JP4180870B2 - Inorganic board and method for producing the same - Google Patents

Inorganic board and method for producing the same Download PDF

Info

Publication number
JP4180870B2
JP4180870B2 JP2002285178A JP2002285178A JP4180870B2 JP 4180870 B2 JP4180870 B2 JP 4180870B2 JP 2002285178 A JP2002285178 A JP 2002285178A JP 2002285178 A JP2002285178 A JP 2002285178A JP 4180870 B2 JP4180870 B2 JP 4180870B2
Authority
JP
Japan
Prior art keywords
cement
sand
casting
inorganic
wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002285178A
Other languages
Japanese (ja)
Other versions
JP2004115353A (en
Inventor
善貴 土井
崇 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP2002285178A priority Critical patent/JP4180870B2/en
Publication of JP2004115353A publication Critical patent/JP2004115353A/en
Application granted granted Critical
Publication of JP4180870B2 publication Critical patent/JP4180870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【発明が属する技術分野】
本発明は、主として外壁材、屋根材等の建築板に使用され、鋳物廃砂を配合原料の一つとして含む無機質板とその製造方法に関するものである。
【0002】
【従来の技術】
この種の建築板としては、セメントなどの無機質原料とパルプなどの補強繊維物質とパーライトなどの軽量骨材を含有する原料混合物を水に分散させてスラリーを調整し、該スラリーを脱水してマットとしプレス成型した後、養生硬化せしめる湿式法による無機質板の製造方法が提供されている。このような無機質板はセメント粉体である無機質原料を用い、水セメント比が大きい湿式法により製造されているので、脱水成型後の基材中に細孔が生じやすく、成型後の無機質板には空気や水蒸気が侵入しやすいために、経時変化による無機質板の寸法変化の影響を受けやすい。そこで、このような湿式法による無機質板には、オートクレーブ養生を行い硬化体中に結晶構造をつくることで細孔を少なくすることや、撥水剤の添加や無機質板の表面塗装などにより、空気や水蒸気の侵入を防いだ処理が施され製品化されている。
また最近は、廃棄物処理の必要性の高まりから、各種廃棄物を添加混合する技術が提供されているが、その中で鋳物製造工程時に発生する鋳物廃砂を混合した気泡コンクリート製品や床板が既に公知資料として提供され、コストパフォーマンスの高い製品を製造する技術がある。
【特許文献1】
特開平6-321651
【特許文献2】
特開平8-193411
【0003】
【発明が解決しようとする課題】
しかしながら、通常セメントなどの無機質原料により硬化反応した無機質板は、オートクレーブ養生をした場合であってもアルカリ性であるセメント水和物が占める割合が多くなり、熱や空気の影響により伸縮を発生しやすい。
それに撥水剤や塗装などの処理をした建築板の場合は、建築板表面に被われる雨水などによって生じる短期間の基材伸縮に対応できるものの、長期間曝されたものは塗膜の耐候性の劣化などにより、原板製造時の脱水により生じるマトリクス内の細孔に空気が除々に侵入し、アルカリ性のセメント水和物が長期間空気に触れることになる。このため、水和物は表層部分から空気中の炭酸ガスや硫酸ガスの作用を受け、徐々に炭酸化によるマトリクスの崩壊現象が起こりやすくなり、基材の収縮反応が生じることになる(いわゆる炭酸化収縮)。その結果、基材の反りやクラックの発生、基材収縮による目地ズレ等の不具合が生じやすくなるという問題があった。
一方、上記炭酸化収縮を抑える目的で、オートクレーブ養生によりトバモライト質のケイ酸カルシウム水和物の微細構造を生成させ、炭酸化による崩壊を起こしにくいマトリクスを形成したり、さらにオートクレーブ条件を強化し炭酸化の耐性を強化したりすることができるが、一方でなるべく安価な建築板の製造技術が要求されるので、製造コストも重視しながら、必要性能を達成することが重要な課題となっていた。
また、さまざまな資源が投入される産業は、製品やサービスの供給と同時に、廃棄物も排出しているが、各種産業間において廃棄物を資源に変換し、廃棄物を排出しないで循環リサイクルさせるゼロエミッションの重要性が増している。これまで特に鋳物廃砂は極僅かの使用に限られていたため、ゼロエミッションへの貢献度合いが低く、それ故、コストの高い製品にならざるを得なかった。
【0004】
そこで本発明者は、鋳物廃砂を原料とした場合にその比表面積や配合比率を特定することで、機械的強度など他物性を維持しながら無機質板の炭酸化収縮を抑制させることを見出し、本発明を完成した。本発明は、上記課題を解決した建築板及びその塗装方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は上記目的を達成するために、本請求項1では、セメント系無機材料と補強繊維物質と多孔性物質と鋳物廃砂とを含有する原料混合物を水に分散させたスラリーによって形成されるマットの硬化物であって、該鋳物廃砂は粒子径分布0.5〜300μmかつ平均ブレーン値を3000〜4000cm2/gとし、全配合中に15重量%以下含有することを特徴とする無機質板を提供するものである。上記構成によれば、鋳物廃砂原料がマトリクス内の細孔を埋める役割を果たすので、炭酸化収縮の寸法変化量を抑制した無機質板とすることが可能となる。
【0006】
また、本請求項2では、セメント系無機材料と補強繊維物質と多孔性物質と鋳物廃砂とを含有する原料混合物を水に分散させたスラリーによってマットを形成し、該マットを脱水成形した後養生硬化せしめる無機質板の製造方法であって、粒子径分布が0.5〜300μmかつ平均ブレーン値を3000〜4000cm2/gとした鋳物廃砂を全配合中に15重量%以下含有した原料混合物を水に分散させスラリーにし、脱水してマットを形成した後該マットを脱水成形後養生硬化せしめることを特徴とする無機質板の製造方法を提供するものである。上記構成によれば、鋳物廃砂を使用することで原料費の低減と共にゼロエミッションへの貢献が可能となり、さらに鋳物廃砂原料がマトリクス内の細孔を埋めた状態で成型されるので、炭酸化収縮の寸法変化量を抑制した無機質板を製造することが可能となる。
【0007】
このとき、鋳物廃砂の粒子径やブレーン値を上記のように特定したのは次の理由による。すなわち、無機質板の細孔径分布は幅広い範囲で分散されているので、鋳物廃砂の粒子径はある程度の幅のある粒子径分布であることが好ましい。粒子径分布が一定の狭い範囲内にあると、一定の範囲内の細孔しか充填することができないが、本発明では上記範囲の粒子径に幅広く分布しているので、粒子間の細孔にも十分に充填されることになる。特に、原料を水に分散させたスラリー状のマットから製造される無機質板においては、鋳物廃砂がマトリクス内の細孔にほぼ均一に入りやすくなり、好結果をもたらす。
また、平均ブレーン値が上記範囲としたのは、未反応分の鋳物廃砂が骨材としての機能を果たすのに有効であるためである。また、鋳物廃砂の配合量を15重量%以下とするのは、鋳物廃砂中に含まれる不純物の混入度合が増しセメントと反発し合うため、セメントの硬化自体に悪影響を及ぼし強度などの他物性の性能を低下させてしまうのを防ぐためである。
【0008】
【発明の実施の形態】
本発明の実施形態を以下に詳細に説明する。
本発明に係わる無機質板の製造方法の一実施形態が適用される無機質板の製造装置は、スラリー流込装置、吸引脱水装置、押圧脱水成型装置、可動式の透水性シート、搬送ベルトなどから構成されている。スラリー流込装置はスラリー貯留槽を具備しており、吸引脱水装置は吸引機を具備している。他方、押圧脱水装置は所望によりエンボス型板を付着したプレスを有しており昇降駆動自在に支持されている。これら、スラリー流込装置、吸引脱水装置、押圧脱水成型装置を順次つなぐ形で透水性シートが回転駆動自在に張設されており、この透水性シートの近傍には搬送用のベルトが回転駆動自在に張設されている。
【0009】
一方、スラリーはセメント系無機材料と補強繊維物質と多孔性物質と鋳物廃砂とを主成分とし、これに無機充填材、フィラーなどを適宜配合して混練したものである。
本発明に用いられるセメント類としては、例えばポルトランドセメント、高炉スラグセメント、シリカセメント、フライアッシュセメント、アルミナセメント等がある。また、補強繊維物質としては、例えば木片、木質パルプ、木質繊維束、木毛、木粉、合成繊維等がある。
【0010】
更に本発明では上記成分以外に、例えばケイ砂、ケイ石粉、シリカヒューム、ベントナイト、ケイ藻土等のケイ酸含有物質等の無機質原料、塩化カルシウム、塩化マグネシウム、塩化鉄、塩化アルミニウム、塩化ナトリウム、塩化カリウム、塩化リチウム等の塩化物の無水物あるいは結晶化物、硫酸アルミニウム、ミョウバン、硫酸鉄、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム等の硫酸塩の無水物あるいは結晶化物、硝酸カルシウム、亜硝酸カルシウム等の硝酸塩、亜硝酸塩の無機物あるいは結晶化物、ギ酸カルシウム、酢酸カルシウム等のギ酸塩、酢酸塩の無水物あるいは結晶化物、アルミン酸ソーダ、水ガラス等のセメント硬化促進剤やワックス、パラフィン、シリコン等の撥水剤、発泡ポリスチレンビーズ等の発泡性熱可塑性プラスチックビーズ等が添加されてもよい。
【0011】
本発明において、補強繊維物質は、セメント硬化物を捕捉してマトリクスを補強し靭性を向上させる目的で混和されるものであり、木質繊維パルプ、木質繊維束、木片、木粉など、従来この種の無機質板への補強材として用いられてきたものと同じものであっても良い。また、その配合割合も従来のものと同様であって良い。さらに、木質材のみならず、竹繊維、麻繊維、バガス、籾殻、などの材料も有効である。
【0012】
また、本発明において多孔性物質としては、シラスバルーン、パーライト、フライアッシュなどが好ましい材料である。例えば、望ましい多孔性物質としては、粒度10〜600μmのシラスバルーンやパーライトがある。
【0013】
本発明では、鋳物廃砂を原料として添加混合して無機質板を製造するが、ここで鋳物砂について説明する。鋳物砂の成分は、一般的に、基材としての珪砂、粘結材としてのベントナイト、クッション的な役割を果たす石炭粉、さらに二次バインダーとして澱粉類等が主である。これに水を必要量注入して、混練機により所定時間混練して鋳物砂型として使用している。この鋳物砂型は脱型後粉砕され繰り返し原料として再利用されるが、鋳物型としての使用限界を超え再利用ができなくなったものは粉砕機や集塵機によって廃棄回収される。その回収物の中には、微粉類や金属粉等が含まれており、これが鋳物廃砂と称されるものである。よって、一般に廃棄対象とされた鋳物廃砂は最終的には微粉類を多く含んだ珪砂を主成分とした砂に、金属粉、耐火物の残渣、その他の不純物が混ざったものとなっている。
【0014】
このような廃棄対象とされる鋳物廃砂の有効な利用方法は、上記のような多くの不純物を含んでいるが故に、粉体のまま使用する方法の他に、例えばペレット状に予備加熱したものを炉に入れて600℃〜800℃程度で加熱焼成し、できあがったものを材料として二次加工することによって再利用することが一般的に行われている。ここで、鋳物廃砂中の成分組成の一例を表1に示す。
【0015】
【表1】

Figure 0004180870
上記の表でも明らかなように、鋳物廃砂にはセメントの硬化に重要なSiO2を主成分として含有し、さらにAl2O3、Fe2O3などを含むものであって、従来産業廃棄物として処理されていたものでありながら、SiO2が非常に良好な含有量であることが理解される。従って、この珪砂分をセメント中に配合することによって、良質のトバモライト質のケイ酸カルシウム水和物の微細構造を生成させ、炭酸化による崩壊を起こしにくいマトリクス形成を図ることができる。前記鋳物廃砂のかさ比重および粒度は、鋳物廃砂の成分組成や焼成条件により一定ではないが、粒子径分布が0.5〜300μmかつ平均ブレーン値が3000〜4000cm2/gである場合には、様々な径の細孔にうまく充填されるので、炭酸化収縮と機械的強度の双方を満足する無機質板を製造することができる。
【0016】
細かくは、上記に述べたように鋳物廃砂の粒子径分布が0.5〜300μmかつ平均ブレーン値は3000〜4000cm2/gにしていると、多孔質状の三次元構造となった無機質板硬化物の各種細孔に十分に鋳物廃砂が充填されるようになると共に、鋳物珪砂はセメントとの反応系として寄与し、さらにセメントとの反応後に骨材として機能するため、炭酸化収縮の作用の受けやすい要因となる炭酸ガスや硫酸ガスの通り道を塞ぐことを可能にさせることができる。
この際、粒子径分布が0.5〜300μmとは、0.5μm〜300μmまでに幅広く分布しているという意味であり、上記範囲内の特定の粒子径を指すものではない。
【0017】
本発明において、各原料の主成分の配合割合は、セメント30〜85重量%、ケイ酸含有物質30〜60重量%、補強繊維物質5〜15重量%、多孔性物質5〜15重量%、鋳物廃砂1〜15重量%であることが好ましい。この配合割合の場合には、外壁材、屋根材などの初期の目標強度を確実に発現させることが可能となる。本発明において、上記主成分に対し、さらに、マイカ、発泡ビーズなどを1〜10重量%添加しても良い。また、防水剤や撥水剤など、従来のこの種の無機質板を製造するときに添加されてきた第三成分を任意に添加しても差し支えない。
【0018】
次に、無機質板を製造する手順を以下に示す。
上記原料混合物は水に添加分散されてスラリーとされ、該スラリーを使用して抄造によりマットをフォーミングする。この際該スラリーの抄造に使用される抄造機は、ハチェック式、フローオン式、型枠バッチ式など一般的に使用されている抄造装置のいずれを用いてもよく、マットを押圧成型する際は、透水性シートを通して下面側より、または下面側および上面側より同時に脱水することにより成型されることが望ましい。
【0019】
本発明の実施形態は以上のような構成を有するので、本発明を適用して無機質板を製造する手順は以下のようになる。まず、該スラリーの含水率は通常300〜400%となるよう調整され混合パルパーで混練される。次に、該スラリーをスラリー流込装置のスラリー貯留槽に供給する。
【0020】
次に、型枠にスラリーを流し込んで基材を形成する。それには、スラリー流込装置のスラリー貯留槽の下方で透水性シート上に型枠を載置した後、スラリー貯留槽から型枠内に所定量のスラリーを流し込み、このスラリーを均した後、吸引脱水装置の吸引機を駆動して、スラリーの下面から吸引脱水する。脱水後、スラリーの含水率は保型がなされる程度の含水率に低減しており、通常含水率が150〜200%の平板状のマットが型枠内に形成される。
【0021】
その後、型枠を取り外してマットのみを透水性シート上に残し、透水性シートを回転移動させてマットを押圧脱水成型装置近傍に移送した後、マットが押圧脱水装置に位置決めされた状態でプレスを所定のストロークだけ下降させる。このような押圧脱水成型装置によりプレスされることにより板状に脱水成型され、所望なればエンボス模様が付与した型板によりマット表面に柄模様が付される。
【0022】
次に、プレスを所定のストロークだけ上昇させて解圧し、成形された未硬化のマットを透水性シートの回転により移動させマットが搬送される。このように製造されたマットは養生工程に移行し、無機質板の構成原料であるセメント類は養生中に略完全に硬化され無機質板が製造される。
以上の無機質板は成形層が単一の場合であるが、複層の無機質板であっても可能なのは言うまでもない。
【0023】
このようにして無機質板を製造すれば、上記鋳物廃砂を配合しているので、多孔質状の三次元構造となった無機質板硬化物の細孔に十分に鋳物廃砂が充填され骨材の機能、および無機質板の細孔を塞ぐ閉塞機能を果たすことになる。この機能により炭酸化収縮の作用の受けやすい要因となる炭酸ガスや硫酸ガスの通り道を塞ぎ、機械的強度を満足させた低価格の無機質板を製造することができる。
【0024】
【実施例】
以下、本発明の実施例について説明する。
表2に示す組成の原料混合物を使用する。
【表2】
Figure 0004180870
上記原料混合物を水と混合して均一攪拌することによって含水率300%になるようにスラリーを調整した。上記原料スラリーを透水性シート上に載置した型枠に流し込み、均し、スラリーの含水率が160%になるように一定時間脱水した後、型枠を取り外した。型枠が取り外されたマットを押圧成形装置に搬送し、脱水を行いながら設定厚みが15mmになるようにプレス成形し、60℃で6時間の一次養生およびオートクレーブ170℃、8時間の二次養生を行って所定の無機質板を得た。
【0025】
また、比較例として、鋳物廃砂を混入せず珪砂のみを配合し、実施例と同じ条件でセメント、木質パルプ、パーライトを混合して原料を調整し水に分散して含水率300%のスラリーを得た。該スラリーから実施例と同じ条件でマットを得、同じ条件で一次養生と二次養生を行い無機質板とした。
【0026】
実施例品及び比較例品の無機質板について、曲げ強さ、かさ比重、吸水伸び率、炭酸化収縮率を測定した。なお、曲げ強さはJIS A-1409、吸水伸び率はJIS A-5422、炭酸化収縮率は、30℃65%RH下において5%濃度の炭酸ガス雰囲気中に7日放置し中性化した後、80℃中に10日放湿させ、中性化と放湿収縮量を測定した。その結果を表3に示す。
【表3】
Figure 0004180870
【0027】
実施例品と比較例品を比較すると、同じ養生条件でありながら、両者はほぼ同じ曲げ強さと吸水伸び率を示し、かつ炭酸化収縮率は実施例ではいずれも小さな値を示している。また、鋳物廃砂の配合比率が極端に多いと、セメントの水和反応が緩慢かつ貧弱になり、初期材令における機械的強度および吸水伸び率が低下することがわかる。
【0028】
このことは鋳物廃砂の粒子径分布を測定した結果である図1および図2から読みとることができる。本発明の鋳物廃砂は図1に示すように、粒子径分布が0.5〜300μmに分散しており、平均ブレーン値が3000〜4000cm2/gであるのに対し、一般に使用される珪砂の粒子径分布は図2に示すように、0.2〜54μmの範囲に分布しており、狭い分布範囲になっている。従って、上記範囲の鋳物廃砂を用いることによって、従来よりも無機質板内に存在する各種の細孔を十分充填させることができ、さらに、鋳物廃砂は不純物の存在により完全に反応せずに未反応分はそのまま骨材としてマトリクス内に留まるようになり、炭酸化による寸法安定性を抑制することができる。
また、鋳物廃砂を15重量%以下の配合比率で用いることにより、セメントの硬化自体に悪影響を及ぼすことなく従来の全量の珪砂を配合した無機質板と同等の物性を示し、かつ従来品よりもセメント水和物の炭酸化の影響を受けにくくなるので、炭酸化による寸法安定性に優れた無機質板が得られる。
【0029】
【発明の効果】
したがって本発明によれば、無機質板に特定の鋳物廃砂が混入されていることにより、多孔質状の三次元構造となった無機質板硬化物の細孔に十分に鋳物廃砂が充填されるので、炭酸ガスや硫酸ガスの影響を受けにくくなり、さらに、反応後は未反応分の鋳物珪砂が骨材として機能するので、炭酸化による寸法変化量を効果的に抑制せしめ、さらに原材料費の低減とゼロエミッションを同時に達成した安価格の無機質板を製造することができる。
【図面の簡単な説明】
【図1】鋳物廃砂の粒子径分布
【図2】一般の珪砂の粒子径分布[0001]
[Technical field to which the invention belongs]
The present invention mainly relates to an inorganic board that is used for building boards such as outer wall materials and roofing materials, and includes cast waste sand as one of the blended raw materials, and a method for producing the same.
[0002]
[Prior art]
As this type of building board, a slurry is prepared by dispersing a raw material mixture containing an inorganic raw material such as cement, a reinforcing fiber substance such as pulp, and a lightweight aggregate such as pearlite in water, and dehydrating the slurry to form a mat. In addition, there is provided a method for producing an inorganic plate by a wet method in which curing is performed after press molding. Since such an inorganic plate is manufactured by a wet method having a large water-cement ratio using an inorganic raw material that is cement powder, pores are easily formed in the substrate after dehydration molding, and the inorganic plate after molding is formed. Since air and water vapor easily enter, it is easily affected by the dimensional change of the inorganic plate due to aging. Therefore, such wet method inorganic plates are treated by autoclave curing to form a crystal structure in the cured body to reduce pores, add water repellent, and coat the surface of the inorganic plate. And processed to prevent the invasion of water vapor and products.
Recently, technology for adding and mixing various types of waste has been provided due to the increasing need for waste treatment. Among them, cellular concrete products and floorboards that are mixed with waste foundry sand generated during the casting manufacturing process are available. There is a technology for manufacturing a product that is already provided as publicly known data and has high cost performance.
[Patent Document 1]
JP-A-6-321651
[Patent Document 2]
Japanese Patent Laid-Open No.8-193411
[0003]
[Problems to be solved by the invention]
However, inorganic boards that have undergone a curing reaction with an inorganic raw material such as cement usually have a higher proportion of alkaline cement hydrate even when subjected to autoclave curing, and are susceptible to expansion and contraction due to the effects of heat and air. .
In addition, in the case of a building board that has been treated with a water repellent or paint, it can cope with short-term base material expansion and contraction caused by rainwater on the surface of the building board. Due to deterioration of the air, air gradually enters the pores in the matrix caused by dehydration during the production of the original plate, and the alkaline cement hydrate comes into contact with the air for a long time. For this reason, the hydrate is subject to the action of carbon dioxide gas or sulfuric acid gas in the air from the surface layer part, and the phenomenon of matrix collapse due to carbonation tends to occur gradually, causing a shrinkage reaction of the substrate (so-called carbonic acid). Shrinkage). As a result, there has been a problem that problems such as warpage of the base material, generation of cracks, and misalignment due to contraction of the base material are likely to occur.
On the other hand, for the purpose of suppressing the above-mentioned carbonation shrinkage, the microstructure of tobermorite calcium silicate hydrate is formed by autoclave curing to form a matrix that does not easily collapse due to carbonation, and the autoclave conditions are strengthened to enhance carbonation. However, it is important to achieve the required performance while emphasizing the manufacturing cost because the manufacturing technology of the cheapest building board is required. .
In addition, industries that input various resources emit waste at the same time as the supply of products and services. However, between various industries, waste is converted into resources and recycled without discharging waste. The importance of zero emissions is increasing. Until now, especially casting waste sand has been limited to very little use, so the contribution to zero emissions is low, so it has to be a costly product.
[0004]
Therefore, the present inventor has found that when casting waste sand is used as a raw material, by specifying its specific surface area and blending ratio, it suppresses carbonation shrinkage of the inorganic plate while maintaining other physical properties such as mechanical strength, The present invention has been completed. An object of this invention is to provide the building board which solved the said subject, and its coating method.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is formed by a slurry in which a raw material mixture containing a cement-based inorganic material, a reinforcing fiber material, a porous material, and waste casting sand is dispersed in water. A hardened mat, the cast waste sand having a particle size distribution of 0.5 to 300 μm, an average brain value of 3000 to 4000 cm 2 / g, and containing 15% by weight or less in the total formulation It is to provide. According to the said structure, since a casting waste sand raw material plays the role which fills the pore in a matrix, it can be set as the inorganic board which suppressed the dimensional change amount of carbonation shrinkage | contraction.
[0006]
According to the present invention, the mat is formed from a slurry in which a raw material mixture containing a cement-based inorganic material, a reinforcing fiber substance, a porous substance, and waste casting sand is dispersed in water, and the mat is subjected to dehydration molding. A method for producing a curing-cured inorganic plate, in which a raw material mixture containing 15% by weight or less of a casting waste sand having a particle size distribution of 0.5 to 300 μm and an average brane value of 3000 to 4000 cm 2 / g in water is mixed with water. A method for producing an inorganic plate is provided, wherein the material is dispersed into a slurry and dehydrated to form a mat, and then the mat is dehydrated and cured and cured. According to the above configuration, it is possible to reduce the raw material cost and contribute to zero emission by using the casting waste sand, and further, the casting waste sand raw material is molded in a state where the pores in the matrix are filled. It is possible to manufacture an inorganic plate that suppresses the dimensional change of chemical shrinkage.
[0007]
At this time, the particle diameter and the brane value of the waste casting sand were specified as described above for the following reason. That is, since the pore size distribution of the inorganic plate is dispersed in a wide range, the particle size of the waste casting sand is preferably a particle size distribution having a certain width. If the particle size distribution is within a certain narrow range, only pores within a certain range can be filled. However, in the present invention, since the particle size is widely distributed within the above range, Will be fully filled. In particular, in an inorganic board manufactured from a slurry-like mat in which raw materials are dispersed in water, casting waste sand tends to enter the pores in the matrix almost uniformly, resulting in good results.
Moreover, the reason why the average brain value is in the above range is that the unreacted casting waste sand is effective in fulfilling the function as an aggregate. In addition, the mixing amount of the casting waste sand is 15% by weight or less because the mixing of impurities contained in the casting waste sand increases and repels the cement. This is to prevent deterioration in performance of physical properties.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are described in detail below.
An inorganic plate manufacturing apparatus to which an embodiment of an inorganic plate manufacturing method according to the present invention is applied includes a slurry casting apparatus, a suction dewatering apparatus, a pressure dewatering molding apparatus, a movable water-permeable sheet, a conveyance belt, and the like. Has been. The slurry pouring device includes a slurry storage tank, and the suction dehydration device includes a suction machine. On the other hand, the press dewatering device has a press with an embossing template attached as desired, and is supported so as to be movable up and down. These slurry casting device, suction dewatering device, and pressure dewatering molding device are connected in order to stretch the water-permeable sheet so that it can be driven for rotation. In the vicinity of this water-permeable sheet, the conveyance belt can be driven for rotation. Is stretched.
[0009]
On the other hand, the slurry is mainly composed of a cement-based inorganic material, a reinforcing fiber material, a porous material, and casting waste sand, and an inorganic filler, a filler, and the like are appropriately blended therein and kneaded.
Examples of cements used in the present invention include Portland cement, blast furnace slag cement, silica cement, fly ash cement, and alumina cement. Examples of the reinforcing fiber material include wood pieces, wood pulp, wood fiber bundles, wood wool, wood powder, and synthetic fibers.
[0010]
Furthermore, in the present invention, in addition to the above components, for example, inorganic raw materials such as silica-containing materials such as silica sand, silica stone powder, silica fume, bentonite, diatomaceous earth, calcium chloride, magnesium chloride, iron chloride, aluminum chloride, sodium chloride, Anhydrous or crystallized chlorides such as potassium chloride and lithium chloride, anhydrous or crystallized sulfates such as aluminum sulfate, alum, iron sulfate, lithium sulfate, sodium sulfate, potassium sulfate and magnesium sulfate, calcium nitrate, Nitrate such as calcium nitrate, inorganic or crystallized nitrite, formate such as calcium formate and calcium acetate, anhydrous or crystallized acetate, sodium aluminate, water glass and other cement hardening accelerators, wax, paraffin, Water repellent such as silicon, expanded polystyrene beads, etc. Expandable thermoplastic plastic beads and the like may be added.
[0011]
In the present invention, the reinforcing fiber material is mixed for the purpose of capturing the cement hardened material to reinforce the matrix and improving toughness. Conventionally, this kind of wood fiber pulp, wood fiber bundle, wood piece, wood powder, etc. It may be the same as that used as a reinforcing material for the inorganic plate. Further, the blending ratio may be the same as the conventional one. Furthermore, not only wood materials but also materials such as bamboo fiber, hemp fiber, bagasse, rice husk, etc. are effective.
[0012]
In the present invention, as the porous material, shirasu balloon, pearlite, fly ash and the like are preferable materials. For example, desirable porous materials include shirasu balloons and pearlite having a particle size of 10 to 600 μm.
[0013]
In the present invention, an inorganic plate is manufactured by adding and mixing casting waste sand as a raw material. Here, the casting sand will be described. The components of foundry sand are generally mainly composed of silica sand as a base material, bentonite as a caking additive, coal powder acting as a cushion, and starch as a secondary binder. A necessary amount of water is poured into this and kneaded for a predetermined time by a kneader to be used as a casting sand mold. The foundry sand mold is pulverized after demolding and repeatedly reused as a raw material. However, if the casting sand mold exceeds the limit of use as a casting mold and cannot be reused, it is discarded and collected by a grinder or dust collector. The recovered material contains fine powders, metal powders, and the like, and this is called casting waste sand. Therefore, casting waste sand generally targeted for disposal is a mixture of metal powder, refractory residue, and other impurities in the sand composed mainly of silica sand containing a lot of fine powders. .
[0014]
The effective utilization method of the casting waste sand to be discarded includes many impurities as described above. Therefore, in addition to the method of using the powder as it is, it is preheated in the form of pellets, for example. It is generally performed that a product is put into a furnace and heated and fired at about 600 ° C. to 800 ° C., and the finished product is reused by secondary processing as a material. Here, an example of the component composition in the casting waste sand is shown in Table 1.
[0015]
[Table 1]
Figure 0004180870
As is clear from the above table, the foundry sand contains SiO 2 as the main component for cement hardening, and further contains Al 2 O 3 , Fe 2 O 3, etc. It is understood that SiO 2 has a very good content while being processed as a product. Therefore, by incorporating this silica sand component into the cement, it is possible to form a fine structure of high-quality tobermorite calcium silicate hydrate and to form a matrix that is unlikely to cause collapse due to carbonation. The bulk specific gravity and particle size of the cast waste sand are not constant depending on the component composition and firing conditions of the cast waste sand, but when the particle size distribution is 0.5 to 300 μm and the average brain value is 3000 to 4000 cm 2 / g, Since the pores of various diameters are filled well, it is possible to produce an inorganic plate that satisfies both carbonation shrinkage and mechanical strength.
[0016]
In detail, as described above, when the particle size distribution of the casting waste sand is 0.5 to 300 μm and the average brain value is 3000 to 4000 cm 2 / g, the cured inorganic plate has a porous three-dimensional structure. As the cast iron sand is fully filled in the various pores, the cast silica sand contributes to the reaction system with the cement and further functions as an aggregate after the reaction with the cement. It is possible to block the passage of carbon dioxide gas and sulfuric acid gas, which are easily received.
In this case, the particle size distribution of 0.5 to 300 μm means that the particle size is widely distributed from 0.5 μm to 300 μm, and does not indicate a specific particle size within the above range.
[0017]
In the present invention, the mixing ratio of the main component of each raw material is as follows: cement 30 to 85% by weight, silicic acid-containing material 30 to 60% by weight, reinforcing fiber material 5 to 15% by weight, porous material 5 to 15% by weight, casting The amount of waste sand is preferably 1 to 15% by weight. In the case of this blending ratio, it is possible to reliably develop initial target strengths such as outer wall materials and roof materials. In the present invention, 1-10% by weight of mica, foam beads, etc. may be added to the main component. In addition, a third component that has been added when manufacturing this kind of conventional inorganic board such as a waterproofing agent and a water repellent may be optionally added.
[0018]
Next, the procedure for manufacturing the inorganic plate is shown below.
The raw material mixture is added and dispersed in water to form a slurry, and the slurry is used to form a mat by papermaking. At this time, the paper making machine used for paper making of the slurry may use any of the paper making devices generally used such as the Hatschek type, the flow-on type, and the formwork batch type. It is desirable to mold by dehydrating from the lower surface side through the water-permeable sheet or simultaneously from the lower surface side and the upper surface side.
[0019]
Since the embodiment of the present invention has the above-described configuration, the procedure for manufacturing the inorganic board by applying the present invention is as follows. First, the water content of the slurry is usually adjusted to 300 to 400% and kneaded with a mixing pulper. Next, the slurry is supplied to a slurry storage tank of a slurry casting apparatus.
[0020]
Next, the slurry is poured into a mold to form a substrate. To do this, after placing the mold on the water-permeable sheet below the slurry reservoir of the slurry casting apparatus, a predetermined amount of slurry is poured into the mold from the slurry reservoir, and the slurry is leveled and then sucked. The suction device of the dehydrator is driven to perform suction dehydration from the lower surface of the slurry. After dehydration, the water content of the slurry is reduced to such a level that the mold can be retained, and a flat mat having a water content of 150 to 200% is usually formed in the mold.
[0021]
Then, after removing the formwork, leaving only the mat on the water-permeable sheet, rotating the water-permeable sheet and transferring the mat to the vicinity of the pressure dewatering molding device, and then pressing the press with the mat positioned in the pressure dewatering device. Lower by a predetermined stroke. It is dehydrated and molded into a plate shape by being pressed by such a press dehydrating molding apparatus, and if desired, a pattern is applied to the mat surface by a template provided with an embossed pattern.
[0022]
Next, the press is lifted by a predetermined stroke to release the pressure, and the formed uncured mat is moved by the rotation of the water-permeable sheet to convey the mat. The mat manufactured in this way moves to a curing process, and cements, which are constituent materials of the inorganic board, are almost completely cured during the curing to produce an inorganic board.
Although the above-mentioned inorganic board is a case where a molding layer is single, it cannot be overemphasized even if it is a multilayer inorganic board.
[0023]
If the inorganic board is produced in this way, since the above-mentioned casting waste sand is blended, the pores of the porous hardened inorganic board having a porous three-dimensional structure are sufficiently filled with the casting waste sand. And the blocking function of closing the pores of the inorganic plate. Due to this function, it is possible to manufacture a low-cost inorganic plate that satisfies the mechanical strength by blocking the passage of carbon dioxide gas or sulfuric acid gas, which are easily affected by carbonation shrinkage.
[0024]
【Example】
Examples of the present invention will be described below.
A raw material mixture having the composition shown in Table 2 is used.
[Table 2]
Figure 0004180870
The slurry was adjusted to a water content of 300% by mixing the raw material mixture with water and stirring uniformly. The raw material slurry was poured into a mold placed on a water-permeable sheet, leveled, dehydrated for a predetermined time so that the water content of the slurry was 160%, and then the mold was removed. The mat from which the mold has been removed is transported to a press molding device, and press-molded so that the set thickness is 15 mm while dehydrating. To obtain a predetermined inorganic plate.
[0025]
In addition, as a comparative example, only silica sand is mixed without casting waste sand, and a slurry having a water content of 300% is prepared by mixing cement, wood pulp, and pearlite under the same conditions as in the examples to prepare raw materials and dispersing them in water. Got. A mat was obtained from the slurry under the same conditions as in Examples, and a primary curing and a secondary curing were performed under the same conditions to obtain an inorganic plate.
[0026]
About the inorganic board of the example product and the comparative product, the bending strength, bulk specific gravity, water absorption elongation rate, and carbonation shrinkage rate were measured. The bending strength is JIS A-1409, the water absorption elongation is JIS A-5422, and the carbonation shrinkage is neutralized by standing in a 5% carbon dioxide atmosphere for 7 days under 30 ° C and 65% RH. Thereafter, the sample was allowed to moisture for 10 days at 80 ° C., and the neutralization and moisture release shrinkage were measured. The results are shown in Table 3.
[Table 3]
Figure 0004180870
[0027]
When the example product and the comparative example product are compared, both show substantially the same bending strength and water absorption elongation rate under the same curing conditions, and the carbonation shrinkage rate shows a small value in the example. It can also be seen that when the proportion of the casting waste sand is extremely large, the hydration reaction of the cement becomes slow and poor, and the mechanical strength and water absorption elongation at the initial age are lowered.
[0028]
This can be read from FIGS. 1 and 2, which are the results of measuring the particle size distribution of the casting waste sand. As shown in FIG. 1, the waste sand of the present invention has a particle size distribution of 0.5 to 300 μm and an average brain value of 3000 to 4000 cm 2 / g, whereas silica sand particles generally used are used. As shown in FIG. 2, the diameter distribution is distributed in a range of 0.2 to 54 μm, and has a narrow distribution range. Therefore, by using the casting waste sand in the above range, it is possible to sufficiently fill various pores existing in the inorganic plate than before, and the casting waste sand does not react completely due to the presence of impurities. Unreacted components remain as aggregates in the matrix as they are, and dimensional stability due to carbonation can be suppressed.
In addition, by using the casting waste sand at a blending ratio of 15% by weight or less, it shows the same physical properties as the conventional inorganic board containing the total amount of silica sand without adversely affecting the cement hardening itself, and more than the conventional product. Since it becomes difficult to be affected by the carbonation of cement hydrate, an inorganic plate excellent in dimensional stability by carbonation can be obtained.
[0029]
【The invention's effect】
Therefore, according to the present invention, the specific casting waste sand is mixed in the inorganic plate, so that the pores of the cured inorganic plate having a porous three-dimensional structure are sufficiently filled with the casting waste sand. Therefore, it is less susceptible to the effects of carbon dioxide and sulfuric acid, and after the reaction, the unreacted cast silica sand functions as an aggregate, effectively reducing the amount of dimensional change due to carbonation and reducing the raw material costs. Low-cost inorganic board that achieves both reduction and zero emission can be manufactured.
[Brief description of the drawings]
[Fig. 1] Particle size distribution of waste casting sand [Fig. 2] Particle size distribution of general silica sand

Claims (2)

セメント系無機材料と補強繊維物質と多孔性物質と鋳物廃砂とを含有する原料混合物を水に分散させたスラリーによって形成されるマットの硬化物であって、
該セメント系無機材料は、ポルトランドセメント、高炉スラグセメント、シリカセメント、フライアッシュセメント、アルミナセメントのいずれかを一種以上含有したものであり、
該補強繊維物質は、木片、木質パルプ、木質繊維束、木毛、木粉、合成繊維のいずれかを一種以上含有したものであり、
該多孔性物質は、粒度10〜600μmのシラスバルーンやパーライトのいずれかを一種以上含有したものであり、
該鋳物廃砂は、SiO を主成分として含有し、さらにAl 、Fe を含むものであって、粒子径分布0.5〜300μmで、平均ブレーン値3000〜4000cm/gであり、
該マットの硬化物は、該セメント系無機材料を30〜85重量%、該補強繊維物質を5〜15重量%、該多孔性物質を5〜15重量%、該鋳物廃砂を1〜15重量%含有し、
更に、該鋳物廃砂は、多孔質状の三次元構造の該マットの硬化物の各種細孔に充填されているとともに、該セメント系無機材料と反応している
ことを特徴とする無機質板。
A cementitious inorganic material, a reinforcing fiber material, a porous material, a raw material mixture containing a waste casting sand a cured product of the mat formed by the slurry dispersed in water,
The cement-based inorganic material contains at least one of Portland cement, blast furnace slag cement, silica cement, fly ash cement, alumina cement,
The reinforcing fiber material contains at least one of a piece of wood, wood pulp, wood fiber bundle, wood hair, wood powder, synthetic fiber,
The porous material contains at least one of shirasu balloon and pearlite having a particle size of 10 to 600 μm,
The casting waste sand contains SiO 2 as a main component and further contains Al 2 O 3 and Fe 2 O 3, and has a particle size distribution of 0.5 to 300 μm and an average brane value of 3000 to 4000 cm. 2 / g ,
The hardened material of the mat is 30 to 85% by weight of the cement-based inorganic material, 5 to 15% by weight of the reinforcing fiber material, 5 to 15% by weight of the porous material, and 1 to 15% by weight of the foundry waste sand. Containing,
Further, the casting waste sand is filled in various pores of the hardened material of the mat having a porous three-dimensional structure, and reacts with the cement-based inorganic material. Inorganic board to do.
セメント系無機材料と補強繊維物質と多孔性物質と鋳物廃砂とを含有する原料混合物を水に分散させたスラリーによってマットを形成し、該マットを脱水成形した後養生硬化せしめる無機質板の製造方法であって、
該セメント系無機材料として、ポルトランドセメント、高炉スラグセメント、シリカセメント、フライアッシュセメント、アルミナセメントのいずれかを一種以上配合し、
該補強繊維物質として、木片、木質パルプ、木質繊維束、木毛、木粉、合成繊維のいずれかを一種以上配合し、
該多孔性物質として、粒度10〜600μmのシラスバルーンやパーライトのいずれかを一種以上配合し、
該鋳物廃砂として、SiO を主成分として含有し、さらにAl 、Fe を含むものであって、粒子径分布が0.5〜300μm平均ブレーン値3000〜4000cm/gの鋳物廃砂を配合し、
該セメント系無機材料を30〜85重量%、該補強繊維物質を5〜15重量%、該多孔性物質を5〜15重量%、該鋳物廃砂を1〜15重量%混合した原料混合物を水に分散させスラリーにし、脱水してマットを形成し、該マットを脱水成形後養生硬化せしめ、多孔質状の三次元構造となった無機質板硬化物の各種細孔に該鋳物廃砂を充填するとともに、該セメント系無機材料と該鋳物廃砂とを反応させる
ことを特徴とする無機質板の製造方法。
A cementitious inorganic material, a reinforcing fiber material, a porous material, a raw material mixture containing a waste casting sand to form a mat by slurry dispersed in water, inorganic plate allowed to curing curing was dehydrated molding the mat A manufacturing method of
As the cement-based inorganic material, one or more of Portland cement, blast furnace slag cement, silica cement, fly ash cement, alumina cement are blended,
As the reinforcing fiber material, one or more of wood pieces, wood pulp, wood fiber bundles, wood hair, wood powder, synthetic fibers are blended,
As the porous material, one or more of either Shirasu balloon or pearlite having a particle size of 10 to 600 μm is blended,
The casting waste sand contains SiO 2 as a main component and further contains Al 2 O 3 and Fe 2 O 3, and has a particle size distribution of 0.5 to 300 μm and an average brain value of 3000 to 4000 cm 2. / G casting waste sand,
The cementitious inorganic materials 30 to 85 wt%, 5 to 15% by weight of reinforcing fibers material, 5 to 15 wt% of the porous material, the raw material mixture was combined 1-15 wt% mixed the waste casting sand Disperse in water to make a slurry, dehydrate to form a mat, cure the mat after dehydration molding, and fill the various pores of the cured porous inorganic plate with a porous three-dimensional structure filled with the foundry waste sand And a method for producing an inorganic board , wherein the cement-based inorganic material and the casting waste sand are reacted .
JP2002285178A 2002-09-30 2002-09-30 Inorganic board and method for producing the same Expired - Fee Related JP4180870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285178A JP4180870B2 (en) 2002-09-30 2002-09-30 Inorganic board and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285178A JP4180870B2 (en) 2002-09-30 2002-09-30 Inorganic board and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004115353A JP2004115353A (en) 2004-04-15
JP4180870B2 true JP4180870B2 (en) 2008-11-12

Family

ID=32278551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285178A Expired - Fee Related JP4180870B2 (en) 2002-09-30 2002-09-30 Inorganic board and method for producing the same

Country Status (1)

Country Link
JP (1) JP4180870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335585A (en) * 2005-05-31 2006-12-14 Denki Kagaku Kogyo Kk Cement composition, injecting material using it and method for using cement composition
JP4955938B2 (en) * 2005-05-31 2012-06-20 電気化学工業株式会社 Void filler
CN114230247B (en) * 2021-12-21 2023-04-07 中建五局土木工程有限公司 High-performance nanofiber machine-made sand concrete and preparation method thereof

Also Published As

Publication number Publication date
JP2004115353A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
CN110776289B (en) Light high-strength ceramsite concrete and preparation method and application thereof
CN109851298B (en) Electromagnetic shielding cement board and semi-dry method preparation process thereof
CN111003991A (en) Light high-strength silicate ceramsite concrete
JP2006062883A (en) Wooden cement board and its manufacturing method
JP2022530193A (en) Manufacture of wet-cast slag-based concrete products
CN115340329A (en) Recycled fine aggregate-magnesium oxide base expanding agent ultrahigh-performance concrete and preparation method thereof
JP2005343740A (en) Manufacturing process of wood cement board
CN109608134B (en) Cement board and semi-dry method preparation process thereof
JP4180870B2 (en) Inorganic board and method for producing the same
JP2000109380A (en) Lightweight inorganic board
CN111517725A (en) Large-aggregate inorganic regenerated artificial artistic stone plate and preparation method thereof
JP2000264707A (en) Fiber reinforced cement molding
KR101117780B1 (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust
CN114804759B (en) Reinforced roller compacted concrete for tunnel pavement and preparation method thereof
JP2003300767A (en) Inorganic board and manufacturing method therefor
JP4097870B2 (en) Wood cement board
JP2004114539A (en) Method for manufacturing inorganic board
JP3980181B2 (en) High specific gravity wood cement board and manufacturing method thereof
JP4104880B2 (en) Inorganic board and method for producing the same
JP3973079B2 (en) Shirasu high-pressure press-molded body and method for producing the same
JP3204954B2 (en) Wet manufacturing method of inorganic plate
JP4163424B2 (en) Inorganic board and method for producing the same
JP3428320B2 (en) Manufacturing method of greening base concrete
CN117466602A (en) Mortar and preparation method thereof
JPS63159249A (en) Manufacture of inorganic hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees