pump is assigned to each set of values including the calculated pumping amount value and the preload value is used for the fuel pump. This is solved by obtaining a drive value for driving the.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
This allows control of the pumping amount or preload of the fuel pump, continuously creating the maximum preload, as in the case of a static drive of the fuel pump, and returning to the fuel accumulator as an unnecessary part in most cases It is not necessary to send out the maximum pumping amount from the fuel pump. Instead of this, the fuel amount required for the operation of the internal combustion engine can be pumped by the fuel pump to form only the necessary preload, and the energy consumption of the fuel pump can be reduced. A further advantage is that no additional low pressure sensor for detecting the preload is required to implement the method of the invention.
[0015]
Particularly advantageously, a dynamic adaptation of the pumping amount and / or the preload at the operating point of the internal combustion engine takes place, which reduces the average load of the fuel pump. From here, an increase in the life of the fuel pump is achieved.
[0016]
Thus, using the method of the present invention, the same output fuel pump can be constructed with less robustness, saving manufacturing costs and weight. At the same time, a longer life can be obtained as compared with the conventional apparatus.
[0017]
On the contrary, the method of the present invention can be driven with a larger pumping amount using a conventional fuel pump.
[0018]
Advantageously, the filter flow rate is reduced, which reduces the increase in fuel filter viscosity caused by paraffin precipitation when driven at very low fuel temperatures.
[0019]
In the present invention, the first characteristic curve of the driving amount of the metering unit is used to obtain the pumping amount, and the second characteristic curve of the driving amount of the metering unit is used to obtain the preload.
[0020]
According to the present invention, the drive value for driving the fuel pump is determined using the characteristic map of the fuel pump based on the knowledge of the pumping amount and the preload. This drive value depends on the drive amount of the metering unit and the first characteristic curve and the second characteristic curve.
[0021]
Here, the characteristic map has a set of values composed of a pumping amount value and a preload value, and one set of driving values for driving the fuel pump is assigned to each set of values by the characteristic map. . This drive value enables the desired fuel pump to be driven, and a set of values consisting of a pumping amount and a preload is formed based on this drive value.
[0022]
In another embodiment of the invention, the characteristic map is compensated during operation of the internal combustion engine, for example at or after starting the internal combustion engine. Thereby, the correspondence relationship included in the characteristic map can be adapted later.
[0023]
According to another embodiment of the method of the present invention, the fuel pump is configured as an electric fuel pump, and the fuel pump is driven by a pulse width modulated drive signal.
[0024]
Of particular importance is that the method of the invention is implemented in the form of a computer program for a control device for an internal combustion engine, for example a computer program for a control device for an internal combustion engine of a vehicle. Here, the computer program can run on, for example, a microprocessor and is suitable for executing the method of the present invention. In this case, the present invention can be regarded as the same computer program suitable for carrying out the method of the present invention. The computer program is stored on an electrical storage medium such as a flash memory or a read-only memory ROM.
[0025]
Other features, applications and advantages of the present invention can be obtained from the embodiments and figures of the present invention described below. Here, all the features can be the subject of the present invention by themselves or in any combination. In other words, the features of the present invention can be the subject of the invention regardless of whether they are represented by the claims, the detailed description of the invention, the mathematical formulas, or the figures.
[0026]
【Example】
FIG. 1 shows a fuel supply system 10 for an internal combustion engine. The fuel supply system 10 is usually referred to as a common rail system and is suitable for injecting fuel directly into the combustion chamber of an internal combustion engine at high pressure.
[0027]
The fuel is sucked from the fuel accumulator 11 through the first filter 12 by the fuel pump 13. The fuel pump 13 is, for example, an electric fuel pump.
[0028]
The fuel sucked by the fuel pump 13 is pumped to the metering unit 15, the coolant / lubricant flow path 28, and the overflow region 22 through the second filter 14. The metering unit 15 can be configured as an electromagnetically controlled proportional valve, for example.
[0029]
A high-pressure pump 16 is arranged behind the metering unit 15. Normally, a mechanical pump is used as the high-pressure pump 16, which is driven by an internal combustion engine directly or via a transmission.
[0030]
The high pressure pump 16 is connected to a pressure accumulator 17, which is often referred to as a rail. The pressure accumulator 17 is connected in contact with a plurality of injection valves 18 through a fuel line. Fuel is injected into the combustion chamber of the internal combustion engine through these injection valves. The pressure sensor 19 is coupled to the pressure accumulator 17.
[0031]
A plurality of input signals are applied to the control device 20. This input signal is the required torque value M of the internal combustion engine derived from the accelerator pedal position or the engine temperature T of the internal combustion engine. Similarly, the pressure of the accumulator 17 measured by the pressure sensor 19 may be supplied. Depending on these input signals, the control device 20 forms a plurality of output signals. In this case, for example, a signal for controlling the fuel pump 13 or a signal for driving the metering unit 15 can be formed.
[0032]
The function of the fuel supply system 10 shown in FIG. 1 will be described below.
[0033]
The fuel present in the fuel accumulator 11 is sucked by the fuel pump 13 and pumped to the metering unit 15. The pressure in this region of the fuel supply system 10 typically ranges from about 2 bar to about 5 bar, hereinafter referred to as preload.
[0034]
The metering unit 15 sends the fuel amount set by the control unit 20 to the suction side of the high-pressure pump 16 by the drive amount A_Z. This amount of fuel is pumped from the high-pressure pump 16 to the pressure accumulator 17 and injected from there through the injection valve 18 into each combustion chamber of the internal combustion engine.
[0035]
In addition to the fuel quantity determined for the injection, the fuel pump 13 delivers a predetermined fuel quantity for lubrication or cooling of the high-pressure pump 16. This additional amount of fuel is supplied from the fuel pump 13 to the high pressure pump 16 via the coolant and lubricant passage 28. A return line 30 is used to return the coolant and lubricant to the fuel accumulator 11. The overflow necessary for adjusting the preload flows to the overflow region 22 as described above. The excess flow is also returned to the fuel accumulator 11 via the return line 30.
[0036]
In order to adapt the amount of fuel pumped from the fuel pump 13 to the operating point of the internal combustion engine, in the first step of the method of the invention shown in FIG. 2, the driving amount A_Z of the metering unit 15 and the first amount pumping quantity value F_W is calculated from the characteristic curve KL 1 Tokyo.
[0037]
To accommodate the pre-load the operating point of the internal combustion engine, in a second step, the preload value V_W is calculated from the driving amount A_Z a second characteristic curve KL 2 Metropolitan metering unit 15.
[0038]
After the second step of the method of the invention, the pumping amount value F_W and the preload value V_W are known. These values should be taken for the fuel pump 13 depending on the driving amount A_Z of the metering unit 15 and indirectly the operating point of the internal combustion engine. This ensures the operation of the internal combustion engine.
[0039]
The pumping amount F_W and the preload V_W are related to the driving value A_W, so that the fuel pump 13 must be driven so that F_W and V_W can be taken out.
[0040]
The drive value A_W is determined from the characteristic map KF in the third step of the method of the invention. This characteristic map is stored in the memory of the control device 20, for example. The characteristic map KF is compensated during driving of the internal combustion engine, for example, at the start of the internal combustion engine or after the start.
[0041]
Subsequent to the third step, the fuel pump 13 is driven at the drive value A_W in the fourth step. In the electric fuel pump, the driving amount is provided by pulse width modulation, and the driving value A_W is represented by the pulse width ratio of the power supply voltage of the electric fuel pump.
[0042]
The above-described method ensures that the fuel pump 13 is driven only by the required power depending on the operating point of the internal combustion engine and is not always driven at the maximum power as in conventional systems.
[0043]
This clearly reduces the drive time of the fuel pump 13 at the maximum output.
[0044]
The fuel pump 13 can therefore be configured with little robustness for the same lifetime or the same output and can be driven at a higher output for the same lifetime and the same robustness using the method of the present invention.
[0045]
In addition, when the fuel pump 13 having the conventional configuration is driven according to the method of the present invention, a higher pumping amount can be provided, thereby achieving a high output of the fuel supply system 10.
[0046]
The driving amount A_Z of the metering unit used for obtaining the driving value A_W is an adjustment amount of the high-pressure control circuit of the internal combustion engine. This parameter is adapted to such changes in fuel demand by pressure control in the high pressure circuit, for example when the total demand of the high pressure pump 16 rises.
[0047]
As a result, it is no longer necessary to consider the reserve amount necessary to compensate for the change in the fuel demand amount when driving the fuel pump 13, and this is adaptively adapted to the A_W by the drive amount A_Z of the metering unit 15. Can act.
[0048]
Another advantage of the present invention is that on-demand type control of the pumping amount or on-demand type control of the fuel pump 13 can be performed without providing an additional pressure sensor behind the fuel pump 13.
[Brief description of the drawings]
FIG. 1 is a schematic block circuit diagram of a fuel supply system for a vehicle internal combustion engine according to the present invention.
FIG. 2 is a flow chart illustrating one embodiment of the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Fuel supply system 11 Fuel accumulator 12, 14 Filter 13 Fuel pump 15 Metering unit 16 High pressure pump 17 Accumulator 18 Injection valve 19 Pressure sensor 20 Control device 22 Overflow area | region 28 Coolant and lubricant flow path 30 Return line M Torque request value T Engine temperature A_W Drive value A_Z Drive amount

Claims (9)

燃料蓄積器(11)から燃料を燃料ポンプ(13)により予圧をかけて調量ユニット(15)を介して高圧ポンプ(16)へポンプ圧送し、ここで制御ユニットによって設定された燃料量を供給するための駆動量(A_Z)により前記調量ユニットを駆動し、
前記燃料ポンプ(13)を該調量ユニットの駆動量(A_Z)に依存して駆動する、
車両の内燃機関の駆動方法において、
調量ユニットの駆動量(A_Z)を用いて、該駆動量に基づいて圧送量示す第1の特性曲線(KL )により圧送量値(F_W)計算し、さらに該駆動量に基づいて予圧を示す第2の特性曲線(KL )により予圧値(V_W)を計算し、
計算された圧送量値と予圧値とから成る値の組(F_W;V_W)にそれぞれ1つずつ燃料ポンプを駆動する駆動値(A_W)の割り当てられた燃料ポンプの特性マップ(KF)により当該の燃料ポンプを駆動する駆動値(A_W)を求める
ことを特徴とする内燃機関の駆動方法。
Fuel is preloaded from the fuel accumulator (11) by the fuel pump (13) and pumped to the high pressure pump (16) through the metering unit (15), where the fuel amount set by the control unit is supplied. Driving the metering unit with a drive amount (A_Z) for
Driving the fuel pump (13) depending on the drive amount (A_Z) of the metering unit;
In a method for driving an internal combustion engine of a vehicle,
Using the drive amount of the metering unit (A_Z), on the basis of the drive amount pumping quantity value (F_W) calculated by the first characteristic curve showing the pumping quantity (KL 1), further based on the drive amount The preload value (V_W) is calculated from the second characteristic curve (KL 2 ) indicating the preload ,
The calculated pumping quantity value and a value comprising a preload value pairs (F_W; V_W) to each one by one drive values for driving a fuel pump characteristics map of the fuel pump allocated (KF) by the the (a_w) A driving method for an internal combustion engine, characterized in that a driving value (A_W) for driving a fuel pump is obtained.
燃料ポンプ(13)の駆動を圧送量および予圧の制御に使用する、請求項1記載の方法。  2. The method as claimed in claim 1, wherein the drive of the fuel pump (13) is used for controlling the pumping amount and the preload. 燃料ポンプ(13)の制御を内燃機関の動作点での圧送量および予圧のダイナミックな適応化に使用する、請求項2記載の方法。  3. The method as claimed in claim 2, wherein the control of the fuel pump (13) is used for dynamic adaptation of the pumping and preload at the operating point of the internal combustion engine. 特性マップ(KF)を内燃機関の始動時または始動後に補償する、請求項1記載の方法。  2. The method according to claim 1, wherein the characteristic map (KF) is compensated at or after the start of the internal combustion engine. 燃料ポンプ(13)を電気式燃料ポンプとして構成し、当該の燃料ポンプ(13)の駆動をパルス幅変調された駆動信号により行う、請求項1から4までのいずれか1項記載の方法。  The method according to any one of claims 1 to 4, wherein the fuel pump (13) is configured as an electric fuel pump, and the fuel pump (13) is driven by a pulse width modulated drive signal. 内燃機関の制御装置(20)であるコンピュータに、
調量ユニットの駆動量(A_Z)を用いて、該駆動量に基づいて圧送量示す第1の特性曲線(KL )により圧送量値(F_W)計算し、該駆動量に基づいて予圧を示す第2の特性曲線(KL )により予圧値(V_W)を計算するステップ、および
計算された圧送量値と予圧値とから成る値の組(F_W;V_W)にそれぞれ1つずつ燃料ポンプを駆動する駆動値(A_W)の割り当てられた燃料ポンプの特性マップ(KF)により当該の燃料ポンプを駆動する駆動値(A_W)を求めるステップ
を実行させるためのコンピュータプログラム。
In the computer which is the control device (20) of the internal combustion engine,
Using the drive amount of the metering unit (A_Z), on the basis of the drive amount pumping quantity value (F_W) calculated by the first characteristic curve showing the pumping quantity (KL 1), preload based on the drive amount Calculating a preload value (V_W) from a second characteristic curve (KL 2 ) indicating
According to the fuel pump characteristic map (KF) to which the driving value (A_W) for driving the fuel pump is assigned to each set of values (F_W; V_W) composed of the calculated pumping amount value and the preload value. A computer program for executing a step of obtaining a drive value (A_W) for driving a fuel pump.
内燃機関の制御装置(20)であるコンピュータに、
調量ユニットの駆動量(A_Z)を用いて、該駆動量に基づいて圧送量示す第1の特性曲線(KL )により圧送量値(F_W)計算し、該駆動量に基づいて予圧を示す第2の特性曲線(KL )により予圧値(V_W)を計算するステップ、および
計算された圧送量値と予圧値とから成る値の組(F_W;V_W)にそれぞれ1つずつ燃料ポンプを駆動する駆動値(A_W)の割り当てられた燃料ポンプの特性マップ(KF)により当該の燃料ポンプを駆動する駆動値(A_W)を求めるステップ
を実行させるためのコンピュータプログラム
を記録したコンピュータ読み取り可能な記録媒体。
In the computer which is the control device (20) of the internal combustion engine,
Using the drive amount of the metering unit (A_Z), on the basis of the drive amount pumping quantity value (F_W) calculated by the first characteristic curve showing the pumping quantity (KL 1), preload based on the drive amount Calculating a preload value (V_W) from a second characteristic curve (KL 2 ) indicating
According to the fuel pump characteristic map (KF) to which the driving value (A_W) for driving the fuel pump is assigned to each set of values (F_W; V_W) composed of the calculated pumping amount value and the preload value. A computer-readable recording medium having recorded thereon a computer program for executing a step of obtaining a drive value (A_W) for driving the fuel pump.
燃料蓄積器(11)から燃料が燃料ポンプ(13)により予圧をかけられた状態で調量ユニット(15)を介して高圧ポンプ(16)へポンプ圧送され、ここで制御ユニットによって設定された燃料量を供給するための駆動量(A_Z)により前記調量ユニットが駆動され、前記燃料ポンプ(13)が調量ユニットの駆動量(A_Z)に依存して駆動される、
車両の内燃機関の制御装置において、
調量ユニットの駆動量(A_Z)を用いて、該駆動量に基づいて圧送量示す第1の特性曲線(KL )により圧送量値(F_W)計算され、さらに該駆動量に基づいて予圧を示す第2の特性曲線(KL )により予圧値(V_W)が計算され、
計算された圧送量値と予圧値とから成る値の組(F_W;V_W)にそれぞれ1つずつ燃料ポンプを駆動する駆動値(A_W)の割り当てられた燃料ポンプの特性マップ(KF)により当該の燃料ポンプを駆動する駆動値(A_W)が求められる
ことを特徴とする内燃機関の制御装置。
Fuel is pumped from the fuel accumulator (11) to the high pressure pump (16) through the metering unit (15) in a state where the fuel pump (13) is preloaded, and the fuel set by the control unit here The metering unit is driven by a drive amount (A_Z) for supplying a quantity, and the fuel pump (13) is driven depending on the drive amount (A_Z) of the metering unit.
In a control device for an internal combustion engine of a vehicle,
Using the drive amount of the metering unit (A_Z), the first characteristic curve (KL 1) by pumping quantity value that indicates the pumping quantity based on the driving amount (F_W) is calculated further based on said driving amount preload value (V_w) is calculated by the second characteristic curve showing a preload (KL 2),
According to the fuel pump characteristic map (KF) to which the driving value (A_W) for driving the fuel pump is assigned to each set of values (F_W; V_W) composed of the calculated pumping amount value and the preload value. A control apparatus for an internal combustion engine, characterized in that a drive value (A_W) for driving a fuel pump is obtained.
燃料蓄積器(11)から燃料が燃料ポンプ(13)により予圧を掛けられた状態で調量ユニット(15)を介して高圧ポンプ(16)へポンプ圧送され、ここで制御ユニットによって設定された燃料量を供給するための駆動量(A_Z)により前記調量ユニットが駆動され、前記燃料ポンプ(13)が調量ユニットの駆動量(A_Z)に依存して駆動される、
車両の内燃機関において、
調量ユニットの駆動量(A_Z)を用いて、該駆動量に基づいて圧送量示す第1の特性曲線(KL )により圧送量値(F_W)計算され、さらに該駆動量に基づいて予圧を示す第2の特性曲線(KL )により予圧値(V_W)が計算され、
計算された圧送量値と予圧値とから成る値の組(F_W;V_W)にそれぞれ1つずつ燃料ポンプを駆動する駆動値(A_W)の割り当てられた燃料ポンプの特性マップ(KF)により当該の燃料ポンプを駆動する駆動値(A_W)が求められる
ことを特徴とする内燃機関。
Fuel is pumped from the fuel accumulator (11) to the high pressure pump (16) through the metering unit (15) in a state where the preload is applied by the fuel pump (13), where the fuel set by the control unit The metering unit is driven by a drive amount (A_Z) for supplying a quantity, and the fuel pump (13) is driven depending on the drive amount (A_Z) of the metering unit.
In an internal combustion engine of a vehicle,
Using the drive amount of the metering unit (A_Z), the first characteristic curve (KL 1) by pumping quantity value that indicates the pumping quantity based on the driving amount (F_W) is calculated further based on said driving amount preload value (V_w) is calculated by the second characteristic curve showing a preload (KL 2),
According to the fuel pump characteristic map (KF) to which the driving value (A_W) for driving the fuel pump is assigned to each set of values (F_W; V_W) composed of the calculated pumping amount value and the preload value. An internal combustion engine characterized in that a drive value (A_W) for driving a fuel pump is obtained.
JP2002284115A 2001-09-28 2002-09-27 Internal combustion engine drive method, internal combustion engine control device computer program, and internal combustion engine control device Expired - Fee Related JP4181373B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10148222.1 2001-09-28
DE2001148222 DE10148222A1 (en) 2001-09-28 2001-09-28 Method for operating an internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003176745A JP2003176745A (en) 2003-06-27
JP4181373B2 true JP4181373B2 (en) 2008-11-12

Family

ID=7700860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284115A Expired - Fee Related JP4181373B2 (en) 2001-09-28 2002-09-27 Internal combustion engine drive method, internal combustion engine control device computer program, and internal combustion engine control device

Country Status (4)

Country Link
EP (1) EP1298306B1 (en)
JP (1) JP4181373B2 (en)
DE (2) DE10148222A1 (en)
ES (1) ES2267905T3 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360024A1 (en) * 2003-12-19 2005-07-21 Siemens Ag Method and device for controlling an internal combustion engine
EP1723329B1 (en) * 2004-01-14 2012-07-18 Robert Bosch Gmbh Method and control device for operating an internal combustion engine with an injection system
JP2005256739A (en) * 2004-03-11 2005-09-22 Denso Corp Fuel injection apparatus
US7207319B2 (en) * 2004-03-11 2007-04-24 Denso Corporation Fuel injection system having electric low-pressure pump
DE102005023700A1 (en) 2005-05-23 2006-11-30 Robert Bosch Gmbh Fuel delivery device and method of monitoring a filter of the device
DE102007018310B3 (en) * 2007-04-18 2008-11-13 Continental Automotive Gmbh Method and device for controlling a high-pressure accumulator pressure of an injection system of an internal combustion engine
DE102008041407A1 (en) 2008-08-21 2010-02-25 Robert Bosch Gmbh High-pressure pump for common rail injection system in internal-combustion engine of motor vehicle, has operating piston lying at force transmission part during pivoting of force transmission part by rotation of eccentric cam
JP5126102B2 (en) * 2009-02-10 2013-01-23 トヨタ自動車株式会社 Fuel supply device for internal combustion engine
DE102009001503A1 (en) 2009-03-12 2010-09-16 Robert Bosch Gmbh Feed pump controlling method for common rail system, involves regulating pressure between feed pump and high-pressure pump to desired value, and controlling feed pump such that feed pump feeds increased amount of fuel
DE102010031628A1 (en) * 2009-08-17 2011-02-24 Robert Bosch Gmbh Fuel delivery device for a fuel injection device of an internal combustion engine
DE112011103200B4 (en) 2010-09-23 2023-06-07 Cummins Intellectual Property, Inc. Variable flow fuel transfer pump system and method
DE102010043374A1 (en) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Fuel injection system of an internal combustion engine, and method for controlling the selbigen
DE102010064374B3 (en) * 2010-12-30 2012-07-12 Continental Automotive Gmbh Fuel injection system of an internal combustion engine and associated pressure control method, control unit and motor vehicle
DE102011076063A1 (en) * 2011-05-18 2012-11-22 Robert Bosch Gmbh System for conveying a fluid
DE102011082645A1 (en) 2011-09-14 2013-03-14 Robert Bosch Gmbh Low pressure circuit for a fuel injection system and fuel injection system
FR2991001B1 (en) * 2012-05-22 2016-01-29 Peugeot Citroen Automobiles Sa FUEL SUPPLY DEVICE OF AN INTERNAL COMBUSTION ENGINE
EP3456950A1 (en) * 2017-09-13 2019-03-20 Robert Bosch GmbH Method for controlling a pressure in a fuel reservoir of an injection system of a combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842331B2 (en) * 1995-05-26 2006-11-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング FUEL SUPPLY DEVICE FOR FUEL SUPPLY FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR OPERATING INTERNAL COMBUSTION ENGINE
DE19731994B4 (en) * 1997-07-25 2007-11-15 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19739653A1 (en) * 1997-09-10 1999-03-11 Bosch Gmbh Robert Process for producing high-pressure fuel and system for producing high-pressure fuel
DE19946908A1 (en) * 1999-09-30 2001-04-05 Bosch Gmbh Robert Process for reducing the rail pressure in a common rail system for internal combustion engines
DE10001882A1 (en) * 2000-01-19 2001-08-02 Bosch Gmbh Robert Method for operating a prefeed pump of a fuel metering system and fuel metering system of a direct-injection internal combustion engine

Also Published As

Publication number Publication date
EP1298306A2 (en) 2003-04-02
DE50207614D1 (en) 2006-09-07
DE10148222A1 (en) 2003-04-17
ES2267905T3 (en) 2007-03-16
JP2003176745A (en) 2003-06-27
EP1298306A3 (en) 2004-11-10
EP1298306B1 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP4181373B2 (en) Internal combustion engine drive method, internal combustion engine control device computer program, and internal combustion engine control device
JP4434097B2 (en) Accumulated fuel injection control device
RU2684147C1 (en) Detection of error within pressure fuel sensor range
US10508612B2 (en) System and methods for operating fuel system responsive to inferred fuel temperature
KR101199091B1 (en) Control system for oil hydraulic and flow of engine and the control method thereof
US8539934B2 (en) Injection abnormality detection method and common rail fuel injection control system
CN101922553B (en) Control device of lock-up clutch
RU2706853C2 (en) Method (embodiments) and fuel system control system
CN107489517B (en) Electric pump operating strategy
JP4317133B2 (en) Operating method of common rail fuel injection system for internal combustion engine
JPH10246144A (en) Fuel injection method for engine and device thereof
US20150354491A1 (en) Adjusting pump volume commands for direct injection fuel pumps
GB2340962A (en) Device for controlling fuel injection in cold engine temperatures
JP2004518884A (en) Method and apparatus for controlling a piezo actuator
JP2014051920A (en) Fuel heater control method and common rail-type fuel injection control device
JP4173695B2 (en) Driving method for internal combustion engine
JP2007077898A (en) Fuel injection control device
JP2007303372A (en) Fuel supply system of internal combustion engine
JP4572950B2 (en) Common rail pressure control device and fuel injection system using the same
JP2007247541A (en) Fuel injection device
KR20160011585A (en) Method for adapting fuel pressure in low pressure region of fuel direct injection system
US7536995B2 (en) Method for limiting the power output of an internal combustion engine
US9020740B2 (en) Fluid pump speed control
JP6560720B2 (en) Hydraulic control device
JP2007071130A (en) Abnormal diagnosis device of fuel injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070912

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071015

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees