JP4175865B2 - tube - Google Patents

tube Download PDF

Info

Publication number
JP4175865B2
JP4175865B2 JP2002312859A JP2002312859A JP4175865B2 JP 4175865 B2 JP4175865 B2 JP 4175865B2 JP 2002312859 A JP2002312859 A JP 2002312859A JP 2002312859 A JP2002312859 A JP 2002312859A JP 4175865 B2 JP4175865 B2 JP 4175865B2
Authority
JP
Japan
Prior art keywords
fiber
pipe
reinforcing
tube
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002312859A
Other languages
Japanese (ja)
Other versions
JP2004148511A (en
Inventor
裕思 樋口
泰以 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002312859A priority Critical patent/JP4175865B2/en
Publication of JP2004148511A publication Critical patent/JP2004148511A/en
Application granted granted Critical
Publication of JP4175865B2 publication Critical patent/JP4175865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合成樹脂製の管本体の周面に、接着部を介して補強繊維を管周に沿って巻回接着した補強部を設けてある管に関する。
【0002】
【従来の技術】
合成樹脂製の管は、一般的に金属製の管に比べて柔軟性に優れると共に、軽量で取り扱い易く、更には、腐食し難い上、施工面においては、接続管との接合面どうしを融着する接合方式を採用することも可能で、容易に管路一体構造を形成できる等の特徴がある。
しかしながら、強度の面においては、さらなる向上が望まれている。
従来、この種の管としては、塩化ビニル樹脂製の管本体の外周に、繊維強化されたポリジシクロペンタジエンの外層を設けて形成してあるものがあった(例えば、特許文献1参照)。因みに、補強繊維としては、ガラス繊維やカーボン繊維や金属繊維等の無機繊維、或いは、アラミド繊維、ナイロン繊維、ジュート繊維、ケナフ繊維、竹繊維、ポリエチレン繊維、延伸ポリエチレン繊維、ポリプロピレン繊維、延伸ポリプロピレン繊維等の有機繊維が挙げられている。
【0003】
【特許文献1】
特開2002−144487号公報(段落番号〔0009〕、段落番号〔0011〕、段落番号〔0021〕、図1)
【0004】
【発明が解決しようとする課題】
上述した従来の管によれば、管本体や外層、及び、補強繊維がそれぞれ異なる材料で形成されているから、夫々の物性にも差異が発生し、例えば、荷重や衝撃が作用した場合に、それぞれの材料相互に異なる変形特性を示す危険性があり、結果的には、効率の良い強度アップが図り難い問題点があった。
即ち、管そのものが厚肉になって、重量が大きくなって取り扱い難くなったり、原材料の使用量が増加してコストアップを来す危険性があった。
【0005】
従って、本発明の目的は、上記問題点を解消し、効率よく強度アップを図れる管を提供するところにある。
【0006】
【課題を解決するための手段】
請求項1の発明の特徴構成は、合成樹脂製の管本体の周面に、接着部を介して補強繊維を管周に沿って巻回接着した補強部を設け前記管本体、及び、前記接着部、及び、前記補強繊維は、共に、ポリオレフィン系材料で形成してあり、前記接着部の材料は、前記管本体、及び、前記補強繊維の材料より低融点なものを用いてあり、前記補強部は、前記接着部を構成する繊維材と、前記補強繊維を構成する繊維材とを、横断面内で混在する状態に配置して形成してあるところにある。
【0007】
請求項1の発明の特徴構成によれば、補強繊維が管周に沿って巻回接着してあることで、管本体の撓みに対して、補強繊維の長手方向に沿った引っ張り抵抗力が効果的に作用し、管全体とした補強効果を充分に発揮することが出来る訳であるが、そのような、応力状態において、管本体、接着部、補強繊維が共にポリオレフィン系材料で構成してあることによって、根本的な材料物性(例えば、熱膨張性能や変形特性等)が共通しており、これら三つの部分が一丸となって外力を負担することが可能となる。勿論、各部分どうしが同質材料であることによる馴染み度が高いことによる一体性の向上もある。
従って、効率よい応力分担を果たすことができ、結果的に、非常に無駄なく強度アップを図ることが実現し、軽量で高強度な管を形成するに至った。
また、管本体、接着部、補強繊維の一体化に関しても、三者を一体的に配置した状態で、環境温度を、管本体・補強繊維の融点未満で且つ接着部の融点以上に設定するだけで、前記接着部が融けて、管本体や補強繊維の性能劣化を来さない状態で接着することができ、管製造の製造コストの低減化も叶えることが可能となる。
又、補強繊維を構成する繊維材と、接着部を構成する繊維材とが横断面内で混ざり合うことで、より両者の一体性が向上し、特に、補強繊維を構成する繊維材が単独の状態で応力分担するのを防止でき、効率の良い強度アップを図ることが可能となる。
【0008】
請求項2の発明の特徴構成は、合成樹脂製の管本体の周面に、接着部を介して補強繊維を管周に沿って巻回接着した補強部を設け、前記管本体、及び、前記接着部、及び、前記補強繊維は、共に、ポリオレフィン系材料で形成してあり、前記接着部の材料は、前記管本体、及び、前記補強繊維の材料より低融点なものを用いてあり、前記補強部は、前記接着部を構成する繊維材で、前記補強繊維を構成する繊維材を、横断面内で囲む状態に配置して形成してあるところにある。
【0009】
請求項2の発明の特徴構成によれば、補強繊維が管周に沿って巻回接着してあることで、管本体の撓みに対して、補強繊維の長手方向に沿った引っ張り抵抗力が効果的に作用し、管全体とした補強効果を充分に発揮することが出来る訳であるが、そのような、応力状態において、管本体、接着部、補強繊維が共にポリオレフィン系材料で構成してあることによって、根本的な材料物性(例えば、熱膨張性能や変形特性等)が共通しており、これら三つの部分が一丸となって外力を負担することが可能となる。勿論、各部分どうしが同質材料であることによる馴染み度が高いことによる一体性の向上もある。
従って、効率よい応力分担を果たすことができ、結果的に、非常に無駄なく強度アップを図ることが実現し、軽量で高強度な管を形成するに至った。
また、管本体、接着部、補強繊維の一体化に関しても、三者を一体的に配置した状態で、環境温度を、管本体・補強繊維の融点未満で且つ接着部の融点以上に設定するだけで、前記接着部が融けて、管本体や補強繊維の性能劣化を来さない状態で接着することができ、管の製造コストの低減化も叶えることが可能となる。
又、補強繊維を構成する繊維材が、前記接着部によって覆われるから、接着部が保護材の役目を果たすことができ、補強繊維の耐久性を向上させることが可能となる。その結果、管として長期間にわたって強度を維持することが可能となる。
【0012】
請求項の発明の特徴構成は、前記補強部は、前記管本体の外周に一体的に配置してあるところにある。
【0013】
請求項の発明の特徴構成によれば、請求項1又は2の発明による作用効果を叶えることができるのに加えて、管厚みの中で、特に、大きな縁応力が作用する外周部に補強部を位置させてあることで、効率の良い応力分担を叶えることができ、より小さな断面で目的とした強度を確保することが可能となる。従って、管全体的な軽量化や、原料の使用量の低減によるコストダウンを叶えることが可能となる。
【0014】
請求項の発明の特徴構成は、前記補強部は、前記管本体の内周に一体的に配置してあるところにある。
【0015】
請求項の発明の特徴構成によれば、請求項1又は2の発明による作用効果を叶えることができるのに加えて、補強部そのものは、補強繊維が管周面に沿って巻回状態に設けられているから一般的に表面の平滑性を高くし難いが、その補強部が管本体の内周に位置することで、管の外周側には平滑性の高い管本体を位置させることができ、前記補強部による管の補強を叶えながらも、管外周面は平滑面に形成することが可能となる。その結果、例えば、管接合時に、接合用ソケット等を用いて接着接合や熱融着接合するのに、接合面の平滑性が確保されやすいことで、より確実な管接合部を形成することが可能となる。従って、管接合工事の品質を向上させやすく、且つ、その施工効率をも向上させることが可能となる。
【0016】
請求項の発明の特徴構成は、前記補強部を覆う状態に、ポリオレフィン系材料からなるカバー部を設けてあるところにある。
【0017】
請求項の発明の特徴構成によれば、請求項1〜の何れかの発明による作用効果を叶えることができるのに加えて、カバー部によって補強部を保護する効果があると共に、補強部の表面を前記カバー部によって平滑に成形することが可能となる。従って、上述のように、管接合に伴う接合面の平滑性を確保して接合強度の向上や、施工効率の向上を図ることが可能となる。この様な効果に関しては、前記補強部が、管本体の外周側にある場合に限らず、管本体の内周側にある場合でも同様に叶えることができる。
【0018】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
【0019】
図1〜10は、本発明の管の一例である管Pを示すものであり、この管Pは、管本体P1と、及び、その周面に一体的に形成された補強部P2とを設けて構成してあり、例えば、ガス導管や導水管等に用いることができ、特に、地中埋設される部分に設置しても、安定した状態で管路を維持することができるものである。以下に複数の対応について個別に説明する。
【0020】
〔第一実施形態〕
図1〜3に示すように、前記管本体P1は、ポリオレフィン系材料で形成された筒体で、前記補強部P2との一体化の前には、内外周面ともに平滑面に形成されている。そして、一般的なこの種の管の肉厚よりも薄肉に形成してある。その一例として、ガス用50Aポリエチレン管を挙げて説明すると、一般的には、50Aの場合は、管肉厚は5.5mmであるのに対して、本実施形態においては、2.5mmの管肉厚にしてある。これは、前記補強部P2によって補強されることで強度アップが図られ、通常の50Aと同様の管強度を示すことが可能となっているからである。
【0021】
前記補強部P2は、超高分子量のポリオレフィン系繊維材(以後、単に超高分子繊維材という)1の複数と、低分子量のポリオレフィン系繊維材(以後、単に低分子繊維材という)2の複数とを束ねて繊維状にした巻回繊維3によって構成されている。
前記低分子繊維材2は、その融点が、前記管本体P1、及び、前記超高分子繊維材1の融点より低いものを使用してある。従って、管本体P1の外周面に前記巻回繊維3を巻き付けた状態で、前記低分子繊維材2のみが融解する温度まで加熱することによって、低分子繊維材2が接着部Bとなって、管本体P1と超高分子繊維材1とを一体化することができるものである。因みに、前記超高分子繊維材1は、引っ張り強度が高いから、補強繊維Hの役割を担っている。
前記巻回繊維3を構成する超高分子繊維材1と低分子繊維材2の一例を説明すると、前記超高分子繊維材1としては、1300dtex程度の超高分子量ポリエチレン繊維を使用し、前記低分子繊維材2としては、882dtex程度の低分子量ポリエチレン繊維を使用する場合がある。
【0022】
因みに、ここで挙げた材質によれば、それぞれの融点は、次の通りである。
管本体P1を構成するポリエチレン管の融点=126℃
超高分子繊維材1を構成する超高分子ポリエチレン繊維の融点=146℃
低分子繊維材2を構成する低分子ポリエチレン繊維の融点=107℃
【0023】
前記巻回繊維3は、図2に示すように、前記超高分子繊維材1と前記低分子繊維材2とを束ねて形成してあり、所謂、マイクロブレーディング繊維をかたち作っている。超高分子繊維材1と低分子繊維材2との配置に関しては、図2(イ)のように、両繊維材が横断面内で混在する状態に配置してあったり、図2(ロ)のように、低分子繊維材2によって超高分子繊維材1を横断面内で囲む状態に配置してあってもよい。
また、図2(イ)の巻回繊維3を加熱して前記低分子繊維材2を融解させた接着後の状態は、図3(イ)に示すとおりである。同様に、図2(ロ)の巻回繊維3を加熱して前記低分子繊維材2を融解させた接着後の状態は、図3(ロ)に示すとおりである。
【0024】
本実施形態の管Pによれば、前記補強部P2による管本体P1の補強効果が発揮され、従来の管と同程度の強度を薄肉管で実現することや、又は、従来の管と同程度の肉厚で高強度管を形成することが可能となり、その結果、管の軽量化が図られることで取り扱い易くなり、当該管の敷設工事等の作業能率をも向上させることが可能となる。
【0025】
〔第二実施形態〕
前記第一実施形態と共通する部分については、その説明を割愛する。
管本体P1、及び、巻回繊維3は、先の挙げたものと同様の構成を採用することができ、本実施形態においては、図4に示すように、巻回繊維3を含めて管本体P1を覆う状態に、管本体P1と同じポリエチレン製のカバー部4を設けてある。但し、巻回繊維3の超高分子繊維材1と低分子繊維材2との配置については、第一実施形態の図2に示したとおり、何れの配置をも採用することができる。図から見られるように、この実施形態のガス導管Pは、内周面・外周面共に平滑面に仕上がっている。
【0026】
本実施形態の管Pによれば、管強度の増加を図れることの他に、内周面が平滑であることで、内空部の流体への摩擦損失を小さくすることが出来ながら、外周面に関しては、例えば、図5に示すような、ソケット5を使用して、例えば、電熱や接着材等によって接合面同士を融着するような接合方式を採用することができ、より確実な管接合を実現することが可能となる。また、カバー部4の存在により、補強部P2そのものの劣化を防止しやすくなるから、管Pの耐久性の向上をも叶えることができる。
【0027】
〔第三実施形態〕
管本体P1、及び、巻回繊維3のそれぞれ単体は、先の挙げたものと同様の構成を採用することができるが、本実施形態においては、図6に示すように、管本体P1の内周面に沿って補強部P2を形成してある。
また、補強部P2を構成する巻回繊維3の超高分子繊維材1と低分子繊維材2との配置については、第一実施形態の図2に示したとおり、何れの配置をも採用することができる。
【0028】
本実施形態の管Pによれば、管外観は通常の管と同様でありながら、強度アップが図られている。
【0029】
〔第四実施形態〕
管本体P1、及び、巻回繊維3は、先の挙げたものと同様の構成を採用することができ、本実施形態においては、図7に示すように、管本体P1の内周面に設けられた巻回繊維3を含めて管本体P1の内周面を覆う状態に、管本体P1と同じポリエチレン製のカバー部4を設けてある。但し、巻回繊維3の超高分子繊維材1と低分子繊維材2との配置については、第一実施形態の図2に示したとおり、何れの配置をも採用することができる。
図から見られるように、この実施形態のガス導管Pは、内周面・外周面共に平滑面に仕上がっている。
【0030】
本実施形態の管Pによれば、管強度の増加を図れることの他に、内周面が平滑であることで、内空部の流体への摩擦損失を小さくすることが出来ながら、外周面に関しては、例えば、ソケット5を使用して、例えば、電熱や接着材等によって接合面同士を融着するような接合方式を採用することができ、より確実な管接合を実現することが可能となる。また、カバー部4の存在により、補強部P2そのものの劣化を防止しやすくなるから、管Pの耐久性の向上をも叶えることができる。
【0031】
〔別実施形態〕
以下に他の実施の形態を説明する。
【0032】
〈1〉 当該管Pを構成する材質は、先の実施形態で説明したポリエチレンに限るものではなく、例えば、ポリプロピレンや、ポリブテン等であってもよく、要するにオレフィンの重合によりつくられる樹脂状物質であればよく、それらを含めてポリオレフィン系材料と総称する。
また、補強繊維に関しては、先の実施形態で説明した高分子量のものに限るものではなく、例えば、分子の配向によって融点を高くしたり、造核材の添加によって融点を高くするものであってもよい。
〈2〉 前記巻回繊維は、先の実施形態で説明したように管本体の周面に対して一方向の螺旋巻き形状に設置したものに限るものではなく、例えば、図8に示すように、異なる螺旋向きで交差する状態に配置してあったり、図9に示すように、筒形状に巻回繊維を編んだもの、又は、斜め編みした組紐状のものであってもよい。
〈3〉 前記補強部は、先の実施形態で説明したように、管本体の内周面側か、外周面側の何れか一方にのみ設けてあるものに限るものではなく、例えば、管本体の内周面、外周面の何れにも設けてあってもよい。
〈4〉 前記カバー部は、先の実施形態で説明した巻回繊維を含めて覆うように設けてあるものに限るものではなく、例えば、図10に示すように、巻回繊維の上面のみを覆う状態に設けられた筒状体であってもよい。
【0033】
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】第一実施形態の管の要部を示す斜視図
【図2】第一実施形態の管の肉厚部分を示す断面図
【図3】第一実施形態の管の肉厚部分を示す断面図
【図4】第二実施形態の管の縦断面図
【図5】第二実施形態の管の連結状態を示す縦断面図
【図6】第三実施形態の管の縦断面図
【図7】第四実施形態の管の縦断面図
【図8】別実施形態の管の要部を示す斜視図
【図9】別実施形態の管の要部を示す斜視図
【図10】別実施形態の管の縦断面図
【符号の説明】
4 カバー部
B 接着部
H 補強繊維
P1 管本体
P2 補強部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pipe in which a reinforcing portion in which reinforcing fibers are wound and bonded along the circumference of a pipe via an adhesive portion is provided on a peripheral surface of a synthetic resin pipe body.
[0002]
[Prior art]
Synthetic resin pipes are generally more flexible than metal pipes, are lightweight and easy to handle, and are not easily corroded. It is also possible to adopt a joining method for wearing, and there is a feature that a pipe integrated structure can be easily formed.
However, further improvement is desired in terms of strength.
Conventionally, as this type of tube, there has been a tube formed by providing an outer layer of fiber-reinforced polydicyclopentadiene on the outer periphery of a vinyl chloride resin tube body (see, for example, Patent Document 1). Incidentally, as the reinforcing fiber, inorganic fiber such as glass fiber, carbon fiber and metal fiber, or aramid fiber, nylon fiber, jute fiber, kenaf fiber, bamboo fiber, polyethylene fiber, drawn polyethylene fiber, polypropylene fiber, drawn polypropylene fiber. Organic fibers such as are mentioned.
[0003]
[Patent Document 1]
JP 2002-144487 A (paragraph number [0009], paragraph number [0011], paragraph number [0021], FIG. 1)
[0004]
[Problems to be solved by the invention]
According to the above-described conventional pipe, the pipe main body, the outer layer, and the reinforcing fiber are formed of different materials, so a difference occurs in each physical property, for example, when a load or impact is applied, There is a risk that each material exhibits different deformation characteristics, and as a result, there is a problem that it is difficult to increase the strength efficiently.
That is, there is a risk that the tube itself becomes thick and becomes heavy and difficult to handle, or the amount of raw material used increases and the cost increases.
[0005]
Accordingly, an object of the present invention is to provide a tube which can solve the above-mentioned problems and can efficiently increase the strength.
[0006]
[Means for Solving the Problems]
The characteristic configuration of the invention of claim 1 is provided on the peripheral surface of the synthetic resin tube main body with a reinforcing portion in which reinforcing fibers are wound and bonded along the tube circumference via the bonding portion , the tube main body, and adhesion portion, and the reinforcing fibers are both Yes and formed of a polyolefin-based material, the material of the bonding portion, the tube body, and, Ri Oh with what low melting point than the material of the reinforcing fibers, The reinforcing portion is formed by arranging the fiber material constituting the adhesive portion and the fiber material constituting the reinforcing fiber in a mixed state in a cross section .
[0007]
According to the characteristic configuration of the invention of claim 1, the tensile resistance along the longitudinal direction of the reinforcing fiber is effective against the bending of the pipe body because the reinforcing fiber is wound and bonded along the circumference of the pipe. However, in such a stress state, the tube main body, the bonded portion and the reinforcing fiber are all made of a polyolefin-based material. Thus, fundamental material properties (for example, thermal expansion performance, deformation characteristics, etc.) are common, and these three portions can be united to bear an external force. Of course, there is also an improvement in unity due to the high degree of familiarity that each part is made of the same material.
Therefore, the stress can be efficiently shared, and as a result, the strength can be increased without waste, and a light and high strength tube is formed.
In addition, regarding the integration of the tube body, the bonded portion, and the reinforcing fiber, the environmental temperature is simply set to be lower than the melting point of the tube body and the reinforcing fiber and higher than the melting point of the bonded portion in a state where the three members are integrally arranged. Thus, the bonding portion melts and can be bonded in a state where the performance of the tube main body and the reinforcing fiber is not deteriorated, and the manufacturing cost of the tube manufacturing can be reduced.
In addition, the fiber material constituting the reinforcing fiber and the fiber material constituting the bonding portion are mixed in the cross section, thereby improving the integrity of both. In particular, the fiber material constituting the reinforcing fiber is a single fiber material. It is possible to prevent the stress from being shared in the state, and to increase the strength efficiently.
[0008]
According to a second aspect of the present invention, there is provided a reinforcing portion in which a reinforcing fiber is wound and bonded along the circumference of the pipe through the bonding portion on the peripheral surface of the synthetic resin pipe main body. The bonding part and the reinforcing fiber are both formed of a polyolefin-based material, and the material of the bonding part is a material having a lower melting point than the material of the pipe body and the reinforcing fiber, The reinforcing portion is a fiber material that constitutes the adhesive portion, and is formed by arranging the fiber material constituting the reinforcing fiber in a state of being enclosed in a cross section .
[0009]
According to the characteristic configuration of the invention of claim 2, the tensile resistance along the longitudinal direction of the reinforcing fiber is effective against the bending of the pipe main body because the reinforcing fiber is wound and bonded along the circumference of the pipe. However, in such a stress state, the tube body, the adhesive part, and the reinforcing fiber are all made of a polyolefin-based material. Thus, fundamental material properties (for example, thermal expansion performance, deformation characteristics, etc.) are common, and these three portions can be united to bear an external force. Of course, there is also an improvement in unity due to the high degree of familiarity that each part is made of the same material.
Therefore, the stress can be efficiently shared, and as a result, the strength can be increased without waste, and a light and high strength tube is formed.
In addition, regarding the integration of the tube body, the bonded portion, and the reinforcing fiber, the environmental temperature is simply set to be lower than the melting point of the tube body and the reinforcing fiber and higher than the melting point of the bonded portion in a state where the three members are integrally arranged. Thus, the bonding portion melts and can be bonded in a state where the performance of the tube main body and the reinforcing fiber is not deteriorated, and the manufacturing cost of the tube can be reduced.
In addition, since the fiber material constituting the reinforcing fiber is covered with the adhesive portion, the adhesive portion can serve as a protective material, and the durability of the reinforcing fiber can be improved. As a result, the strength of the tube can be maintained over a long period .
[0012]
According to a third aspect of the present invention, the reinforcing portion is integrally disposed on the outer periphery of the pipe body.
[0013]
According to the characteristic configuration of the invention of claim 3 , in addition to being able to achieve the function and effect of the invention of claim 1 or 2 , in addition to the tube thickness, particularly the outer peripheral portion where a large edge stress acts is reinforced. By locating the portion, efficient stress sharing can be achieved, and the intended strength can be ensured with a smaller cross section. Therefore, it is possible to achieve cost reduction by reducing the overall weight of the tube and reducing the amount of raw material used.
[0014]
According to a fourth aspect of the present invention, the reinforcing portion is integrally disposed on the inner periphery of the pipe body.
[0015]
According to the characteristic configuration of the invention of claim 4 , in addition to being able to achieve the operational effect of the invention of claim 1 or 2 , the reinforcing portion itself is in a state where the reinforcing fiber is wound along the pipe peripheral surface. It is generally difficult to increase the smoothness of the surface because it is provided, but it is possible to position the tube body with high smoothness on the outer periphery side of the tube by positioning the reinforcing part on the inner periphery of the tube body. In addition, the outer peripheral surface of the tube can be formed as a smooth surface while allowing the reinforcing portion to reinforce the tube. As a result, for example, at the time of pipe joining, it is possible to form a more reliable pipe joint by easily ensuring the smoothness of the joint surface, for example, by bonding or heat-sealing using a joining socket or the like. It becomes possible. Therefore, it is easy to improve the quality of pipe joining work, and it is possible to improve the construction efficiency.
[0016]
The characteristic configuration of the invention of claim 5 is that a cover portion made of a polyolefin-based material is provided in a state of covering the reinforcing portion.
[0017]
According to the characteristic configuration of the invention of claim 5 , in addition to being able to achieve the operational effect of any one of claims 1 to 4 , there is an effect of protecting the reinforcing portion by the cover portion, and the reinforcing portion It becomes possible to shape | mold the surface of this smoothly by the said cover part. Therefore, as described above, it is possible to ensure the smoothness of the joint surface associated with the pipe joint and improve the joint strength and the construction efficiency. Such an effect can be realized not only when the reinforcing portion is on the outer peripheral side of the tube body but also when the reinforcing portion is on the inner periphery side of the tube body.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
FIGS. 1-10 shows the pipe P which is an example of the pipe | tube of this invention, and this pipe P provides the pipe main body P1 and the reinforcement part P2 integrally formed in the surrounding surface. For example, it can be used for gas conduits, water conduits, etc. In particular, even when installed in a portion buried underground, the conduit can be maintained in a stable state. A plurality of correspondences will be individually described below.
[0020]
[First embodiment]
As shown in FIGS. 1 to 3, the pipe body P1 is a cylindrical body formed of a polyolefin-based material, and the inner and outer peripheral surfaces are formed on a smooth surface before integration with the reinforcing portion P2. . And it is formed thinner than the general thickness of this type of tube. As an example, a 50A polyethylene pipe for gas will be described. Generally, in the case of 50A, the pipe wall thickness is 5.5 mm, whereas in this embodiment, a 2.5 mm pipe. It is thick. This is because the strength is increased by being reinforced by the reinforcing portion P2, and the tube strength similar to that of the normal 50A can be exhibited.
[0021]
The reinforcing portion P2 includes a plurality of ultrahigh molecular weight polyolefin fiber materials (hereinafter simply referred to as ultra high molecular fiber materials) 1 and a plurality of low molecular weight polyolefin fiber materials (hereinafter simply referred to as low molecular fiber materials) 2. Are wound to form a fiber.
The low molecular fiber material 2 has a melting point lower than that of the tube main body P1 and the ultra high molecular fiber material 1. Therefore, in a state where the wound fiber 3 is wound around the outer peripheral surface of the tube main body P1, by heating to a temperature at which only the low molecular fiber material 2 is melted, the low molecular fiber material 2 becomes an adhesive portion B. The tube body P1 and the ultra high molecular fiber material 1 can be integrated. Incidentally, since the ultra high molecular fiber material 1 has high tensile strength, it plays the role of the reinforcing fiber H.
An example of the ultra high molecular fiber material 1 and the low molecular fiber material 2 constituting the wound fiber 3 will be described. As the ultra high molecular fiber material 1, an ultra high molecular weight polyethylene fiber of about 1300 dtex is used, and the low molecular fiber material 1 is used. As the molecular fiber material 2, a low molecular weight polyethylene fiber of about 882 dtex may be used.
[0022]
Incidentally, according to the material mentioned here, each melting | fusing point is as follows.
Melting point of polyethylene pipe constituting pipe body P1 = 126 ° C.
Melting point of ultra high molecular weight polyethylene fiber constituting ultra high molecular fiber material 1 = 146 ° C
Melting point of low molecular polyethylene fiber constituting low molecular fiber material 2 = 107 ° C
[0023]
As shown in FIG. 2, the wound fiber 3 is formed by bundling the ultra high molecular fiber material 1 and the low molecular fiber material 2 to form a so-called microblading fiber. Regarding the arrangement of the ultra-high molecular fiber material 1 and the low-molecular fiber material 2, as shown in FIG. 2 (a), both fiber materials are arranged in a mixed state in the cross section, or FIG. As described above, the ultra high molecular weight fiber material 1 may be disposed so as to be surrounded by the low molecular weight fiber material 2 within the cross section.
Moreover, the state after the adhesion | attachment which heated the wound fiber 3 of FIG. 2 (a) and fuse | melted the said low molecular fiber material 2 is as showing to (a) of FIG. Similarly, the state after adhesion in which the wound fiber 3 of FIG. 2 (b) is heated to melt the low molecular fiber material 2 is as shown in FIG. 3 (b).
[0024]
According to the pipe P of the present embodiment, the reinforcing effect of the pipe body P1 by the reinforcing portion P2 is exhibited, and a strength comparable to that of a conventional pipe is realized by a thin-walled pipe, or the same degree as that of a conventional pipe. It is possible to form a high-strength pipe with a thickness of, and as a result, the pipe can be reduced in weight so that it can be handled easily, and the work efficiency of the pipe laying work and the like can be improved.
[0025]
[Second Embodiment]
The description of parts common to the first embodiment is omitted.
The tube body P1 and the wound fiber 3 can adopt the same configuration as that described above. In the present embodiment, as shown in FIG. 4, the tube body including the wound fiber 3 is included. The same polyethylene cover part 4 as the pipe main body P1 is provided so as to cover P1. However, as for the arrangement of the ultra high molecular fiber material 1 and the low molecular fiber material 2 of the wound fiber 3, any arrangement can be adopted as shown in FIG. 2 of the first embodiment. As can be seen from the figure, the gas conduit P of this embodiment has a smooth surface on both the inner and outer peripheral surfaces.
[0026]
According to the pipe P of the present embodiment, in addition to increasing the pipe strength, the inner peripheral surface is smooth, so that the friction loss to the fluid in the inner space can be reduced, while the outer peripheral surface For example, as shown in FIG. 5, for example, a socket 5 can be used, and for example, a joining method in which joining surfaces are fused to each other by electric heating, an adhesive, or the like can be adopted, and more reliable pipe joining can be adopted. Can be realized. In addition, the presence of the cover part 4 makes it easy to prevent deterioration of the reinforcing part P2 itself, so that the durability of the pipe P can be improved.
[0027]
[Third embodiment]
Each of the tube main body P1 and the wound fiber 3 can adopt the same configuration as that described above. However, in the present embodiment, as shown in FIG. A reinforcing portion P2 is formed along the peripheral surface.
Moreover, about arrangement | positioning of the ultra high molecular fiber material 1 and the low molecular fiber material 2 of the wound fiber 3 which comprises the reinforcement part P2, as shown in FIG. 2 of 1st embodiment, any arrangement | positioning is employ | adopted. be able to.
[0028]
According to the pipe P of the present embodiment, the outer appearance of the pipe is the same as that of a normal pipe, but the strength is increased.
[0029]
[Fourth embodiment]
The pipe body P1 and the wound fiber 3 can adopt the same configuration as that described above. In the present embodiment, as shown in FIG. 7, the pipe body P1 and the wound fiber 3 are provided on the inner peripheral surface of the pipe body P1. The same polyethylene cover part 4 as the pipe body P1 is provided so as to cover the inner peripheral surface of the pipe body P1 including the wound fiber 3 formed. However, as for the arrangement of the ultra high molecular fiber material 1 and the low molecular fiber material 2 of the wound fiber 3, any arrangement can be adopted as shown in FIG. 2 of the first embodiment.
As can be seen from the figure, the gas conduit P of this embodiment has a smooth surface on both the inner and outer peripheral surfaces.
[0030]
According to the pipe P of the present embodiment, in addition to increasing the pipe strength, the inner peripheral surface is smooth, so that the friction loss to the fluid in the inner space can be reduced, while the outer peripheral surface In connection with, for example, it is possible to employ a joining method in which the joining surfaces are fused together by using, for example, electric heat or an adhesive using the socket 5, and a more reliable tube joining can be realized. Become. In addition, the presence of the cover part 4 makes it easy to prevent deterioration of the reinforcing part P2 itself, so that the durability of the pipe P can be improved.
[0031]
[Another embodiment]
Other embodiments will be described below.
[0032]
<1> The material constituting the pipe P is not limited to the polyethylene described in the previous embodiment, and may be, for example, polypropylene, polybutene, or the like. It may be sufficient, and they are collectively referred to as polyolefin-based materials.
Further, the reinforcing fiber is not limited to the high molecular weight described in the previous embodiment, for example, the melting point is increased by molecular orientation, or the melting point is increased by adding a nucleating material. Also good.
<2> The wound fibers are not limited to those installed in a spiral winding shape in one direction with respect to the peripheral surface of the tube main body as described in the previous embodiment. For example, as shown in FIG. Alternatively, they may be arranged so as to intersect with different spiral directions, or may be one in which wound fibers are knitted into a cylindrical shape, or one that is braided diagonally.
<3> As described in the previous embodiment, the reinforcing portion is not limited to one provided on either the inner peripheral surface side or the outer peripheral surface side of the tube main body. It may be provided on either the inner peripheral surface or the outer peripheral surface.
<4> The cover portion is not limited to be provided so as to cover the wound fiber described in the previous embodiment. For example, as shown in FIG. 10, only the upper surface of the wound fiber is covered. The cylindrical body provided in the state covered may be sufficient.
[0033]
In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a main part of a pipe according to a first embodiment. FIG. 2 is a cross-sectional view showing a thick part of the pipe according to the first embodiment. Cross-sectional view [Fig. 4] Vertical cross-sectional view of the tube of the second embodiment [Fig. 5] Vertical cross-sectional view showing the connection state of the tube of the second embodiment [Fig. 6] Vertical cross-sectional view of the tube of the third embodiment [ 7 is a longitudinal sectional view of a pipe according to a fourth embodiment. FIG. 8 is a perspective view showing a main part of a pipe according to another embodiment. FIG. 9 is a perspective view showing a main part of the pipe according to another embodiment. Longitudinal sectional view of the pipe of the embodiment [Explanation of symbols]
4 Cover part B Adhesion part H Reinforcement fiber P1 Pipe body P2 Reinforcement part

Claims (5)

合成樹脂製の管本体の周面に、接着部を介して補強繊維を管周に沿って巻回接着した補強部を設け
前記管本体、及び、前記接着部、及び、前記補強繊維は、共に、ポリオレフィン系材料で形成してあり、前記接着部の材料は、前記管本体、及び、前記補強繊維の材料より低融点なものを用いてあり、
前記補強部は、前記接着部を構成する繊維材と、前記補強繊維を構成する繊維材とを、横断面内で混在する状態に配置して形成してある管。
On the peripheral surface of the tube body made of synthetic resin, a reinforcing part is provided by winding and adhering reinforcing fibers along the pipe circumference via the adhesive part ,
The tube main body, the adhesive portion, and the reinforcing fiber are both formed of a polyolefin-based material, and the material of the adhesive portion has a lower melting point than the material of the tube main body and the reinforcing fiber. Oh Ri using things,
The said reinforcement part is a pipe | tube formed by arrange | positioning the fiber material which comprises the said adhesion part, and the fiber material which comprises the said reinforcement fiber in the state mixed in a cross section .
合成樹脂製の管本体の周面に、接着部を介して補強繊維を管周に沿って巻回接着した補強部を設け、
前記管本体、及び、前記接着部、及び、前記補強繊維は、共に、ポリオレフィン系材料で形成してあり、前記接着部の材料は、前記管本体、及び、前記補強繊維の材料より低融点なものを用いてあり、
前記補強部は、前記接着部を構成する繊維材で、前記補強繊維を構成する繊維材を、横断面内で囲む状態に配置して形成してある管。
On the peripheral surface of the tube body made of synthetic resin, a reinforcing part is provided by winding and adhering reinforcing fibers along the pipe circumference via the adhesive part,
The tube main body, the adhesive portion, and the reinforcing fiber are both formed of a polyolefin-based material, and the material of the adhesive portion has a lower melting point than the material of the tube main body and the reinforcing fiber. Using things,
The said reinforcement part is a pipe | tube formed by arrange | positioning in the state which surrounds the fiber material which comprises the said reinforcement fiber in the cross section with the fiber material which comprises the said adhesion part .
前記補強部は、前記管本体の外周に一体的に配置してある請求項1又は2に記載の管。The pipe according to claim 1 or 2 , wherein the reinforcing portion is integrally disposed on an outer periphery of the pipe main body . 前記補強部は、前記管本体の内周に一体的に配置してある請求項1又は2に記載の管。The pipe according to claim 1 or 2 , wherein the reinforcing portion is integrally disposed on an inner periphery of the pipe main body . 前記補強部を覆う状態に、ポリオレフィン系材料からなるカバー部を設けてある請求項1〜4の何れか一項に記載の管。The pipe according to any one of claims 1 to 4 , wherein a cover portion made of a polyolefin-based material is provided in a state of covering the reinforcing portion.
JP2002312859A 2002-10-28 2002-10-28 tube Expired - Fee Related JP4175865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312859A JP4175865B2 (en) 2002-10-28 2002-10-28 tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312859A JP4175865B2 (en) 2002-10-28 2002-10-28 tube

Publications (2)

Publication Number Publication Date
JP2004148511A JP2004148511A (en) 2004-05-27
JP4175865B2 true JP4175865B2 (en) 2008-11-05

Family

ID=32457639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312859A Expired - Fee Related JP4175865B2 (en) 2002-10-28 2002-10-28 tube

Country Status (1)

Country Link
JP (1) JP4175865B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683962B2 (en) * 2005-03-01 2011-05-18 大阪瓦斯株式会社 hose
GB0516475D0 (en) * 2005-08-10 2005-09-14 Delta Composites Ltd A method of forming a structure and a structure
JP6484106B2 (en) * 2015-05-19 2019-03-13 積水化学工業株式会社 Cold and hot water pipeline system
CN109027446B (en) * 2018-09-12 2021-04-13 上海英泰塑胶股份有限公司 Hot-melt winding corrugated pipe of thermoplastic continuous fiber prepreg braided rope and manufacturing equipment thereof

Also Published As

Publication number Publication date
JP2004148511A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US20200318761A1 (en) High-pressure pipe with pultruded elements and method for producing the same
US20070125439A1 (en) Composite tubing
KR101424649B1 (en) A pipe repair tube with reinforced crack- resistant property
BR112015020482B1 (en) FLEXIBLE TUBULAR CONDUCT FOR THE TRANSPORT OF HYDROCARBONS
JP4175865B2 (en) tube
US20010015234A1 (en) Pipe with crack stopper feature, and process of protecting a pipe against propagation of cracks
JP5403533B2 (en) Synthetic resin pipe, manufacturing method and connecting method thereof
CN101424362A (en) Metal-resin composite pipes
JP6399695B2 (en) Tunnel peeling prevention method
JP6050628B2 (en) Pipeline lining structure
JP2002038503A (en) Flexible joint and joint structure using it and method of executing immersed tunnel
CN207362127U (en) A kind of steel band reinforced polyethylene spiral ripple pipe connection shrink belt
JP2009270608A (en) Synthetic resin pipe and its connection structure
JP4495268B2 (en) Lining pipe connecting method and lining pipe connecting member
JP3839923B2 (en) Rubber hose flange structure and flexible joint
KR200357476Y1 (en) connect structure of plastics pipe
JP3973427B2 (en) Plastic pipe connection method and connection structure
JP5566951B2 (en) Branch structure of resin piping and method for forming the same
JP2011163524A (en) Pipe connecting structure and pipe connecting method
CN217583510U (en) Double-layer winding inner rib reinforced pipe
WO2019112472A1 (en) Pipe
CN217762449U (en) RTP flexible reinforced thermoplastic composite pipe with good thermal insulation performance
JPH07189588A (en) Double structural steel pipe for propulsive excavating method
JP5367532B2 (en) Reinforcing strip, flexible tube for transporting fluid, method for manufacturing reinforcing strip, and manufacturing method of flexible tube for transporting fluid
JP2021003881A (en) Tube more raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees