JP4181059B2 - Method for evaluating the transportability of pulverized coal - Google Patents

Method for evaluating the transportability of pulverized coal Download PDF

Info

Publication number
JP4181059B2
JP4181059B2 JP2004013229A JP2004013229A JP4181059B2 JP 4181059 B2 JP4181059 B2 JP 4181059B2 JP 2004013229 A JP2004013229 A JP 2004013229A JP 2004013229 A JP2004013229 A JP 2004013229A JP 4181059 B2 JP4181059 B2 JP 4181059B2
Authority
JP
Japan
Prior art keywords
coal
mineral
pulverized coal
present
transportability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004013229A
Other languages
Japanese (ja)
Other versions
JP2005207817A (en
Inventor
康二 金橋
公児 齋藤
裕二 藤岡
将之 西藤
林  俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004013229A priority Critical patent/JP4181059B2/en
Publication of JP2005207817A publication Critical patent/JP2005207817A/en
Application granted granted Critical
Publication of JP4181059B2 publication Critical patent/JP4181059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、微粉炭の搬送性を評価する方法に関する。詳しくは、核磁気共鳴(以下「NMR」ということがある。)スペクトル測定法を利用して、高炉などの冶金炉やボイラーなどの燃焼炉に吹き込む微粉炭として使用する石炭の搬送性を評価する方法に関する。   The present invention relates to a method for evaluating the transportability of pulverized coal. Specifically, the transportability of coal used as pulverized coal to be blown into a metallurgical furnace such as a blast furnace or a combustion furnace such as a boiler is evaluated using a nuclear magnetic resonance (hereinafter sometimes referred to as “NMR”) spectrum measurement method. Regarding the method.

製鉄プロセスにおける冶金炉、例えば高炉の操業においては、一般に、鉄鉱石などの鉄含有原料とコークスなどの還元剤を炉頂から交互に装入するが、近年、炉頂から装入するコークスの一部を安価な微粉炭に代替し、微粉炭を熱風とともに高炉の羽口から吹き込むことが盛んに行われている。   In the operation of a metallurgical furnace such as a blast furnace in an iron making process, an iron-containing raw material such as iron ore and a reducing agent such as coke are generally charged alternately from the top of the furnace. Part of the pulverized coal is replaced with cheap pulverized coal, and the pulverized coal is blown together with hot air from the tuyere's tuyere.

このような高炉の微粉炭吹き込み操業は、安価な微粉炭を多量に吹き込むことによりコークス装入量を低減し、高炉燃料比を小さくすることを狙ったものである。   Such blast furnace pulverized coal injection operation aims to reduce the coke charging amount and reduce the blast furnace fuel ratio by injecting a large amount of inexpensive pulverized coal.

また、発電プロセスにおけるボイラー等の燃焼炉の運転においても、重油の代替燃料として石炭が見直されている。その石炭の使用形態としては、CWM(石炭−水スラリー)、COM(石炭重油混合燃料)、微粉炭等の吹き込みが挙げられるが、中でも、水や油等を必要としない微粉炭の吹き込みが、特に注目されている。   Also, in the operation of a combustion furnace such as a boiler in a power generation process, coal is reviewed as an alternative fuel for heavy oil. Examples of the use form of the coal include CWM (coal-water slurry), COM (coal fuel oil blended fuel), pulverized coal, and the like. Among them, pulverized coal that does not require water, oil, etc. Particular attention has been paid.

このような吹き込み用の微粉炭は、一般に、原炭を粉砕、乾燥・分級し、一旦、ホッパーに貯蔵される。その後、微粉炭は、ホッパーから所定量切出され、高炉またはボイラーの吹き込み口まで配管を用いて気体輸送され、該吹き込み口から炉内に吹き込まれる。   Such pulverized coal for blowing is generally pulverized, dried and classified, and once stored in a hopper. Thereafter, a predetermined amount of the pulverized coal is cut out from the hopper, gas transported to the blast furnace or the boiler inlet using a pipe, and blown into the furnace from the inlet.

この際、微粉炭の石炭銘柄、粒度、水分量などの違いによって、気体輸送する微粉炭の搬送性が大きく変化する。その結果、気体輸送中に微粉炭が配管に付着する、さらに、配管が閉塞するなどの問題を引き起こす。   At this time, the transportability of the pulverized coal that is transported by gas varies greatly depending on the coal brand, particle size, moisture content and the like of the pulverized coal. As a result, problems such as pulverized coal adhering to the pipe during gas transportation and further blocking the pipe are caused.

配管が閉塞または閉塞に近い状態になれば、配管内における圧力損失が増大し、微粉炭を高炉またはボイラー内へ安定して連続的に吹き込むことが困難となるので、このような微粉炭搬送性の問題点を解決するため、従来から種々の方法が開示されている。   If the pipe is closed or close to the blockage, the pressure loss in the pipe increases and it becomes difficult to stably and continuously blow pulverized coal into the blast furnace or boiler. In order to solve this problem, various methods have been disclosed.

例えば、特許文献1には、微粉炭中に搬送性が良好なチャー(石炭熱分解物)を所定量添加、混合する方法、特許文献2には、微粉炭に界面活性剤等を添着する方法、特許文献3には、粘結炭の粒度調整や2種以上の微粉炭を混合することにより微粉炭と輸送配管との摩擦係数を所定範囲に調整する方法、特許文献4には、微粉炭の流動性指数(安息角、圧縮度、スパチュラ角、凝集度の測定指数の総和)を基準値以上とするように調整する方法が開示されている。   For example, Patent Document 1 discloses a method of adding and mixing a predetermined amount of char (coal pyrolysis product) having good transportability in pulverized coal, and Patent Document 2 discloses a method of attaching a surfactant or the like to pulverized coal. Patent Document 3 discloses a method for adjusting the coefficient of friction between a pulverized coal and a transportation pipe by adjusting the particle size of caking coal or mixing two or more kinds of pulverized coal, and Patent Document 4 discloses a pulverized coal. Has been disclosed that adjusts the fluidity index (the angle of repose, the compression degree, the spatula angle, and the aggregation index of the degree of aggregation) to a reference value or more.

しかし、特許文献1及び2の開示技術は、微粉炭に搬送性を高める作用をもつ添加剤を添加または添着する新たな工程が必要であり、特に、界面活性剤を使用する場合は、コスト増加の原因となる。また、特許文献3及び4の開示技術は、粘結炭の粒度調整のための粉砕や、粘結炭の性状の管理をする必要がある。   However, the disclosed techniques of Patent Documents 1 and 2 require a new process for adding or attaching an additive having an effect of improving transportability to pulverized coal, and particularly when using a surfactant, the cost increases. Cause. Moreover, it is necessary for the disclosed technique of patent documents 3 and 4 to grind | pulverize for the particle size adjustment of caking coal, and to manage the property of caking coal.

また、特許文献5には、微粉炭として粘結炭を使用する際に、粘結炭中のイナート量(JIS M8816−1979で規定される、ミクリニット、セミフジニットの2/3、フジニット、鉱物質およびビトリニット反射率2.4以上の熱可塑性を有しない成分)を所定量以上にして微粉砕する方法が開示されている。   Patent Document 5 discloses that when caking coal is used as pulverized coal, the amount of inert in the caking coal (as defined in JIS M8816-1979, 2/3 of miclinite, semi-fujinit, fuzinite, mineral substances and A method of finely pulverizing a component having a vitrinite reflectance of 2.4 or more and having no thermoplasticity to a predetermined amount or more is disclosed.

しかし、この方法は、粘結炭を多量に使用することを前提とするもので、粘結炭中に含有する搬送性が良好なイナート量を所定量以上に管理することが必要となる。   However, this method is based on the premise that a large amount of caking coal is used, and it is necessary to manage the amount of inert contained in the caking coal with good transportability to a predetermined amount or more.

特開平4−26804号公報JP-A-4-26804 特開平8−100206号公報JP-A-8-100206 特開平5−214417号公報JP-A-5-214417 特開平4−224610号公報JP-A-4-224610 特開平5−9518号公報JP-A-5-9518

上記特許文献1〜5で開示された従来技術は、事前処理や添加剤を必要とするので生産性、経済性の点で不利であり、また、搬送性を阻害する石炭中の原因物質の解明または特定がなされていない。それ故、上記従来技術においては、微粉炭中に配合する石炭銘柄およびその配合比を変更した場合に、搬送性が大きく低下することがあった。   The conventional techniques disclosed in Patent Documents 1 to 5 are disadvantageous in terms of productivity and economy because they require pretreatment and additives, and elucidation of causative substances in coal that impede transportability. Or not specified. Therefore, in the above prior art, when the coal brand to be blended in the pulverized coal and the blending ratio thereof are changed, the transportability may be greatly lowered.

また、150kg/t(銑鉄)以上の微粉炭を吹き込む高炉操業において、微粉炭が気送配管内に付着し、さらに、該配管が閉塞すると、該配管内における圧力損失が増大し、微粉炭吹き込み量が大きく低減する。この吹き込み量の低減は、高炉の燃料比の増加、または、生産性の低下の原因となる。   In addition, in blast furnace operation in which pulverized coal of 150 kg / t (pig iron) or more is blown, if pulverized coal adheres to the inside of the pneumatic piping and further closes, the pressure loss in the piping increases, and pulverized coal is blown. The amount is greatly reduced. This reduction in the amount of blowing causes an increase in the fuel ratio of the blast furnace or a decrease in productivity.

本発明は、このような従来技術の現状に鑑み、従来のような特殊な事前処理や添加剤を用いずとも、微粉炭の搬送性を安定して向上させることを課題とし、その解決方法として、NMR法を利用し、高炉などの冶金炉やボイラーなどの燃焼炉に吹き込む微粉炭の搬送性を適正に評価する方法を提供するものである。   In view of the current state of the prior art, the present invention aims to stably improve the transportability of pulverized coal without using special pretreatment and additives as in the past, and as a solution to that problem The present invention provides a method for appropriately evaluating the transportability of pulverized coal to be blown into a metallurgical furnace such as a blast furnace or a combustion furnace such as a boiler, using an NMR method.

本発明者は、鋭意研究の結果、高炉などの冶金炉やボイラーなどの燃焼炉に吹き込む微粉炭中に存在し、配管付着や配管閉塞を引き起こす原因となる無機鉱物の化学形態を、NMR法を利用して特定するとともに、該無機鉱物の存在比を定量し、この特定・定量に基づいて、各種石炭の搬送性を評価できることを知見した。   As a result of diligent research, the present inventor found that the chemical form of inorganic minerals present in pulverized coal blown into metallurgical furnaces such as blast furnaces and combustion furnaces such as boilers, causing the adhesion of pipes and clogging of pipes, NMR method. It was found that the abundance ratio of the inorganic mineral was quantified and the transportability of various coals could be evaluated based on the identification and quantification.

本発明は、上記知見に基づいてなされたもので、その要旨とするところは、以下の通りである。   The present invention has been made on the basis of the above findings, and the gist thereof is as follows.

(1)冶金炉や燃焼炉の吹き込み口まで配管を用いて気体輸送され、該吹き込み口から炉内に吹き込まれる微粉炭として使用する石炭の搬送性を評価する方法であって、
上記石炭中に存在する27Al核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはAl 2 3 に相当するピーク位置とを照合し、上記石炭中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定しさらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、
続いて、上記配管に付着または配管を閉塞する配管固着物から採取した試料中の 27 Alの核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはAl 2 3 に相当するピーク位置とを照合し、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定しさらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、
上記石炭中に存在するAlとSiを主成分とする無機鉱物の存在比と、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の存在比を対比して、両存在比の類似関係から、上記石炭の搬送性を評価することを特徴とする微粉炭の搬送性評価方法。
(2)冶金炉や燃焼炉の吹き込み口まで配管を用いて気体輸送され、該吹き込み口から炉内に吹き込まれる微粉炭として使用する石炭の搬送性を評価する方法であって、
上記石炭中に存在する 29 Siの核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはSiO 2 に相当するピーク位置とを照合し、上記石炭中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定し、さらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、
続いて、上記配管に付着または配管を閉塞する配管固着物から採取した試料中の 29 Siの核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはSiO 2 に相当するピーク位置とを照合し、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定し、さらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、
上記石炭中に存在するAlとSiを主成分とする無機鉱物の存在比と、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の存在比を対比して、両存在比の類似関係から、上記石炭の搬送性を評価することを特徴とする微粉炭の搬送性評価方法。
(1) A method for evaluating the transportability of coal used as pulverized coal that is gas transported to a metallurgical furnace or combustion furnace through a pipe and is blown into the furnace from the blow opening,
The nuclear magnetic resonance spectrum 27 Al present in the coal is measured, compares the peak position of the measured spectrum, kaolin minerals, smectites, and a peak position corresponding to mica clay minerals or Al 2 O 3, the coal Identifying the chemical form of the inorganic mineral mainly composed of Al and Si present therein, and further quantifying the abundance ratio of the inorganic mineral from the ratio of the peak integral value of the inorganic mineral to the total peak integral value;
Subsequently, the nuclear magnetic resonance spectrum of 27 Al in the sample collected from the pipe adhering material adhering to or blocking the pipe is measured, and the peak position of the measurement spectrum and the kaolin mineral, smectite, mica clay mineral or Al The peak position corresponding to 2 O 3 is collated, the chemical form of the inorganic mineral mainly composed of Al and Si present in the above-mentioned pipe fixed matter is specified , and the peak of the inorganic mineral relative to the total peak integral value is further determined. Quantifying the abundance ratio of the inorganic mineral from the ratio of the integral value,
By comparing the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the coal with the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the fixed pipe, both abundance ratios A method for evaluating the transportability of pulverized coal, wherein the transportability of the coal is evaluated from the similar relationship .
(2) It is a method for evaluating the transportability of coal used as pulverized coal that is gas-transported using piping to a metallurgical furnace or a combustion furnace, and is blown into the furnace from the inlet,
The nuclear magnetic resonance spectrum of 29 Si present in the coal is measured, and the peak position of the measured spectrum is compared with the peak position corresponding to kaolin mineral, smectite, mica clay mineral or SiO 2 , Identifying the chemical form of the inorganic mineral mainly composed of Al and Si present, further quantifying the abundance ratio of the inorganic mineral from the ratio of the peak integral value of the inorganic mineral to the total peak integral value,
Subsequently, 29 Si nuclear magnetic resonance spectrum in the sample collected from the pipe adhering material adhering to or blocking the pipe is measured, and the peak position of the measurement spectrum and kaolin mineral, smectite, mica clay mineral or SiO The peak position corresponding to 2 is collated, the chemical form of the inorganic mineral mainly composed of Al and Si present in the above-mentioned pipe fixed matter is specified, and the peak integral value of the inorganic mineral with respect to the total peak integral value Quantifying the abundance ratio of the inorganic mineral from the ratio of
By comparing the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the coal with the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the fixed pipe, both abundance ratios A method for evaluating the transportability of pulverized coal, wherein the transportability of the coal is evaluated from the similar relationship.

)前記無機鉱物が粘土鉱物および酸化物であることを特徴とする上記(1)または(2)に記載の微粉炭の搬送性評価方法。 ( 3 ) The method for evaluating the transportability of pulverized coal according to (1) or (2) above, wherein the inorganic mineral is a clay mineral and an oxide.

(4)前記石炭中に存在する27Alの核磁気共鳴スペクトルを、27Al−マジック角回転(MAS)法、または、27Al−多量子マジック角回転(MQMAS)法を用いて測定することを特徴とする上記(1)に記載の微粉炭の搬送性評価方法。 (4) Measuring the nuclear magnetic resonance spectrum of 27 Al present in the coal using the 27 Al-magic angle rotation (MAS) method or the 27 Al-multi-quantum magic angle rotation (MQMAS) method. The method for evaluating the transportability of pulverized coal as described in ( 1) above.

)前記石炭の29Siの核磁気共鳴スペクトルを、29Si−マジック角回転(MAS)法を用いて測定することを特徴とする上記(2に記載の微粉炭の搬送性評価方法。 ( 5 ) The method for evaluating the transportability of pulverized coal according to (2 ) above, wherein the 29 Si nuclear magnetic resonance spectrum of the coal is measured using a 29 Si-magic angle rotation (MAS) method.

本発明によれば、高炉などの冶金炉やボイラーなどの燃焼炉に吹き込む微粉炭中に存在し、配管付着や配管閉塞を引き起こす原因となる無機鉱物の化学形態を特定するとともに、該無機鉱物の存在比を定量し、この特定・定量に基づいて、各種石炭の搬送性を適正に評価することができるので、従来のような特殊な事前処理や添加剤を用いずとも、吹き込み用の微粉炭として使用する石炭の銘柄および配合比を適宜調節して、微粉炭の搬送性を安定して向上せしめ維持することができる。   According to the present invention, it is present in pulverized coal that is blown into a metallurgical furnace such as a blast furnace and a combustion furnace such as a boiler, and specifies the chemical form of the inorganic mineral that causes pipe adhesion and pipe clogging. Since the abundance ratio can be quantified and the transportability of various types of coal can be properly evaluated based on this identification and quantification, pulverized coal for blowing can be used without using special pretreatment and additives as in the past. It is possible to stably improve and maintain the transportability of the pulverized coal by appropriately adjusting the brand and blending ratio of the coal used as the coal.

本発明の実施形態について、以下に説明する。   Embodiments of the present invention will be described below.

本発明は、高炉などの冶金炉やボイラーなどの燃焼炉に吹き込む微粉炭中に存在し、配管付着や配管閉塞を引き起こす原因となる無機鉱物の化学形態を特定するとともに、この特定・定量に基づいて、各種石炭の搬送性を適正に評価することを基本的な技術思想とする。   The present invention specifies a chemical form of an inorganic mineral that is present in pulverized coal blown into a metallurgical furnace such as a blast furnace or a combustion furnace such as a boiler, and causes pipe adhesion or pipe clogging. The basic technical idea is to properly evaluate the transportability of various types of coal.

そして、本発明においては、従来の成分化学分析法では不可能であった無機鉱物の化学形態を特定するための手段、および、該無機鉱物の存在比を定量する手段として、NMR法を利用する。この点が本発明の特徴である。   In the present invention, the NMR method is used as a means for specifying the chemical form of an inorganic mineral that has been impossible with the conventional component chemical analysis method and a means for quantifying the abundance ratio of the inorganic mineral. . This is a feature of the present invention.

表1に、高炉の微粉炭吹き込み操業で使用した微粉炭(A〜Dの4種類の混合微粉炭)と、微粉炭吹き込み配管の内から採取した配管固着物に含まれるAl量、Si量および全金属量を成分化学分析により測定した結果を質量%で示す。   Table 1 shows the amount of Al and Si contained in pulverized coal (four types of mixed pulverized coals A to D) used in the operation of blowing pulverized coal in the blast furnace and the fixed pipes collected from the pulverized coal-injected piping. The result of measuring the total metal amount by component chemical analysis is shown in mass%.

Figure 0004181059
Figure 0004181059

表1に示すように、配管固着物中のAl量およびSi量は、A〜Dの何れの微粉炭中のAl量およびSi量よりも多い、つまり、微粉炭中のAlおよびSiが配管固着物の中に濃化している。   As shown in Table 1, the amount of Al and the amount of Si in the fixed pipe are larger than the amounts of Al and Si in any pulverized coal of A to D, that is, the Al and Si in the pulverized coal are solid. It is concentrated in the kimono.

本発明者は、このことから、微粉炭の気体輸送の際において、配管付着または配管閉塞を引き起こす原因物質は、石炭中に存在する“AlとSiを主成分とする無機鉱物”(以下「Al・Si無機鉱物」ということがある。)であると予測し、その化学形態を解明ないし特定することについて鋭意検討した。   From this, the present inventor has determined that the causative substance that causes pipe adhesion or pipe blockage during gas transportation of pulverized coal is “an inorganic mineral mainly composed of Al and Si” (hereinafter “Al”).・ Since it is sometimes called “Si inorganic minerals”), we sought to clarify or identify its chemical form.

図1に、本発明において測定対象とする石炭中のAl・Si無機鉱物の代表例である、カオリン鉱物(図中(a))、スメクタイト(図中(b))、および、雲母粘土鉱物(図中(c))の化学形態を示す。   FIG. 1 shows kaolin mineral ((a) in the figure), smectite ((b) in the figure), and mica clay mineral (which is a representative example of the Al / Si inorganic mineral in the coal to be measured in the present invention. The chemical form of (c)) is shown in the figure.

石炭中には、それぞれ化学構造の異なるAl・Si無機鉱物として、図1に示すような、カオリン鉱物(Al2Si25(OH)4)、スメクタイト(X(=Na,1/2Ca)0.33(Al1.67Mg0.33)Si410(OH)2・nH2O)、雲母粘土鉱物(K0.75(Al1.75R(=2価金属)0.25.)(Si3.50Al0.50)O10(OH)2・nH2O)等のアルミノケイ酸塩の粘土鉱物、さらに、酸化物として、アルミナ(Al23)、シリカ(SiO2)等が含有されている。 In coal, kaolin minerals (Al 2 Si 2 O 5 (OH) 4 ) and smectites (X (= Na, 1 / 2Ca) as shown in FIG. 1 are used as Al / Si inorganic minerals having different chemical structures. 0.33 (Al 1.67 Mg 0.33 ) Si 4 O 10 (OH) 2 .nH 2 O), mica clay mineral (K 0.75 (Al 1.75 R (= divalent metal) 0.25. ) (Si 3.50 Al 0.50 ) O 10 (OH 2 ) n · H 2 O) and other aluminosilicate clay minerals, and alumina (Al 2 O 3 ), silica (SiO 2 ) and the like as oxides.

カオリン鉱物の化学構造は、Al3+イオンを中心とした8面体(6配位型Al)構造とSi4+イオンを中心とした4面体(6配位型Si)構造とが1:1で層を形成した構造である(図1中(a)参照)。 The chemical structure of kaolin minerals is 1: 1 with an octahedral (6-coordinated Al) structure centered on Al 3+ ions and a tetrahedral (6-coordinated Si) structure centered on Si 4+ ions. This is a structure in which a layer is formed (see FIG. 1A).

スメクタイトの化学構造は、Si4+イオンを中心とした4面体(4配位型Si)構造がAl3+イオンを中心とした8面体(6配位型Al)構造を上下から挟み込んだような、2:1の層構造である。上記化学構造は、4配位型Si4+イオンの一部をAl3+イオンで置換した構造をとっているから、該構造中には4配位型Alも存在する(図1中(b)参照)。 The smectite chemical structure is such that a tetrahedral (tetracoordinated Si) structure centered on Si 4+ ions sandwiches an octahedral (6-coordinated Al) structure centered on Al 3+ ions from above and below. 2: 1 layer structure. Since the above chemical structure has a structure in which a part of the tetracoordinated Si 4+ ion is substituted with Al 3+ ion, tetracoordinated Al is also present in the structure ((b in FIG. 1) )reference).

雲母粘土鉱物の化学構造も、スメクタイトと同様に、SiO4の4面体構造とAlO6の8面体構造構造が2:1で層を形成した構造で、SiO4のSi4+イオンの一部がAl3+イオンで置き換わっている(図1中(c)参照)。上記化学構造は、該構造中の4配位型Alの量がスメクタイトにおける4配位型Alの量よりも多いのが特徴である。 The chemical structure of the mica clay mineral is the same as that of smectite, but the SiO 4 tetrahedral structure and AlO 6 octahedral structure are 2: 1 layered, and some of the Si 4+ ions in SiO 4 are part of the structure. Al 3+ ions are replaced (see (c) in FIG. 1). The chemical structure is characterized in that the amount of tetracoordinated Al in the structure is larger than the amount of tetracoordinated Al in smectite.

アルミナ中のAlは6配位型構造をとり、シリカは4配位型Siで、Q4(SiO4ユニット中の酸素が全て隣接するSiO4ユニットと共有されている)の構造をとっている。 Al in alumina takes 6 coordinated structure, the silica has a structure of four coordinated Si, Q 4 (oxygen in SiO 4 units are shared with all neighboring SiO 4 units) .

本発明は、石炭中に存在する27Alまたは29Siの核磁気共鳴スペクトルを測定し、該測定スペクトルに基づいて、上記石炭中に存在するAl・Si無機鉱物の化学形態を分類し、該分類に基づいて、上記石炭の搬送性を評価することを特徴とする。 The present invention measures the nuclear magnetic resonance spectrum of 27 Al or 29 Si present in coal, classifies the chemical form of the Al / Si inorganic mineral present in the coal based on the measured spectrum, Based on the above, the transportability of the coal is evaluated.

そして、上記測定、分類および評価は、具体的には、以下のように行うことができる。   The measurement, classification, and evaluation can be specifically performed as follows.

まず、上述した石炭中に存在するAl・Si無機鉱物の標準試料を用いて、各々のAl・Si無機鉱物中の27Alまたは29SiのNMRスペクトルを測定し、各々のAl・Si無機鉱物について、ピークの位置を特定する。 First, using the Al / Si inorganic mineral standard sample present in the coal, the 27 Al or 29 Si NMR spectrum in each Al / Si inorganic mineral was measured. Identify the peak position.

続いて、高炉の微粉炭吹き込み操業において配管に付着した固着物または配管を閉塞した固着物(以下、併せて「配管固着物」ということがある。)から採取した試料について、該試料中の27Alまたは29SiのNMRスペクトルを測定し、観測されるピーク位置と、上記の既に測定した各々のAl・Si無機鉱物の27Alまたは29SiのNMRスペクトルピーク位置とを照合し、その結果から、配管固着物中に存在するAl・Si無機鉱物の化学形態を特定する。 Subsequently, a sample collected from a fixed matter adhering to the pipe or a fixed matter clogging the pipe in the operation of blowing pulverized coal in the blast furnace (hereinafter, also referred to as “pipe-fixed matter”) is 27 % of the sample. The NMR spectrum of Al or 29 Si is measured, and the observed peak position is collated with the 27 Al or 29 Si NMR spectrum peak position of each Al · Si inorganic mineral that has already been measured. The chemical form of the Al / Si inorganic mineral present in the fixed pipe is specified.

さらに、配管固着物中に存在する27Alまたは29SiのNMRスペクトルに基づいて、27Alまたは29Siの全ピークに係る積分値(全ピーク積分値)と、上記照合で特定されたAl・Si無機鉱物別に、該無機鉱物に該当する全てのピークに係る積分値(特定無機鉱物ピーク積分値)を求め、全ピーク積分値に対する特定無機化合物ピーク積分値の比率から、配管固着物中に含まれるAl・Si無機鉱物の存在比を定量する。 Furthermore, based on the NMR spectrum of 27 Al or 29 Si present in the pipe adhering material, the integrated value (total peak integrated value) for all 27 Al or 29 Si peaks and the Al · Si specified in the above collation For each inorganic mineral, the integral value (specific inorganic mineral peak integral value) relating to all the peaks corresponding to the inorganic mineral is obtained, and is included in the fixed pipe from the ratio of the specific inorganic compound peak integral value to the total peak integral value. Quantify the abundance ratio of Al / Si inorganic minerals.

次に、混合微粉炭を構成する各種銘柄の石炭のそれぞれについて、27Alまたは29SiのNMRスペクトルを測定し、観測されるピーク位置を、上記の既に測定した各々のAl・Si無機鉱物の27Alまたは29SiのNMRスペクトルピーク位置と照合し、その結果から、混合微粉炭を構成する各種銘柄の石炭中に存在するAl・Si無機鉱物の化学形態を特定する。 Next, for each of the coal various issues comprising mixing pulverized coal, by measuring the NMR spectra of 27 Al or 29 Si, the the observed peak position, the Al · Si inorganic minerals each already measured in the 27 It collates with the NMR spectrum peak position of Al or 29 Si, and the chemical form of the Al / Si inorganic mineral present in various brands of coal composing the mixed pulverized coal is specified from the result.

さらに、混合微粉炭を構成する各種銘柄の石炭中に存在する27Alまたは29SiのNMRスペクトルに基づいて、27Alまたは29Siの全ピークに係る積分値(全ピーク積分値)と、上記照合で特定されたAl・Si無機鉱物別に、該無機鉱物に該当する全てのピークに係る積分値(特定無機鉱物ピーク積分値)を求め、全ピーク積分値に対する特定無機化合物ピーク積分値の比率から、混合微粉炭を構成する各種銘柄の石炭中に含まれるAl・Si無機鉱物の存在比を銘柄毎に定量する。 Furthermore, based on the NMR spectra of 27 Al or 29 Si present in various brands of coal that constitute mixed pulverized coal, the integrated value (total peak integrated value) for all 27 Al or 29 Si peaks and the above verification For each of the Al and Si inorganic minerals identified in (1), the integral value (specific inorganic mineral peak integral value) relating to all the peaks corresponding to the inorganic mineral is obtained, and from the ratio of the specific inorganic compound peak integral value to the total peak integral value, The abundance ratio of Al / Si inorganic minerals contained in various brands of coal composing mixed pulverized coal is quantified for each brand.

最後に、以上の特定・定量結果に基づいて、混合微粉炭を構成する各種銘柄の石炭中に存在するAl・Si無機鉱物の存在比と、配管固着物中に存在するAl・Si無機鉱物の存在比を対比して、両存在比の類似関係から、混合微粉炭を構成する各種銘柄の石炭の搬送性を評価する。   Finally, based on the above identification / quantitative results, the abundance ratio of Al / Si inorganic minerals present in various brands of coal composing the mixed pulverized coal and the Al / Si inorganic minerals present in the fixed pipes By comparing the abundance ratios, the transportability of various brands of coal composing mixed pulverized coal is evaluated from the similar relationship between the abundance ratios.

さらに、この石炭の搬送性評価結果に基づいて、配管付着または配管閉塞の原因物質となっている微粉炭中の石炭銘柄、つまり、搬送性の低い石炭銘柄を特定し、その使用量を制限するか、または、搬送性の良好な石炭銘柄に変更して、微粉炭の搬送性を安定して高めることができる。   Furthermore, based on the coal transportability evaluation results, identify the coal brand in the pulverized coal that is the causative agent of pipe adhesion or pipe clogging, that is, the coal brand with low transportability, and limit the amount used. Alternatively, it is possible to stably improve the transportability of pulverized coal by changing to a coal brand having good transportability.

本発明によれば、配管内から採取した配管固着物中に存在するAl・Si無機鉱物の化学形態の特定とその存在比の定量に基づいて、微粉炭として使用する各種石炭の搬送性を評価できるので、原料炭の需給事情や操業変更により微粉炭を構成する各石炭銘柄を変更する時にも、その配合比を、適宜、適正に調整して、微粉炭の搬送性を安定して良好に維持することができる。   According to the present invention, the transportability of various coals used as pulverized coal is evaluated based on the identification of the chemical form of Al / Si inorganic minerals present in the fixed pipes collected from the pipes and the determination of their abundance ratios. Therefore, when changing the coal brands that make up pulverized coal due to the supply and demand situation of coking coal and operation changes, the mixing ratio is adjusted appropriately and appropriately, and the transportability of pulverized coal is stable and good Can be maintained.

本発明において、石炭中に存在するAl・Si無機鉱物の化学構造の特定は、その骨格の中心を担う27Alまたは29SiのNMRスペクトルを測定する(以下、それぞれを「27Al−NMR測定」、「29Si−NMR測定」という。)ことより行うことができる。 In the present invention, the chemical structure of the Al / Si inorganic mineral present in the coal is determined by measuring the NMR spectrum of 27 Al or 29 Si that plays a central role in the skeleton (hereinafter referred to as “ 27 Al-NMR measurement”). , " 29 Si-NMR measurement").

27Al−NMR測定では、アルミノケイ酸塩やアルミナ等、アルミニウムを含む化合物の化学形態を特定することができる。 In 27 Al-NMR measurement, the chemical form of a compound containing aluminum such as aluminosilicate and alumina can be specified.

27Al核は、核スピンが2/5で核四極子相互作用を有するので、27Al−NMR測定では、27Al−マジック角回転(Magic Angle Spinning、以下「MAS」と略称する。)法に比べてより核四極子相互作用を平均化できる27Al−多量子マジック角回転(Multiple Quantum Magic Angle Spinning、以下「MQMAS」と略称する。)法が、測定精度の点で好ましい。 Since 27 Al nuclei have a nuclear spin of 2/5 and a nuclear quadrupole interaction, the 27 Al-NMR measurement uses the 27 Al-magic angle spinning (hereinafter abbreviated as “MAS”) method. In comparison, the 27 Al-Multiple Quantum Magic Angle Spinning (hereinafter abbreviated as “MQMAS”) method that can average the nuclear quadrupole interaction is more preferable in terms of measurement accuracy.

MQMAS法により得られるスペクトル(MQMASスペクトル)は、MAS法により得られるスペクトル(MASスペクトル)の線形を示すF2軸と核四極子相互作用が平均化された線形を示すF1軸の両軸から成る2次元スペクトルとして表されるので、F2軸上での見かけの化学シフト値(以下「MASシフト値」と表記する。)が同じ化合物でも、四極子結合定数(核四極子相互作用の大きさを表すパラメータ)が異なれば、F1軸上で異なるシフト値(以下「Isotropicシフト値」と表記する。)を表示する。   A spectrum (MQMAS spectrum) obtained by the MQMAS method is composed of both F2 axis indicating the linearity of the spectrum (MAS spectrum) obtained by the MAS method and F1 axis indicating the linearity obtained by averaging the nuclear quadrupole interactions. Since it is expressed as a two-dimensional spectrum, even if the compound has the same apparent chemical shift value on the F2 axis (hereinafter referred to as “MAS shift value”), the quadrupole coupling constant (represents the magnitude of the nuclear quadrupole interaction). If the parameters are different, different shift values (hereinafter referred to as “Isotropic shift values”) on the F1 axis are displayed.

それ故、MQMASスペクトルによれば、2次元スペクトル上で化合物をより明確に区別することが可能となる。   Therefore, according to the MQMAS spectrum, it becomes possible to distinguish the compounds more clearly on the two-dimensional spectrum.

一方、29Si−NMR測定においてMAS法を用いると、アルミノケイ酸塩やシリカ等のケイ素を含む化合物の化学形態を特定することができる。 On the other hand, when the MAS method is used in 29 Si-NMR measurement, the chemical form of a compound containing silicon such as aluminosilicate or silica can be specified.

29Si−NMR測定では、一般的に、化学シフトの異方性が強いので、スペクトルの線幅が広幅化し易く、石炭中に化学構造が類似する複数種のAl・Si無機鉱物が存在すると、それらを判別することが困難となる場合がある。 In 29 Si-NMR measurement, since the chemical shift anisotropy is generally strong, it is easy to broaden the line width of the spectrum, and when there are multiple types of Al · Si inorganic minerals with similar chemical structures in coal, It may be difficult to distinguish them.

また、29Si−NMR測定では、29Si核のスピン−格子緩和時間(以下「T1」と略称する。)が一般に長く、そのため長時間の測定時間を要する。 In 29 Si-NMR measurement, the spin-lattice relaxation time of 29 Si nuclei (hereinafter abbreviated as “T1”) is generally long, and therefore a long measurement time is required.

本発明においては、27Al−NMR測定および29Si−NMR測定のいずれを用いても、石炭の搬送性評価において、従来手法に比べ、前記の優れた効果を得ることができるが、測定精度および測定時間などの実用面で、27Al−NMR測定法の方が好ましい。 In the present invention, any of the 27 Al-NMR measurement and the 29 Si-NMR measurement can be used to obtain the above-mentioned excellent effects in the coal transportability evaluation as compared with the conventional method. In terms of practical use such as measurement time, the 27 Al-NMR measurement method is preferred.

本発明の実施形態の一例として、27Al−MQMAS法を用いて、石炭中に存在する27AlのNMRスペクトルを測定してAl・Si無機鉱物を特定し、かつ、該Al・Si無機鉱物の存在比を定量する方法について、図2および図3を用いて説明する。 As an example of an embodiment of the present invention, 27 with Al-MQMAS method, by measuring the NMR spectra of 27 Al present in the coal identify Al · Si inorganic minerals, and, of the Al · Si inorganic minerals A method for quantifying the abundance ratio will be described with reference to FIGS.

図2に、27Al−MQMAS法を用いて、Al・Si無機鉱物(カオリン鉱物、スメクタイト、雲母粘土鉱物またはアルミナ)の標準試料のNMRスペクトルを測定した結果を示す。なお、図2は、各々のAl・Si無機鉱物の2次元スペクトルを便宜上1つにまとめたものである。 FIG. 2 shows the results of measuring the NMR spectrum of a standard sample of Al.Si inorganic mineral (kaolin mineral, smectite, mica clay mineral or alumina) using the 27 Al-MQMAS method. Note that FIG. 2 summarizes the two-dimensional spectra of the respective Al · Si inorganic minerals into one for convenience.

図2に示す2次元スペクトルから、例えば、スメクタイトの6配位型Alに相当するピークは、F2=3.4ppm、F1=7.6ppm、雲母粘土鉱物の6配位型Alに相当するピークは、F2=4.2ppm、F1=9.0ppm、カオリン鉱物の6配位型Alに相当するピークは、F2=5.7ppm、F1=9.3ppm、アルミナの6配位型Alに相当するピークは、F2=12.5ppm、F1=15.7ppm、とそれぞれ特定される。   From the two-dimensional spectrum shown in FIG. 2, for example, peaks corresponding to smectite 6-coordinated Al are F2 = 3.4 ppm, F1 = 7.6 ppm, and peaks corresponding to 6-coordinated Al of mica clay mineral are F2 = 4.2 ppm, F1 = 9.0 ppm, peaks corresponding to kaolin mineral 6-coordinated Al, F2 = 5.7 ppm, F1 = 9.3 ppm, peaks corresponding to alumina 6-coordinated Al Are specified as F2 = 12.5 ppm and F1 = 15.7 ppm, respectively.

また、図2に示す2次元スペクトルには、Al・Si無機鉱物の6配位型Alに相当するピークの他に、スメクタイトおよび雲母粘土鉱物の4配位型Alに相当するピークも存在する。   In addition, in the two-dimensional spectrum shown in FIG. 2, there are peaks corresponding to tetracoordinate Al of smectite and mica clay mineral, in addition to peaks corresponding to hexacoordinate Al of Si / Si inorganic mineral.

しかし、上記ピークは重なっていて判別し難いので、後述する石炭中に存在するAl・Si無機鉱物の特定・定量には、標準無機鉱物のピークとして、各々のAl・Si無機鉱物のピークが判別し易い6配位型Alに相当するピークを用いるのが好ましい。   However, since the above peaks overlap, it is difficult to distinguish them. Therefore, when identifying and quantifying the Al / Si inorganic minerals present in coal, which will be described later, the peak of each Al / Si inorganic mineral is identified as the peak of the standard inorganic mineral. It is preferable to use a peak corresponding to 6-coordinated Al that is easily formed.

なお、ppmは“part per million”の略称であり、各ピークに対して、(ピークの観測周波数/共鳴周波数×106)×106で定義され、NMRスペクトル測定に用いる装置の静磁場強度の大きさに依存しない無次元の単位である。 In addition, ppm is an abbreviation for “part per million”, and is defined as (peak observation frequency / resonance frequency × 10 6 ) × 10 6 for each peak, and represents the static magnetic field strength of the apparatus used for NMR spectrum measurement. It is a dimensionless unit that does not depend on size.

また、図3に、27Al−MQMAS法を用いて、表2に示す微粉炭Aの石炭の27Al−NMRスペクトルを測定した結果(2次元スペクトル)を示す。 FIG. 3 shows the result (two-dimensional spectrum) of 27 Al-NMR spectrum of coal of pulverized coal A shown in Table 2 using 27 Al-MQMAS method.

図3に示す微粉炭Aの石炭の2次元スペクトルにおけるピーク位置と、図2に示す各々のAl・Si無機鉱物のピーク位置を照合すると、微粉炭Aの石炭において観測されるピークは、F1=15.7ppm、F2=12.1ppmの位置、および、F1=8.5ppm、F2=3.9ppmの位置にピークトップがある。   When the peak position in the two-dimensional spectrum of coal of pulverized coal A shown in FIG. 3 and the peak position of each of the Al · Si inorganic minerals shown in FIG. 2 are collated, the peak observed in the coal of pulverized coal A is F1 = There is a peak top at the position of 15.7 ppm, F2 = 12.1 ppm, and at the position of F1 = 8.5 ppm, F2 = 3.9 ppm.

前者の位置はアルミナのピーク位置に相当するから、この照合から、石炭中に存在するAl・Si無機鉱物の一つとしてアルミナを特定することができる。また、後者の位置は、スメクタイトのピークと雲母粘土鉱物のピークの間にあるから、石炭中に存在するAl・Si無機鉱物として、スメクタイトと雲母粘土鉱物の両方、または、両者の混合層鉱物を特定することができる。   Since the former position corresponds to the peak position of alumina, it is possible to identify alumina as one of Al · Si inorganic minerals present in coal from this comparison. In addition, since the latter position is between the smectite peak and the mica clay mineral peak, both the smectite and mica clay mineral, or a mixed layer mineral of both, is used as the Al / Si inorganic mineral present in coal. Can be identified.

また、微粉炭Aの石炭中に存在するスメクタイト、雲母粘土鉱物、および、アルミナそれぞれの存在比は、各々の無機鉱物のスペクトルについて、F2軸方向への積分値を求め、その後、27Al−NMRスペクトルの全ピークの積分値に対するに上記積分値の比率を求めることによって定量できる。 The abundance ratios of smectite, mica clay mineral, and alumina present in the coal of pulverized coal A were determined as integral values in the F2 axis direction for each inorganic mineral spectrum, and then 27 Al-NMR. It can be quantified by determining the ratio of the integrated value to the integrated value of all the peaks of the spectrum.

図3に示す微粉炭Aの石炭のスペクトルについて、F2軸方向への積分をとったスペクトルを図4に示す。   FIG. 4 shows a spectrum obtained by integrating the pulverized coal A shown in FIG. 3 in the F2-axis direction.

各々のAl・Si無機鉱物の存在比を求めるには、まず、図2に示す、各々のAl・Si無機鉱物の2次元スペクトルのピークについて、F2軸方向への積分をとったスペクトルを得る必要がある。これにより、各々のAl・Si無機鉱物が示すスペクトルピークに関して、ピークトップの位置および半値幅を定義できる。   In order to obtain the abundance ratio of each Al · Si inorganic mineral, it is first necessary to obtain a spectrum obtained by integrating the two-dimensional spectrum peak of each Al · Si inorganic mineral shown in FIG. There is. Thereby, the position of a peak top and a half value width can be defined about the spectrum peak which each Al * Si inorganic mineral shows.

このピークトップの位置および半値幅の値を、図4に示すスペクトルの波形分離に適用し、実測したピークに対して最小二乗近似を行うことにより、表2に示すように、各々のAl・Si無機鉱物の定量を行うことが可能となる。   By applying the peak top position and half width value to the waveform separation of the spectrum shown in FIG. 4 and performing a least square approximation on the measured peak, as shown in Table 2, each Al · Si Quantification of inorganic minerals can be performed.

続いて、実際に、配管に付着または配管を閉塞している配管固着物を採取し、上記方法で、配管固着物中のAl・Si無機鉱物の特定および定量を行い、複数の微粉炭の中から、Al・Si無機鉱物の存在比が配管固着物中のAl・Si無機鉱物の存在比と最も近い微粉炭を選出することにより、配管付着または配管閉塞の原因となっている微粉炭を特定することができる。   Subsequently, the pipe adhering substance that actually adheres to or closes the pipe is collected, and the above method is used to identify and quantify the Al / Si inorganic minerals in the pipe adhering substance. From the above, by selecting the pulverized coal whose Al / Si inorganic mineral abundance ratio is the closest to the Al / Si inorganic mineral abundance ratio in the fixed pipe, identify the pulverized coal that causes piping adhesion or blockage can do.

そして、微粉炭の配合に際し、配管付着または配管閉塞の原因となっている微粉炭の使用量を低減するか、または、該微粉炭を他の微粉炭に変更することにより、微粉炭の搬送性を向上させ、微粉炭の配管付着または微粉炭による配管閉塞を防止することが可能となる。   And, when blending pulverized coal, by reducing the amount of pulverized coal used causing piping adhesion or piping blockage, or by changing the pulverized coal to another pulverized coal, the transportability of pulverized coal And it is possible to prevent the pulverized coal from adhering to the pipe or preventing the pulverized coal from blocking the pipe.

以下に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples of the present invention will be described below, but the conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to these one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

高炉吹き込み用の微粉炭として銘柄の異なる4種類(微粉炭A、B、C、D)の微粉炭の各々を、直径4mmのNMR固体用試料管に均一になるように充填し、700MHz固体専用NMR装置(測定磁場強度16.4T)にセットした後、外部磁場に対してマジック角(54.7°)で、18kHzの高速で回転させた。   Each of four types of pulverized coal (pulverized coal A, B, C, D) as pulverized coal for blast furnace injection is uniformly packed in an NMR solid sample tube with a diameter of 4 mm. After setting in the NMR apparatus (measured magnetic field strength 16.4T), it was rotated at a high speed of 18 kHz at a magic angle (54.7 °) with respect to the external magnetic field.

このときの27Al共鳴周波数は182.4MHzであった。27Al−NMRの化学シフト基準として、1mol/lAlCl3水溶液を、−0.1ppmとした。 The 27 Al resonance frequency at this time was 182.4 MHz. As a reference for chemical shift of 27 Al-NMR, 1 mol / l AlCl 3 aqueous solution was set to -0.1 ppm.

上記条件下で、微粉炭A、B、C、Dのそれぞれについて、27Al-MQMASスペクトル(27Al−MQMAS法によるNMRスペクトル)を測定した(図3及び図5〜7、参照)。 Under the above conditions, 27 Al-MQMAS spectrum (NMR spectrum by 27 Al-MQMAS method) was measured for each of pulverized coals A, B, C, and D (see FIGS. 3 and 5 to 7).

本発明法を用いて測定した微粉炭A、B、C、DのMQMASスペクトルのピーク位置と、予め標準試料を用いて測定したカオリン鉱物、スメクタイト、雲母粘土鉱物およびアルミナ(Al23)の27Al−MQMASスペクトル(図2、参照)のピークト位置とを照合して、微粉炭A、B、C、D中に存在するAl・Si無機鉱物を特定した。 The peak positions of the MQMAS spectra of pulverized coals A, B, C and D measured using the method of the present invention, and of kaolin mineral, smectite, mica clay mineral and alumina (Al 2 O 3 ) measured using a standard sample in advance. 27 Al-MQMAS spectra (see FIG. 2) were compared with the peak positions to identify Al / Si inorganic minerals present in pulverized coals A, B, C, and D.

また、微粉炭A、B、C、Dの27Al−MQMASスペクトルに基づいて、該MQMASスペクトルの全ピークの積分値に対する各々のAl・Si無機鉱物に相当するピークの積分値の比率を求め、該比率から、各々のAl・Si無機鉱物の存在比を定量した。その結果を表2に示す。 Further, based on the 27 Al-MQMAS spectrum of pulverized coal A, B, C, D, the ratio of the integrated value of the peak corresponding to each Al · Si inorganic mineral to the integrated value of all the peaks of the MQMAS spectrum is obtained, From this ratio, the abundance ratio of each Al · Si inorganic mineral was quantified. The results are shown in Table 2.

Figure 0004181059
Figure 0004181059

なお、図7に示すとおり、微粉炭Dの27Al−MQMASスペクトルにおいては、標準試料の無機鉱物(カオリン鉱物[6配位型Al]、スメクタイト[4配位型Al、6配位型Al]、雲母粘土鉱物[4配位型Al、6配位型Al]、アルミナ[6配位型Al])に相当するピーク以外のピークとして、石炭中に存在する6配位型Alおよび5配位型Alに相当するピークが観測されている。 As shown in FIG. 7, in the 27 Al-MQMAS spectrum of pulverized coal D, inorganic minerals (kaolin mineral [6-coordinated Al], smectite [4-coordinated Al, 6-coordinated Al] of standard samples are used. As peaks other than those corresponding to mica clay minerals [tetracoordinated Al, hexacoordinated Al], alumina [sixcoordinated Al]), hexacoordinated Al and pentacoordinated in coal. A peak corresponding to type Al is observed.

表2に示すAl・Si無機鉱物の存在比(mol%)は、次のように算出した。まず、最小二乗近似により、各々の無機鉱物に相当するピークの積分値を求めた。   The abundance ratio (mol%) of Al · Si inorganic minerals shown in Table 2 was calculated as follows. First, the integral value of the peak corresponding to each inorganic mineral was determined by least square approximation.

この積分値の比(積分比)は、各々のAl・Si無機鉱物中のAl原子のmol比に相当するので、得られた積分比を、各々のAl・Si無機鉱物1mol中に含まれるAl原子のmol数(カオリン鉱物:2mol、スメクタイト:1.81mol、雲母粘土鉱物:2.25mol、アルミナ:2mol)で除することによって、各々のAl・Si無機鉱物のモル比として算出した。   The ratio of integration values (integration ratio) corresponds to the molar ratio of Al atoms in each Al · Si inorganic mineral, so that the obtained integration ratio is the Al contained in 1 mol of each Al · Si inorganic mineral. By dividing by the number of moles of atoms (kaolin mineral: 2 mol, smectite: 1.81 mol, mica clay mineral: 2.25 mol, alumina: 2 mol), the molar ratio of each Al · Si inorganic mineral was calculated.

なお、表2においては、カオリン鉱物、スメクタイトおよびアルミナ以外の6配位型Alおよび5配位型Alのピークに起因する無機鉱物1mol中には、カオリン鉱物同様、2molのAlイオンが存在していると仮定して、存在比(mo1%)を算出してある。   In Table 2, 2 mol of Al ions are present in 1 mol of inorganic mineral resulting from the peaks of 6-coordinated Al and 5-coordinated Al other than kaolin mineral, smectite and alumina, as in kaolin mineral. The abundance ratio (mo1%) is calculated on the assumption.

続いて、微粉炭A、B、C、Dを表3に示す配合割合で混合した微粉炭(表中、対策前の微粉炭)を、吹込量45T/Hで高炉に吹き込み、高炉操業を行った。   Subsequently, pulverized coal A, B, C, and D mixed at the blending ratio shown in Table 3 (in the table, pulverized coal before countermeasures) was blown into the blast furnace at a blowing rate of 45 T / H, and the blast furnace operation was performed. It was.

Figure 0004181059
Figure 0004181059

高炉の吹き込み口に至る配管内に固着していた配管固着物を採取し、図8に示すように、27Al−MQMASスペクトルを測定し、該測定スペクトルに基づいて、配管固着物中に存在するAl・Si無機鉱物を特定するとともにそれらの存在比を定量した。その特定・定量結果を表3に示す。 Collecting the pipe adhering material that had been adhering to the pipe leading to the blast furnace inlet and measuring the 27 Al-MQMAS spectrum as shown in FIG. 8, and present in the pipe adhering material based on the measured spectrum. Al / Si inorganic minerals were identified and their abundance was quantified. The identification / quantification results are shown in Table 3.

表3に示す結果において、配管固着物中のAl・Si無機鉱物の存在比パターンと、微粉炭A〜DのそれぞれにおけるAl・Si無機鉱物の存在比パターンとを照合・評価することにより、配管付着や配管閉塞の原因となる微粉炭が微粉炭Bであると解明できる。   In the results shown in Table 3, by comparing and evaluating the abundance ratio pattern of the Al / Si inorganic mineral in the fixed pipe and the abundance pattern of the Al / Si inorganic mineral in each of the pulverized coals A to D, It can be clarified that the pulverized coal causing the adhesion and the piping blockage is pulverized coal B.

この特定結果を踏まえ、表3に示すように、高炉の微粉炭吹き込み操業において、微粉炭Bの比率を50%から20%に低減した。その結果、微粉炭の配管内への付着または微粉炭による配管閉塞が抑制され、配管内の圧力損失が小さくなって、微粉炭の吹込量が、対策前の45T/Hから55T/Hに増加した。   Based on this specific result, as shown in Table 3, in the operation of blowing pulverized coal in the blast furnace, the ratio of pulverized coal B was reduced from 50% to 20%. As a result, adhesion of pulverized coal into the pipe or blockage of the pipe due to pulverized coal is suppressed, pressure loss in the pipe is reduced, and the amount of pulverized coal injection increases from 45 T / H before countermeasures to 55 T / H did.

以上の結果から、本発明が、石炭の搬送性の評価・向上の点で顕著な効果を奏することが解かる。   From the above results, it can be seen that the present invention has a remarkable effect in terms of evaluation and improvement of coal transportability.

実施例1で用いた吹き込み用の微粉炭と同じ微粉炭A、B、C、Dのそれぞれを、直径7.5mmのNMR固体用試料管に均一になるように充填し、300MHz固体専用NMR装置(測定磁場強度7.0T)にセットした後、外部磁場に対してマジック角(54.7°)で5kHzの速度で回転させた。   Each of the same pulverized coals A, B, C, and D as the pulverized coal used in Example 1 was uniformly packed in an NMR solid sample tube having a diameter of 7.5 mm, and a 300 MHz solid-dedicated NMR apparatus. After setting to (measured magnetic field intensity 7.0 T), it was rotated at a speed of 5 kHz with a magic angle (54.7 °) with respect to the external magnetic field.

このときの29Si共鳴周波数は59.7MHzであった。29Si−NMRの化学シフト基準として、ポリジメチルシランの粉末を−34ppmとした。 The 29 Si resonance frequency at this time was 59.7 MHz. As a chemical shift standard for 29 Si-NMR, the powder of polydimethylsilane was -34 ppm.

上記条件下で、微粉炭A、B、C、Dのそれぞれにおける29Si−MASスペクトル(29Si−マジック角回転(MAS)法によるNMRスペクトル)を測定した。 Under the above conditions, 29 Si-MAS spectra (NMR spectra obtained by 29 Si-magic angle rotation (MAS) method) in each of pulverized coals A, B, C, and D were measured.

本発明を用いて測定した微粉炭A、B、C、Dそれぞれの29Si−MASスペクトルのピーク位置と、予め標準試料を用いて測定したカオリン鉱物、スメクタイト、雲母粘土鉱物およびシリカ(SiO2)の29Si−MASスペクトルのピーク位置とを照合して、微粉炭A、B、C、Dのそれぞれの中に存在するAl・Si無機鉱物を特定した。 29 Si-MAS spectrum peak positions of pulverized coals A, B, C and D measured using the present invention, and kaolin mineral, smectite, mica clay mineral and silica (SiO 2 ) measured in advance using a standard sample Were compared with the peak positions of the 29 Si-MAS spectra to identify Al · Si inorganic minerals present in each of the pulverized coals A, B, C, and D.

また、微粉炭A、B、C、Dの29Si−MASスペクトルに基づいて、該MASスペクトルの全ピークの積分値に対する各々のAl・Si無機鉱物に相当するピークの積分値の比率を求め、該比率から、各々のAl・Si無機鉱物の存在比を定量した。その結果を表4に示す。 Further, based on the 29 Si-MAS spectra of pulverized coal A, B, C, D, the ratio of the integrated value of the peak corresponding to each Al · Si inorganic mineral to the integrated value of all the peaks of the MAS spectrum is obtained, From this ratio, the abundance ratio of each Al · Si inorganic mineral was quantified. The results are shown in Table 4.

次に、実施例1で配管内から採取した配管固着物と同様のものを用いて、その29Si−MASスペクトルを測定し、該測定スペクトルに基づいて、配管固着物中に存在するAl・Si無機鉱物を特定するとともにそれらの存在比を定量した。その特定・定量結果を表4に示す。 Next, the 29 Si-MAS spectrum was measured using the same thing as the fixed pipe collected from the pipe in Example 1, and Al · Si present in the fixed pipe was measured based on the measured spectrum. Inorganic minerals were identified and their abundance was quantified. The identification / quantification results are shown in Table 4.

Figure 0004181059
Figure 0004181059

表4に示す特定・定量結果において、配管固着物中のAl・Si無機鉱物の存在比パターンと、微粉炭A〜D中の存在比パターンとを照合・評価して、配管内に配管固着物を形成するかまたは配管を閉塞する原因炭が微粉炭Bであることを解明できた。   In the specific / quantitative results shown in Table 4, the presence ratio pattern of Al / Si inorganic mineral in the fixed pipe and the existing ratio pattern in pulverized coals A to D are collated and evaluated, and the fixed pipe in the pipe It has been clarified that the coal causing caustic or blocking the pipe is pulverized coal B.

以上のとおり、29Si−MASスペクトルを用いて微粉炭中に含まれるSiの化学構造を特定することにより、27Al−MQMASスペクトルを用いて得た結果(実施例1)と同様に、配管付着や配管閉塞の原因となる微粉炭が微粉炭Bであることを解明できた。 As described above, by specifying the chemical structure of Si contained in the pulverized coal using the 29 Si-MAS spectrum, the result of using the 27 Al-MQMAS spectrum (Example 1), the pipe adhesion It was clarified that the pulverized coal causing the blockage of the pipes and the pulverized coal B was pulverized coal.

本発明によれば、前述したように、高炉などの冶金炉やボイラーなどの燃焼炉に吹き込む微粉炭に存在し、配管付着や配管閉塞を引き起こす原因となる無機鉱物の化学形態を特定するとともに、該無機鉱物の存在比を定量し、この特定・定量に基づいて、各種石炭の搬送性を適正に評価することができるので、従来のような特殊な事前処理や添加剤を用いずとも、吹き込み用の微粉炭として使用する石炭の銘柄及び配合比を適宜調節して、微粉炭の搬送性を安定して向上せしめ維持することができる。   According to the present invention, as described above, present in pulverized coal blown into a metallurgical furnace such as a blast furnace and a combustion furnace such as a boiler, specify the chemical form of inorganic minerals that cause pipe adhesion and pipe blockage, Since the abundance ratio of the inorganic minerals can be quantified and the transportability of various coals can be properly evaluated based on the identification and quantification, blowing can be done without using special pretreatment and additives as in the past. By appropriately adjusting the brand and blending ratio of the coal used as the pulverized coal, the transportability of the pulverized coal can be stably improved and maintained.

したがって、本発明は、発電産業および製鉄産業などを代表とする石炭をエネルギー源として使用する産業において、利用価値が極めて高いものである。   Therefore, the present invention has extremely high utility value in industries that use coal as an energy source, such as the power generation industry and the steel industry.

層状アルミノケイ酸塩の粘土鉱物の結晶構造を示す図である。It is a figure which shows the crystal structure of the clay mineral of a layered aluminosilicate. 無機鉱物の標準試料の27Al−MQMASスペクトルにおけるピーク位置を示す図である。It is a diagram showing a peak position in 27 Al-MQMAS spectrum of the standard sample of the inorganic minerals. 微粉炭Aの27Al−MQMASスペクトルを示す図である。Is a diagram showing the 27 Al-MQMAS spectrum of the pulverized coal A. 27Al−MQMASスペクトルに基づいて、微粉炭A中の無機鉱物を定量する方法を示す図である。It is a figure which shows the method of quantifying the inorganic mineral in pulverized coal A based on a 27 Al-MQMAS spectrum. 微粉炭Bの27Al−MQMASスペクトルを示す図である。Is a diagram showing the 27 Al-MQMAS spectrum of the pulverized coal B. 微粉炭Cの27Al−MQMASスペクトルを示す図である。Is a diagram showing the 27 Al-MQMAS spectrum of the pulverized coal C. 微粉炭Dの27Al−MQMASスペクトルを示す図である。It is a figure which shows the 27 Al-MQMAS spectrum of pulverized coal D. 高炉の微粉炭吹き込み口に至る配管内から採取した配管固着物の27Al−MQMASスペクトルを示す図である。Is a diagram showing the 27 Al-MQMAS spectrum of pipes attached material taken from the pipe leading to the pulverized coal injection port of the blast furnace.

Claims (5)

冶金炉や燃焼炉の吹き込み口まで配管を用いて気体輸送され、該吹き込み口から炉内に吹き込まれる微粉炭として使用する石炭の搬送性を評価する方法であって、
上記石炭中に存在する27Al核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはAl 2 3 に相当するピーク位置とを照合し、上記石炭中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定しさらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、
続いて、上記配管に付着または配管を閉塞する配管固着物から採取した試料中の 27 Alの核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはAl 2 3 に相当するピーク位置とを照合し、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定しさらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、
上記石炭中に存在するAlとSiを主成分とする無機鉱物の存在比と、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の存在比を対比して、両存在比の類似関係から、上記石炭の搬送性を評価することを特徴とする微粉炭の搬送性評価方法。
It is a method of evaluating the transportability of coal used as pulverized coal that is gas-transported using pipes to a metallurgical furnace or a combustion furnace blowing port, and is blown into the furnace from the blowing port,
The nuclear magnetic resonance spectrum 27 Al present in the coal is measured, compares the peak position of the measured spectrum, kaolin minerals, smectites, and a peak position corresponding to mica clay minerals or Al 2 O 3, the coal Identifying the chemical form of the inorganic mineral mainly composed of Al and Si present therein, and further quantifying the abundance ratio of the inorganic mineral from the ratio of the peak integral value of the inorganic mineral to the total peak integral value;
Subsequently, the nuclear magnetic resonance spectrum of 27 Al in the sample collected from the pipe adhering material adhering to or blocking the pipe is measured, and the peak position of the measurement spectrum and the kaolin mineral, smectite, mica clay mineral or Al The peak position corresponding to 2 O 3 is collated, the chemical form of the inorganic mineral mainly composed of Al and Si present in the above-mentioned pipe fixed matter is specified , and the peak of the inorganic mineral relative to the total peak integral value is further determined. Quantifying the abundance ratio of the inorganic mineral from the ratio of the integral value,
By comparing the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the coal with the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the fixed pipe, both abundance ratios A method for evaluating the transportability of pulverized coal, wherein the transportability of the coal is evaluated from the similar relationship .
冶金炉や燃焼炉の吹き込み口まで配管を用いて気体輸送され、該吹き込み口から炉内に吹き込まれる微粉炭として使用する石炭の搬送性を評価する方法であって、It is a method of evaluating the transportability of coal used as pulverized coal that is gas-transported using pipes to a metallurgical furnace or a combustion furnace blowing port, and is blown into the furnace from the blowing port,
上記石炭中に存在するPresent in the above coal 2929 Siの核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはSiOThe nuclear magnetic resonance spectrum of Si is measured, the peak position of the measured spectrum, kaolin mineral, smectite, mica clay mineral or SiO 22 に相当するピーク位置とを照合し、上記石炭中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定し、さらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、Is identified, and the chemical form of the inorganic mineral mainly composed of Al and Si present in the coal is specified. Further, from the ratio of the peak integral value of the inorganic mineral to the total peak integral value, Quantifying the abundance ratio of the inorganic mineral,
続いて、上記配管に付着または配管を閉塞する配管固着物から採取した試料中のSubsequently, in the sample collected from the fixed pipe adhering to or blocking the pipe 2929 Siの核磁気共鳴スペクトルを測定し、該測定スペクトルのピーク位置と、カオリン鉱物、スメクタイト、雲母粘土鉱物またはSiOThe nuclear magnetic resonance spectrum of Si is measured, the peak position of the measured spectrum, kaolin mineral, smectite, mica clay mineral or SiO 22 に相当するピーク位置とを照合し、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の化学形態を特定し、さらに、全ピーク積分値に対する該無機鉱物のピーク積分値の比率から該無機鉱物の存在比を定量し、To identify the chemical form of the inorganic mineral mainly composed of Al and Si present in the above-mentioned pipe fixed matter, and further, the peak integral value of the inorganic mineral relative to the total peak integral value Quantifying the abundance ratio of the inorganic mineral from the ratio,
上記石炭中に存在するAlとSiを主成分とする無機鉱物の存在比と、上記配管固着物中に存在するAlとSiを主成分とする無機鉱物の存在比を対比して、両存在比の類似関係から、上記石炭の搬送性を評価することを特徴とする微粉炭の搬送性評価方法。By comparing the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the coal with the abundance ratio of the inorganic minerals mainly composed of Al and Si present in the fixed pipe, both abundance ratios A method for evaluating the transportability of pulverized coal, wherein the transportability of the coal is evaluated from the similar relationship.
前記無機鉱物が粘土鉱物および酸化物であることを特徴とする請求項1または2に記載の微粉炭の搬送性評価方法。 The pulverized coal transportability evaluation method according to claim 1 or 2 , wherein the inorganic mineral is a clay mineral and an oxide. 前記石炭中に存在する27Alの核磁気共鳴スペクトルを、27Al−マジック角回転(MAS)法、または、27Al−多量子マジック角回転(MQMAS)法を用いて測定することを特徴とする請求項に記載の微粉炭の搬送性評価方法。 27 Al nuclear magnetic resonance spectrum present in the coal is measured using a 27 Al-magic angle rotation (MAS) method or a 27 Al-multiquantum magic angle rotation (MQMAS) method. The pulverized coal transportability evaluation method according to claim 1 . 前記石炭の29Siの核磁気共鳴スペクトルを、29Si−マジック角回転(MAS)法を用いて測定することを特徴とする請求項に記載の微粉炭の搬送性評価方法。 The method for evaluating the transportability of pulverized coal according to claim 2 , wherein a 29 Si nuclear magnetic resonance spectrum of the coal is measured using a 29 Si-magic angle rotation (MAS) method.
JP2004013229A 2004-01-21 2004-01-21 Method for evaluating the transportability of pulverized coal Expired - Lifetime JP4181059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013229A JP4181059B2 (en) 2004-01-21 2004-01-21 Method for evaluating the transportability of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013229A JP4181059B2 (en) 2004-01-21 2004-01-21 Method for evaluating the transportability of pulverized coal

Publications (2)

Publication Number Publication Date
JP2005207817A JP2005207817A (en) 2005-08-04
JP4181059B2 true JP4181059B2 (en) 2008-11-12

Family

ID=34899364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013229A Expired - Lifetime JP4181059B2 (en) 2004-01-21 2004-01-21 Method for evaluating the transportability of pulverized coal

Country Status (1)

Country Link
JP (1) JP4181059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337186A (en) * 2005-06-02 2006-12-14 Nippon Steel Corp Method for estimating chemical form of inorganic mineral in coal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292720B2 (en) * 2007-04-27 2013-09-18 新日鐵住金株式会社 Determination of smectites in coal.
JP5471852B2 (en) * 2010-06-03 2014-04-16 新日鐵住金株式会社 Preparation method of sintering raw material
JP5724885B2 (en) * 2012-01-11 2015-05-27 新日鐵住金株式会社 Determination of water content in ettringite molecules contained in inorganic oxide materials
JP5772749B2 (en) * 2012-07-23 2015-09-02 新日鐵住金株式会社 Determination of water content in ettringite molecules contained in inorganic oxide materials

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689382B2 (en) * 1986-02-26 1994-11-09 株式会社神戸製鋼所 Powder injection blast furnace operation method
JPH0426804A (en) * 1990-05-22 1992-01-30 Sumitomo Electric Ind Ltd Optical fiber coupler
JPH04224610A (en) * 1990-12-25 1992-08-13 Sumitomo Metal Ind Ltd Method for injecting pulverized coal from tuyere in blast furnace
JPH059518A (en) * 1991-07-04 1993-01-19 Nippon Steel Corp Method for adjusting fine coal for blowing into blast furnace
JPH05214417A (en) * 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd Method for injection-operating pulverized coal into tuyere in blast furnace
JP2951854B2 (en) * 1994-09-30 1999-09-20 株式会社神戸製鋼所 Pulverized coal transportability improver
JPH09133644A (en) * 1995-11-09 1997-05-20 Nkk Corp Method for determining organic oxygen in coal
JP2002194408A (en) * 2000-12-28 2002-07-10 Nkk Corp Method for producing pulverized coal to be injected into reacting furnace
JP2002216106A (en) * 2001-01-16 2002-08-02 Fuji Photo Film Co Ltd Method and device for generating energy subtraction image
JP3711258B2 (en) * 2001-11-13 2005-11-02 新日本製鐵株式会社 Evaluation method for solid inorganic materials
JP2004317423A (en) * 2003-04-18 2004-11-11 Nippon Steel Corp Method of quantifying kaolins in coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337186A (en) * 2005-06-02 2006-12-14 Nippon Steel Corp Method for estimating chemical form of inorganic mineral in coal
JP4593369B2 (en) * 2005-06-02 2010-12-08 新日本製鐵株式会社 Method for estimating the chemical form of inorganic minerals in coal.

Also Published As

Publication number Publication date
JP2005207817A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
CN111233422B (en) Concrete containing coal-to-liquid coarse slag and preparation method thereof
EP1026223A1 (en) Method for producing metallurgical coke
CN102574742A (en) Production of cement additives from combustion products of hydrocarbon fuels and strength enhancing metal oxides
JP4181059B2 (en) Method for evaluating the transportability of pulverized coal
CN107254583A (en) One kind is based on the red mud method of comprehensive utilization of rotary kiln for directly reducing roasting-magnetic separation
JPH09256015A (en) Improving agent for conveyability of pulverized fine coal
JP4892929B2 (en) Ferro-coke manufacturing method
CN103319188A (en) Corrosion-resistant silicon carbide wear-resistant plastic material
CN110484288B (en) Coking and coal blending method
Yan et al. Influencing mechanisms of RO phase on the cementitious properties of steel slag powder
Kawachi et al. Effect of micro-particles in iron ore on the granule growth and strength
CN105143137A (en) Granulated blast furnace slag for use as cement starting material and screening method for same
JP5020446B2 (en) Method for producing sintered ore
Crelling Coal carbonization
JP4593369B2 (en) Method for estimating the chemical form of inorganic minerals in coal.
Zhu et al. Characterization of semi-coke generated by coal-based direct reduction process of siderite
JP2986717B2 (en) How to improve the transportability of pulverized coal
JP5151490B2 (en) Coke production method
RU2174528C1 (en) Method of preparing coke
Kondrasheva et al. Evaluation of the effectiveness of using oil shale
JP2004317423A (en) Method of quantifying kaolins in coal
JPH0617056A (en) Production of coke for balst furnace
KR100804948B1 (en) Methods for Increasing Solid/Gas Ratio and Estimating Transportability of Pulverized Coal
JPS6040192A (en) Production of metallurgical coke
Singh et al. Improvement in Sinter Properties with Reduction in Emissions Through Partially Replacing Coke Breeze by Anthracite Coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R151 Written notification of patent or utility model registration

Ref document number: 4181059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350