JP4178223B2 - Method of firing yttrium oxide - Google Patents

Method of firing yttrium oxide Download PDF

Info

Publication number
JP4178223B2
JP4178223B2 JP08771598A JP8771598A JP4178223B2 JP 4178223 B2 JP4178223 B2 JP 4178223B2 JP 08771598 A JP08771598 A JP 08771598A JP 8771598 A JP8771598 A JP 8771598A JP 4178223 B2 JP4178223 B2 JP 4178223B2
Authority
JP
Japan
Prior art keywords
firing
yttrium oxide
yttrium
sintered body
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08771598A
Other languages
Japanese (ja)
Other versions
JPH11278933A (en
Inventor
紀子 齋藤
隆康 池上
博明 阪井
周一 市川
昭昌 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP08771598A priority Critical patent/JP4178223B2/en
Publication of JPH11278933A publication Critical patent/JPH11278933A/en
Application granted granted Critical
Publication of JP4178223B2 publication Critical patent/JP4178223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放電灯用発光管、高温用観察窓、レ−ザホスト材料等に使用される酸化イットリウム透明焼結体の製造方法に関する。
【0002】
【従来の技術】
酸化イットリウムは、結晶構造が立方晶であるので複屈折が無く、その為に焼結体であっても透明な焼結体を得ることにより、単結晶と同等の光の直線透過率を呈する焼結体を得ることが出来る。焼結体の製造については、最近焼結温度が比較的低くてすむイットリウム炭酸塩を利用する技術が注目されており、例えば、特開平9−315816号公報や同9−315865号公報等には炭酸塩を利用して透明度の高い焼結体を製造する方法についての提案がなされているが、光線の直線透過率が単結晶の酸化イットリウムの直線透過率である約80%に限りなく近いものを定常的に製造すること迄には至っていないのが現状である。
所で、今までになされている様々な提案の中に、酸化イットリウムの原料である炭酸イットリウムの粒度の細かさと焼成後の酸化イットリウムの直線透過率との間に正の相関があるとの知見が報告されている。一方、本願発明の発明者の一人である斉藤等の研究によれば、熟成後の炭酸イットリウムを濾取した後、濾取した結晶を硫酸アンモニウム水溶液で洗浄すると、洗浄効果が上がるばかりでなく、更にこの硫酸アンモニウム水溶液による洗浄により、微細で均一性に富んだ炭酸イットリウムの粒子が得られることが見いだされている。しかしながら、その後の詳細な追試の結果、このものを焼成しても、必ずしも直線透過率の高いものは得られないことが判明した。
【0003】
【発明が解決しようとする課題】
本発明は、硫酸アンモニウム水溶液で洗浄して得られた炭酸イットリウムを仮焼することにより得られる粒度が微細で且つ均一性に富む酸化イットリウム粉末を焼成して、透明度も高く、光線の直線透過率も高い酸化イットリウム(以下イットリアと称することもある)の焼結体を製造する方法を提供せんとするものである。
【0004】
【課題を解決するための手段】
本発明者等は、上記の様な現状に鑑みて種々検討した結果、イットリウム炭酸塩の洗浄に用いた硫酸アンモニウムがイットリウム炭酸塩に極微量ではあるが残存し、それをそのまま仮焼して酸化イットリウムを製造すると酸化イットリウムの粒子の表面に付着し、残留するために焼成の際に、この硫酸アンモニウムがガス化してその跡に気孔が形成されるために、微細な粒度に反して酸化イットリウムの焼結体の直線透過率が必ずしも向上しないと言う知見を得た。そこで、この硫酸アンモニウムを焼成前に除去する方法を種々検討したところ、成形体を比較的低温で予備焼成し酸化イットリウムの焼結体が緻密化する前に硫酸アンモニウムをガス化させて除去し、引き続き本焼成を行うと言う二段階焼成を採用することにより、酸化イットリウムの焼結体に気孔痕を形成させることなく、直線透過率の高い焼結体を生成させることが出来ることを見いだして、本願発明を完成したものである。
【0005】
【発明の実施の形態】
本願発明に係る透明度が高く、光線の直線透過率の高いイットリア焼結体の製造方法は、硫酸アンモニウム水溶液で洗浄されたイットリウム炭酸塩を仮焼してイットリア粉末を得た後、この粉末を成形し焼成するに際して、成形したイットリア粉末を比較的低温で特定時間予備焼成し、この予備焼成に引き続き本焼成を行うことを特徴とする方法である。
予備焼成の温度としては、1000℃〜1300℃が適当で、1000℃未満ではイットリア粒子の表面に付着しているイットリウム炭酸塩の製造工程中に不可避的に混入する極微量の硫酸アンモニウムを熱分解により充分に除去することが出来ないために、この残存付着物が焼成過程においてガス化して、その跡に、気孔が形成されるので、透明性が高く、且つ、光線の直線透過率が高いイットリアを安定して製造することが出来ない。また、1300℃を超えた温度の予備焼成では、粒子のネック成長が促進されるために粒子内に空隙が取り残されたまま焼成されてしまうので、やはり目的とする透明性が高く、光線の直線透過率が高いイットリアが安定して製造することが出来ない。
本願発明に使用できるイットリウム炭酸塩としては、特開平9−315865号公報に開示されている方法で製造されたものを硫酸アンモニウム塩の水溶液を使用して製造されたものが好適に使用される。勿論、イットリウム炭酸塩であれば、その製造法の如何に拘わらず、粉末度が大凡0.04μm〜0.15μmの範囲内にあるイットリア粉末を製造するのに適切なものである限り、本願方法に使用できることは言うまでもない。
【0006】
本発明に係るイットリアの焼結体の製造方法においては、予備焼成は、1000℃〜1300℃、好ましくは、1000℃〜1200℃の温度で1.5時間〜2.5時間、好ましくは2時間以上かけて行えばよい。本焼成は、予備焼成に引き続き行う。本焼成における焼成温度は、1500℃〜1800℃、好ましくは1600℃〜1700℃である。保持時間は、1.0時間〜5.0時間、好ましくは、2.5時間である。本焼成の温度が1500℃未満だと焼結体としての透明度が充分に上がらず、また、1800℃を超えた温度で焼成することは、焼結体の密度や透明性に特に向上が認められないことから、エネルギ−の消費効率の点で問題があり、好ましくない。
【0007】
【実施例】
以下実施例と比較例とを挙げて、本発明を更に説明するが、勿論、本発明は、これらの例により何等制限されるものではないことは言うまでもない。
以下の例において使用した光線の直線透過率の測定法について記載する。
光源から直径2mm、波長600nmの直線光を放出し、光源から100mm離れた直径2mmの検出器上に正確に照射する。このときの光の検出量をyとする。両面を鏡面研磨して厚さ1mmの平板としたサンプルを、光源と検出器との中心に直線光に対して研磨面が垂直となるように挿入して光線を遮る。このとき検出された光の検出量をxとする。この結果を下記式に当てはめて、各サンプルの持つ直線透過率を算出する。
直線透過率(%)= (x÷y)×100
(実施例及び比較例)
特開平9−315865号公報に記載の方法に準じて酸化イットリウム粉末を調製した。即ち、0.5モル/lの硝酸イットリウム水溶液2500mlに2.5モル/lの炭酸水素アンモニウム水溶液1000mlを滴下し、滴下終了後に反応溶液のpHを4.5に調整し、炭酸イットリウムを沈殿させた。沈殿物を含む反応溶液をそのまま30℃で2日間攪拌しながら、生成させた炭酸イットリウムを熟成させた。熟成後この生成させた炭酸イットリウムの沈殿を濾取し、濾取した炭酸イットリウムを0.05重量%の硫酸アンモニウム水溶液で充分に洗浄し、洗浄後100℃で乾燥させた。かくして得られた炭酸イットリウム粉末を、酸素雰囲気で1100℃で仮焼し、酸化イットリウム粉末を得た。この酸化イットリウム粉末を静水圧2t/cm2で所定の形状に成形し、比較例であり、本焼成のみ行ったRun No.8を除き、焼成は二段階焼成で、10-5Torrとした焼成炉内で真空焼成した。なお、予備焼成及び本焼成共に昇温速度は、600℃/時間とした。予備焼成及び本焼成における温度管理、焼成時間等については、焼結体の直線透過率と共に表1に示す。表1中のRun No.1、2、7及び8は比較例で、残りは本発明の実施例である。
【0008】
【表1】

Figure 0004178223
【0009】
【発明の効果】
本願発明に係る焼成方法によれば、常に60%以上の直線透過率を有するイットリア焼結体を製造することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a transparent sintered body of yttrium oxide used for a discharge lamp arc tube, a high-temperature observation window, a laser host material, and the like.
[0002]
[Prior art]
Yttrium oxide does not have birefringence because its crystal structure is cubic, and therefore, even if it is a sintered body, a transparent sintered body is obtained, so that it exhibits a linear light transmittance equivalent to that of a single crystal. A ligation can be obtained. As for the production of a sintered body, recently, a technique using yttrium carbonate, which requires a relatively low sintering temperature, has attracted attention. For example, JP-A-9-315816 and 9-315865 disclose Proposals have been made on a method for producing a sintered body with high transparency using carbonate, but the linear transmittance of light is almost as close as about 80%, which is the linear transmittance of single crystal yttrium oxide. The current situation is that it has not yet been produced in a steady manner.
However, among the various proposals that have been made so far, there is a positive correlation between the fine particle size of yttrium carbonate, the raw material of yttrium oxide, and the linear transmittance of yttrium oxide after firing. Has been reported. On the other hand, according to research by Saito et al., One of the inventors of the present invention, after filtering the ripened yttrium carbonate, washing the filtered crystals with an aqueous ammonium sulfate solution not only improves the cleaning effect, but also It has been found that fine and uniform yttrium carbonate particles can be obtained by washing with this aqueous ammonium sulfate solution. However, as a result of subsequent detailed tests, it has been found that even if this product is fired, a product having a high linear transmittance cannot always be obtained.
[0003]
[Problems to be solved by the invention]
The present invention calcinates yttrium oxide powder having a fine particle size and high uniformity obtained by calcining yttrium carbonate obtained by washing with an aqueous ammonium sulfate solution, and has high transparency and linear light transmittance. It is intended to provide a method for producing a sintered body of high yttrium oxide (hereinafter sometimes referred to as yttria).
[0004]
[Means for Solving the Problems]
As a result of various studies in view of the present situation as described above, the present inventors have found that the ammonium sulfate used for washing the yttrium carbonate remains in the yttrium carbonate, but remains as it is, and calcined as it is to yttrium oxide. When it is manufactured, it adheres to the surface of the yttrium oxide particles and remains, so during sintering, this ammonium sulfate is gasified and pores are formed in the trace, so that yttrium oxide is sintered against the fine particle size. The knowledge that the linear transmittance of the body is not necessarily improved was obtained. Thus, various methods for removing this ammonium sulfate before firing were examined. As a result, the molded body was pre-fired at a relatively low temperature, and the ammonium sulfate was gasified and removed before the sintered body of yttrium oxide was densified. By adopting the two-stage firing, which is called firing, it has been found that a sintered body having a high linear transmittance can be generated without forming pore marks in the sintered body of yttrium oxide. Is completed.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a yttria sintered body having high transparency and high linear light transmittance according to the present invention is obtained by calcining yttrium carbonate washed with an aqueous ammonium sulfate solution to obtain yttria powder, and then molding this powder. When firing, the shaped yttria powder is pre-fired at a relatively low temperature for a specific time, and this pre-fire is followed by main firing.
The pre-baking temperature is suitably 1000 ° C. to 1300 ° C. If the temperature is lower than 1000 ° C., a very small amount of ammonium sulfate inevitably mixed in the production process of yttrium carbonate adhering to the surface of yttria particles is thermally decomposed. Since it cannot be removed sufficiently, the remaining deposits are gasified in the firing process, and pores are formed in the traces. Therefore, yttria having high transparency and high linear light transmittance is obtained. It cannot be manufactured stably. Further, in the preliminary firing at a temperature exceeding 1300 ° C., since the neck growth of the particles is promoted, the voids are left behind in the particles, so that the desired transparency is high, and the straight line of the light beam Yttria with high transmittance cannot be manufactured stably.
As the yttrium carbonate that can be used in the present invention, those produced by the method disclosed in JP-A-9-315865 and using an aqueous solution of ammonium sulfate are preferably used. Of course, as long as it is suitable for producing yttria powder having a fineness in the range of about 0.04 μm to 0.15 μm, any method of yttrium carbonate can be used regardless of the production method. Needless to say, it can be used.
[0006]
In the method for producing a yttria sintered body according to the present invention, the preliminary firing is performed at a temperature of 1000 ° C. to 1300 ° C., preferably 1000 ° C. to 1200 ° C. for 1.5 hours to 2.5 hours, preferably 2 hours. This can be done. The main baking is performed after the preliminary baking. The firing temperature in the main firing is 1500 ° C. to 1800 ° C., preferably 1600 ° C. to 1700 ° C. The holding time is 1.0 hour to 5.0 hours, preferably 2.5 hours. When the firing temperature is less than 1500 ° C., the transparency as a sintered body is not sufficiently increased, and firing at a temperature exceeding 1800 ° C. is particularly improved in the density and transparency of the sintered body. Therefore, there is a problem in terms of energy consumption efficiency, which is not preferable.
[0007]
【Example】
Hereinafter, the present invention will be further described with reference to examples and comparative examples. Needless to say, the present invention is not limited to these examples.
It describes about the measuring method of the linear transmittance of the light used in the following examples.
A linear light having a diameter of 2 mm and a wavelength of 600 nm is emitted from the light source, and is accurately irradiated onto a detector having a diameter of 2 mm that is 100 mm away from the light source. The amount of light detected at this time is y. A sample having a 1 mm thick flat plate by mirror polishing on both sides is inserted in the center of the light source and detector so that the polished surface is perpendicular to the linear light, thereby blocking the light beam. Let x be the detected amount of light detected at this time. By applying this result to the following equation, the linear transmittance of each sample is calculated.
Linear transmittance (%) = (x ÷ y) × 100
(Examples and Comparative Examples)
Yttrium oxide powder was prepared according to the method described in JP-A-9-315865. That is, 1000 ml of a 2.5 mol / l ammonium bicarbonate aqueous solution was dropped into 2500 ml of a 0.5 mol / l yttrium nitrate aqueous solution, and after completion of the dripping, the pH of the reaction solution was adjusted to 4.5 to precipitate yttrium carbonate. It was. The produced yttrium carbonate was aged while stirring the reaction solution containing the precipitate as it was at 30 ° C. for 2 days. After aging, the produced yttrium carbonate precipitate was collected by filtration, and the filtered yttrium carbonate was thoroughly washed with 0.05 wt% ammonium sulfate aqueous solution, and dried at 100 ° C. after washing. The yttrium carbonate powder thus obtained was calcined at 1100 ° C. in an oxygen atmosphere to obtain an yttrium oxide powder. This yttrium oxide powder was molded into a predetermined shape at a hydrostatic pressure of 2 t / cm 2, which was a comparative example. Except for No. 8, the firing was two-stage firing, and vacuum firing was performed in a firing furnace at 10 −5 Torr. Note that the rate of temperature increase was 600 ° C./hour for both the pre-firing and the main firing. The temperature control, firing time, and the like in the preliminary firing and the main firing are shown in Table 1 together with the linear transmittance of the sintered body. Run No. in Table 1 1, 2, 7 and 8 are comparative examples, and the rest are examples of the present invention.
[0008]
[Table 1]
Figure 0004178223
[0009]
【The invention's effect】
According to the firing method of the present invention, an yttria sintered body that always has a linear transmittance of 60% or more can be produced.

Claims (3)

硫酸イオンを含む水溶液で洗浄した炭酸イットリウムを仮焼することにより得られた酸化イットリウム粉末を所望の形に成形し、得られた成形体を焼成して酸化イットリウム焼結体を製造する方法において、本焼成よりも低い温度で成形体を真空下で予備焼成し、その後本焼成することを特徴とする該方法。In a method for producing an yttrium oxide sintered body by forming an yttrium oxide powder obtained by calcining yttrium carbonate washed with an aqueous solution containing sulfate ions into a desired shape and firing the obtained shaped body. said method characterized by than the sintering the compact at a lower temperature pre-sintered under vacuum, and then main baking. 該予備焼成を1000℃〜1300℃で行うことを特徴とする請求項1に記載の方法。  The method according to claim 1, wherein the pre-baking is performed at 1000 ° C. to 1300 ° C. 該予備焼成に引き続き本焼成を1500℃〜1800℃で行うことを特徴とする請求項1または2に記載の方法。  The method according to claim 1, wherein the pre-baking is followed by main baking at 1500 ° C. to 1800 ° C. 3.
JP08771598A 1998-03-31 1998-03-31 Method of firing yttrium oxide Expired - Lifetime JP4178223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08771598A JP4178223B2 (en) 1998-03-31 1998-03-31 Method of firing yttrium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08771598A JP4178223B2 (en) 1998-03-31 1998-03-31 Method of firing yttrium oxide

Publications (2)

Publication Number Publication Date
JPH11278933A JPH11278933A (en) 1999-10-12
JP4178223B2 true JP4178223B2 (en) 2008-11-12

Family

ID=13922612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08771598A Expired - Lifetime JP4178223B2 (en) 1998-03-31 1998-03-31 Method of firing yttrium oxide

Country Status (1)

Country Link
JP (1) JP4178223B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775273B1 (en) 2004-07-02 2010-10-27 Konoshima Chemical Co., Ltd. Light transmitting lutetium oxide sintering product and process for producing the same
JP2006282447A (en) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Translucent material and method for manufacturing the same
CN112174667B (en) * 2020-09-22 2022-11-22 天津津航技术物理研究所 Y 2 O 3 Preparation method of window material

Also Published As

Publication number Publication date
JPH11278933A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
KR100201521B1 (en) Alpha alumina abrasive grits, and manufacturing method for them
JPH0280361A (en) Orientable calcium phosphate compound molding and sintered body and their production
CN107285770B (en) A kind of purity is high zirconic acid lanthanum gadolinium powder of uniform morphology and crystalline ceramics preparation method
JPH05330911A (en) Composition for ceramic and method for obtaining it
JP4178223B2 (en) Method of firing yttrium oxide
CN102070177B (en) Porous cubic phase scandium oxide powder and preparation method thereof
JPH0524844A (en) Production of hydrated zirconia sol and zirconia powder
CN111087235B (en) Method for preparing YAG transparent ceramic by adopting yttrium/auxiliary agent/aluminum triple core-shell structure powder
JP3417490B2 (en) Calcium oxide porous granular composite and method for producing the same
CN110642612A (en) Energy temmoku ceramic cup and preparation process thereof
JP2000344516A (en) PRODUCTION OF alpha-ALUMINA POWDER
JP3906352B2 (en) Method for producing YAG transparent sintered body
JP4251649B2 (en) Translucent lutetium oxide sintered body and method for producing the same
JP2002029742A (en) Rare earth oxide powder and method for manufacturing the same
JP2007098197A (en) Manufacturing method of photocatalyst material
CN108046794A (en) The method that metatitanic acid yttrium crystalline ceramics is prepared using Co deposited synthesis powder
JP4178224B2 (en) Method for producing yttrium oxide powder
JPH04295014A (en) Stabilized metal oxide composition and method of preparing same
JP3692188B2 (en) Method for producing fine yttrium aluminum garnet powder
JP4231917B2 (en) Method for producing yttrium oxide fired body
RU2194014C1 (en) Method of finely divided yttrium oxide powder preparing
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
CN112877746A (en) Method for preparing high-purity lutetium aluminum garnet precursor
JP3563464B2 (en) Method for producing yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered body using the same
JP2866891B2 (en) Polycrystalline transparent yttrium aluminum garnet sintered body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term