JP4174628B2 - X-ray equipment - Google Patents

X-ray equipment Download PDF

Info

Publication number
JP4174628B2
JP4174628B2 JP2003030615A JP2003030615A JP4174628B2 JP 4174628 B2 JP4174628 B2 JP 4174628B2 JP 2003030615 A JP2003030615 A JP 2003030615A JP 2003030615 A JP2003030615 A JP 2003030615A JP 4174628 B2 JP4174628 B2 JP 4174628B2
Authority
JP
Japan
Prior art keywords
ray
fpd
subject
body axis
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003030615A
Other languages
Japanese (ja)
Other versions
JP2004236929A (en
Inventor
哲雄 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003030615A priority Critical patent/JP4174628B2/en
Publication of JP2004236929A publication Critical patent/JP2004236929A/en
Application granted granted Critical
Publication of JP4174628B2 publication Critical patent/JP4174628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching

Description

【0001】
【発明の属する技術分野】
この発明は、被検体の体軸方向に沿って続く撮影対象の長尺領域の全体が1枚のX線画像に納まった長尺X線画像を撮影できるように構成されたX線撮影装置に係り、特に、高画質の長尺X線画像を容易に撮影できるようにするための技術に関する。
【0002】
【従来の技術】
従来、病院などの医療機関に設置されているX線撮影装置において、例えば被検体(患者)の首の付近から膝の付近までの長尺領域を撮影対象として長尺領域の全体が1枚のX線画像に納まるように撮影する長尺X線撮影をおこなうことがある。
【0003】
従来のX線撮影装置は、図10(a)および図10(b)に示すように、天板51の上の被検体Mへファンビーム状X線FBをビーム拡がり方向が天板51の上の被検体Mの体軸方向Xと直角の体側方向Yになるようにして照射するX線管52と、天板51の上の被検体Mからの透過X線を検出するX線検出器であるイメージインテンシファイア(以下、適宜「I・I管」と略記)53とが、天板51を挟んで対向配置されている。
【0004】
そして、従来のX線撮影装置により、長尺X線撮影をおこなう場合、X線管52とI・I管53を対向配置状態を維持したまま、撮影対象の長尺領域の長手方向となる被検体Mの体軸方向Xに移動させながら、X線管52とI・I管53がファンビーム状X線FBのビーム厚みFdに相応する距離だけ移動する毎にファンビーム状X線FBをパルス的に照射すると同時に、ファンビーム状X線FBの照射に伴ってI・I管53から出力されるX線検出信号をI・I管53の後段で収集する。
【0005】
したがって、図10(b)に示すように、1回のファンビーム状X線FBの照射では撮影対象の長尺領域のうちファンビーム状X線FBのビーム厚みFdに見合う短冊状エリアARだけが部分撮影されることになるので、撮影対象の長尺領域は長手方向に沿ってファンビーム状X線FBの照射回数の数だけ短冊状エリアARずつに分割されながら部分撮影が繰り返され、長尺領域全域が撮影されることになる。
【0006】
一方、I・I管53の後段では、ファンビーム状X線FBの照射に伴ってI・I管53から出力されるX線検出信号が収集されると共に、短冊状エリアの部分X線画像が長尺領域の長手方向に次々繋ぎあわされて 1枚のX線画像となるように全X線検出信号が編集される結果、図11に示すように、被検体Mの首から膝までの長尺領域MAの全体が1枚のX線画像に納まった長尺X線画像Paが作成され、画像モニタ54の画面に映し出されたり、プリンタ(図示省略)で印画紙にプリントされたりする。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来のX線撮影装置は、I・I管53が重量物であるので、取り付けや移動に大がかりな機構を必要とするのに加えて、I・I管53はX線検出面の周縁に補正困難な複雑な画像歪みを生じるので、高画質の長尺X線画像を作成することが難しいという問題がある。
【0008】
昨今、軽量であるのに加えて補正困難な複雑な画像歪みのないX線検出器として、極めて多数のX線検出素子がX線検出面に縦横に配列されたフラットパネル型X線検出器(FPD)が出現している。ただ、I・I管53の代わりにフラットパネル型X線検出器をそのまま用いても、作成される長尺X線画像は高画質にならない。FPDの場合、透過X線を電荷に変換して読み出してX線検出信号として出力するのであるが、FPDは浮遊容量が大きくて電荷が読み出し切れずにX線検出素子内に一部の電荷が残留してしまう残像現象が起こり易く、X線検出素子内の残留電荷が次のX線検出信号にノイズ分として加わり、長尺X線画像の画質が低下するのである(例えば、特許文献1参照)。
【0009】
【特許文献1】
特開2001−212122号公報(段落「0002」〜「0007」)
【0010】
この発明は、このような事情に鑑みてなされたものであって、被検体における撮影対象の長尺領域の全体が1枚のX線画像に納まった高画質の長尺X線画像を容易に撮影することができるX線撮影装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明のX線撮影装置は、(A)天板の上に載置された被検体へファンビーム状X線をビーム拡がり方向が被検体の体軸方向と直角の体側方向となるようにして照射するX線管と、(B)被検体からの透過X線を検出する多数のX線検出素子がX線検出面に被検体の体軸方向と体側方向に沿って縦横に配列されているフラットパネル型X線検出器(FPD)と、(C)被検体の体軸方向に沿って続く撮影対象の長尺領域に対応する範囲にわたってX線管を被検体の体軸方向に相対的に移動させるX線照射系移動手段と、(D)前記撮影対象の長尺領域に対応する範囲にわたってFPDを被検体の体軸方向に相対的に移動させるX線検出系移動手段と、(E)X線管が被検体の体軸方向にファンビーム状X線のビーム厚みに相応する距離だけ移動する毎にX線管にファンビーム状X線をパルス照射させるX線照射制御手段と、(F)X線管の位置が被検体の体軸方向に沿って相対的に移動しながらパルス照射するファンビーム状X線の透過X線がFPDのX線検出面に入射する位置も、X線管の移動とFPDの移動とにより、被検体の体軸方向に沿って一端側から他端側まで往復移動するようにX線照射系移動手段およびX線検出系移動手段を制御する照射検出系移動制御手段と、(G)X線管によるファンビーム状X線のパルス照射に伴ってFPDから出力されて収集される全X線検出信号を編集して撮影対象の長尺領域全体が1枚のX線画像に納まった長尺X線画像を作成する長尺画像作成手段とを備え、(H)前記フラットパネル型X線検出器(FPD)のX線検出面の一辺の長さより長い撮影対象の長尺領域を撮影することを特徴とするものである。
【0012】
(作用・効果)請求項1に記載の発明の装置により、被検体の体軸方向に沿って続く撮影対象の長尺領域を長尺X線撮影する場合、次のプロセスで撮影が進行する。天板の上に載置された被検体へファンビーム状X線をビーム拡がり方向が被検体の体軸方向と直角の体側方向となるようにしてパルス照射するためのX線管は、X線照射系移動手段で撮影対象の長尺領域に対応する範囲を被検体の体軸方向に相対的に移動させられる。一方、被検体からの透過X線を検出する多数のX線検出素子が体軸方向と体側方向に沿ってX線検出面に縦横に配列されているフラットパネル型X線検出器(以下、適宜「FPD」と略記)は、X線検出系移動手段で撮影対象の長尺領域に対応する範囲を被検体の体軸方向に相対的に移動させられる。X線照射制御手段の制御によりX線管が被検体の体軸方向にファンビーム状X線のビーム厚みに相応する距離だけ移動する毎にファンビーム状X線を被検体へパルス照射するのと並行して、照射検出系移動制御手段の制御を受けたX線照射系移動手段およびX線検出系移動手段により、被検体の体軸方向に相対的に移動するX線管が照射するファンビーム状X線の透過X線がFPDのX線検出面に入射する位置も被検体の体軸方向に沿って移動する。そして、X線管によるファンビーム状X線のパルス照射に伴ってFPDから出力されて収集される全X線検出信号が、長尺画像作成手段により編集されて撮影対象の長尺領域全体が1枚のX線画像に納まった長尺X線画像が作成される。
【0013】
即ち、請求項1の発明の場合、1回のファンビーム状X線FBの照射では撮影対象の長尺領域のうちファンビーム状X線のビーム厚みに見合う短冊状エリアだけが部分撮影されることになるので、長尺X線撮影対象の長尺領域は長手方向(即ち被検体の体軸方向)に沿ってファンビーム状X線の照射回数の数だけ短冊状エリアずつに分割されながら部分撮影が繰り返されると共に、部分撮影されたX線画像が被検体の体軸方向に繋ぎ合わされて、撮影対象の長尺領域の全体が1枚のX線画像に納まった長尺X線画像として作成される。
【0014】
そして、長尺X線撮影の進行中、FPDのX線検出面に対するファンビーム状X線の透過X線の入射する位置が被検体の体軸方向に沿って移動することにより、FPDのX線検出面ではファンビーム状X線の透過X線を検出する位置が特定の位置に固定されずにファンビーム状X線のパルス照射毎に逐次変化するので、過去の残留電荷がX線検出信号にノイズ分として加わる事態を回避することができる。
【0015】
このように、請求項1の発明によれば、FPDのX線検出面ではファンビーム状X線の透過X線を検出する位置が特定の位置に固定されずにファンビーム状X線のパルス照射毎に変化する構成を備え、過去の残留電荷がX線検出信号にノイズ分として加わる事態を回避することができるうえに、FPDは軽量で補正困難な複雑な画像歪みもない軽量のX線検出器であるので、高画質の長尺X線画像を容易に撮影することができる。
【0016】
また、請求項2の発明は、請求項1に記載のX線撮影装置において、照射検出系移動制御手段の制御を受け、X線照射系移動手段は、X線管を一定速度で移動し続けるように構成されており、X線検出系移動手段は、ファンビーム状X線の透過X線の入射位置がX線検出面における被検体の体軸方向の一端側の始点から他端側の終点まで順方向に変化する間はFPDを停止させたままとするFPD移動停止状態と、ファンビーム状X線の透過X線の入射位置がX線検出面における被検体の体軸方向の他端側の終点から一端側の始点まで逆方向に変化する間はFPDをX線管の2倍の速度で移動させるFPD倍速移動状態とを採り、透過X線の入射位置がX線検出面の他端側の終点に達した時にはFPD移動停止状態からFPD倍速移動状態に移行し、透過X線の入射位置がX線検出面の一端側の始点に戻った時にはFPD倍速移動状態からFPD移動停止状態に移行するようにして交互に設定するように構成されているものである。
【0017】
(作用・効果)請求項2に記載の発明によれば、FPD移動停止状態ではFPDが停止したままでX線管だけが一定速度で移動し続けながらファンビーム状X線のビーム厚みに相応する距離だけ進む毎にファンビーム状X線をパルス照射する。FPDは停止したままでもファンビーム状X線のパルス照射が繰り返される度にファンビーム状X線の照射位置が被検体の体軸方向に進み続けるので、X線検出面では透過X線の入射位置が前方に移動し続け、透過X線の入射位置はFPDのX線検出面における被検体の体軸方向の一端側の始点から他端側の終点まで順方向に変化してゆく。
【0018】
透過X線の入射位置がFPDのX線検出面の他端側の終点に達すると、FPD移動停止状態はFPD倍速移動状態に移行してFPDがX線管の2倍の速度で移動すると共に、X線管の方は相変わらず一定速度で移動し続けながらファンビーム状X線のビーム厚みに相応する距離だけ進む毎にファンビーム状X線をパルス照射する。ファンビーム状X線のパルス照射が繰り返される度にファンビーム状X線の照射位置は依然として被検体の体軸方向に進み続けるが、FPDが2倍の速度で進むので、X線検出面に対してはファンビーム状X線の照射位置が逆に後方へ移動し続け、X線検出面における透過X線の入射位置が他端側の終点から一端側の始点まで逆方向に変化する。
【0019】
さらに、透過X線の入射位置がFPDのX線検出面の一端側の始点に戻ると、FPD倍速移動状態からFPD移動停止状態に再び移行し、撮影が終了する迄の間は、FPD倍速移動状態とFPD移動停止状態の下での検出動作が交互に繰り返される。
【0020】
したがって、請求項2の発明によれば、X線管を常に一定速度で移動させると共に、FPDはX線管の2倍の速度で移動させれば済むので、X線管およびFPDを容易に移動させられる。
【0021】
【発明の実施の形態】
以下、この発明のX線撮影装置の一実施例を説明する。図1は実施例に係る医用のディジタル式X線透視撮影装置(以下、「X線撮影装置」と略記)の全体構成を示すブロック図、図2は実施例装置の撮影台の概略構成を示す側面図、図3は実施例装置に用いられているFPDのX線検出面を示す平面図である。
【0022】
実施例装置の場合、図1に示すように、撮影台では天板1の上に載置された被検体MへX線を照射するX線管2と、被検体Mからの透過X線を検出するFPD3とが、天板1を挟んで対向配置されていて、FPD3の後段では、X線管2による被検体MへのX線照射に伴ってFPD3から出力されるX線検出信号に基づいて、X線画像が作成・表示される構成となっている。以下、実施例装置の各部構成を具体的に説明する。
【0023】
天板1は、天板移動制御部5のコントロールを受けて作動する周知構成の天板移動機構4により、撮影位置に被検体Mをセットする等の場合に被検体Mを載置したままで体軸方向Xまたは体側方向Yに移動させることができるように構成されているのに加え、被検体Mを天板1に載せたり、天板1から降ろしたりする等の場合に鉛直方向Zに移動させられるようにも構成されている。
【0024】
一方、X線管2は、前面側に装備するコリメータ2Aによって、図1に示すように、被検体Mの体軸方向Xにはビーム厚みFdと薄くて、図2に示すように、ビーム拡がり方向が被検体Mの体側方向Yとなるようにビーム形状が整えられたファンビーム状X線FBを被検体Mに照射できるように構成されている。なお、X線管2の場合、前面側に装備するコリメータ2Aによって被検体Mの体側方向Yと体軸方向Xの双方にビームの拡がりをもつようにビーム形状が整えられたコーンビーム状X線(図示省略)を被検体Mに照射することも可能な構成となっている。したがって、実施例装置は、ファンビーム状X線FBを用いてX線撮影を行うファンビームモード撮影だけでなく、コーンビーム状X線FBを用いてX線撮影を行うコーンビームモード撮影もおこなうことができる。
【0025】
X線管2は、X線照射系移動機構6により、被検体Mの体軸方向Xに沿ってどちらの方向にも移動することができるように構成されている。
このX線照射系移動機構6は、図4に示すように、X線管2を上端側に装着支持する支柱9と、天板1の横へ体軸方向Xに沿って伸延すると共に電気モータ11の回転に伴って回る送りネジ棒10とを備えていて、支柱9が根元側でネジ棒10にネジ結合しており、電気モータ11の回転でネジ棒10が正転すると、図4中に一点鎖線で示すように、支柱9が被検体Mの膝側へ進むのに連れてX線管2も体軸方向Xに沿って被検体Mの膝側へ移動し、電気モータ11の反転でネジ棒10が逆転すると、図4中に二点鎖線で示すように、支柱9が被検体Mの首側へ移動するにのに連れてX線管2も体軸方向Xに沿って逆に被検体Mの首側へ移動するように構成されている。なお、エンコーダ12はX線管2の移動方向と移動量に対応する電気モータ11の回転方向および回転量を検出すると共に、検出データをX線管2の体軸方向Xの現在位置データとして制御側へフィードバックする。
【0026】
他方、FPD3は、図3に示すように、被検体Mからの透過X線を検出するX線検出面8に多数の半導体タイプのX線検出素子3Aが被検体Mの体軸方向Xと体側方向Yに沿って縦横に配列された構成となっている。例えば、縦40cm×横40cm前後の広さのX線検出面8に、縦1024×横1024の個数でX線検出素子3Aがマトリックス配列されている。I・I管と違って、フラット形状のFPD3は軽量であるうえに、X線検出素子3Aの配列精度が高くて補正困難な複雑な画像歪みもないX線検出器である。
【0027】
FPD3も、X線検出系移動機構7により、被検体Mの体軸方向Xに沿ってどちらの方向にも移動することができるように構成されている。
このX線検出系移動機構7は、図5に示すように、天板1の側に設置されたラック13とFPD3の側に設置されたピニオン14および電気モータ15とエンコーダ16を備え、電気モータ15の回転でピニオン14が回転すると、図5中に一点鎖線で示すように、ピニオン14がラック13沿いに被検体Mの膝側へ進むのに連れてFPD3も体軸方向Xに沿って被検体Mの膝側へ移動し、電気モータ15の反転でピニオン14が逆転すると、図5中に二点鎖線で示すように、ピニオン14がラック13沿いに被検体Mの首側へ進むのに連れてFPD3も体軸方向Xに沿って被検体Mの首側へ移動するように構成されている。なお、エンコーダ16はFPD3の移動方向と移動量に対応する電気モータ15の回転方向および回転量を検出すると共に、検出データをFPD3の体軸方向Xの現在位置データとして制御側へフィードバックする。
【0028】
さらに、実施例のX線撮影装置は、ファンビーム状X線FBを用いるファンビームモード撮影で、例えば首から膝までのような被検体Mの体軸方向X沿いに長い区間にわたって続く長尺領域を長尺領域全体が1枚のX線画像に納まった長尺X線画像を得る長尺X線撮影がおこなえるように構成されている。
【0029】
即ち、実施例装置の場合、X線管2が被検体Mの体軸方向Xにファンビーム状X線FBのビーム厚みFdに相応する距離だけ移動する毎にX線管にファンビーム状X線FBをパルス照射させるX線照射制御部17と、X線管2の位置が被検体Mの体軸方向Xに沿って相対的に移動しながらパルス照射するファンビーム状X線FBの透過X線がFPD3のX線検出面8に入射する位置も被検体Mの体軸方向Xに沿って移動するようにX線照射系移動機構6およびX線検出系移動機構7を制御する照射検出系移動制御部18と、X線管2によるファンビーム状X線FBのパルス照射に伴ってFPD3から出力されて収集される全X線検出信号を編集して撮影対象の長尺領域全体が1枚のX線画像に納まった長尺X線画像を作成する長尺画像作成部19とを備えている。
【0030】
具体的には、X線管2の側では、照射検出系移動制御部18の制御を受けるX線照射系移動機構6によりX線管2が一定速度Vtで撮影対象の長尺領域を被検体Mの体軸方向Xに沿って移動しながらX線照射制御部17の制御によりX線管2はファンビーム状X線FBのビーム厚みFdに相応する距離だけ移動する毎に被検体Mにファンビーム状X線FBをパルス照射してゆく。その結果、ファンビーム状X線FBのビーム拡がり方向は被検体Mの体側方向Yであるので、図6に示すように、撮影対象の長尺領域MAは被検体Mの体軸方向Xに沿ってファンビーム状X線FBのビーム厚みFdに見合う短冊状エリアづつに分割されながらX線が照射され続け、被検体Mの長尺領域MA全体が体軸方向Xに沿ってX線走査を受けることになる。なお、実施例装置の場合、長尺領域MAに対する各ファンビーム状X線FBの照射は、未走査域のないようにする為に、隣合うファンビーム状X線同士が体軸方向Xに若干重なりを持つようにしておこなわれる。
【0031】
FPD3の側では、照射検出系移動制御部18の制御を受けるX線検出系移動機構7により、図7に実線矢印で示すように、ファンビーム状X線FBの透過X線fbの入射位置がX線検出面8における被検体Mの体軸方向Xの一端側の始点から他端側の終点まで順方向に変化する間はFPD3を停止させたままとするFPD移動停止状態と、図7に一点鎖線矢印で示すように、ファンビーム状X線FBの透過X線fbの入射位置がX線検出面8における被検体Mの体軸方向Xの他端側の終点から一端側の始点まで逆方向に変化する間はFPD3をX線管2の2倍の一定速度2Vtで移動させるFPD倍速移動状態とが、透過X線fbの入射位置がX線検出面8の他端側の終点に達した時にはFPD移動停止状態からFPD倍速移動状態に移行し、透過X線の入射位置がX線検出面8の一端側の始点に戻った時にはFPD倍速移動状態からFPD移動停止状態に移行するようにして交互に設定される。
【0032】
つまり、FPD移動停止状態ではFPD3が停止したままでX線管2だけが一定速度Vtで移動し続けながらファンビーム状X線FBのビーム厚みFdに相応する距離だけ進む毎にファンビーム状X線FBをパルス照射する。したがって、FPD3は停止したままでもファンビーム状X線FBのパルス照射が繰り返される度にファンビーム状X線FBの照射位置が被検体Mの体軸方向Xに進み続けるので、FPD3のX線検出面8では透過X線fbの入射位置が前方に移動し続け、図7に実線矢印で示すように、透過X線fbの入射位置はFPDのX線検出面8の体軸方向Xの一端側の始点から他端側の終点まで順方向に変化してゆく。
そして、透過X線fbの入射位置がFPD3のX線検出面8の他端側の終点に達すると、FPD移動停止状態はFPD倍速移動状態に移行する。
【0033】
FPD倍速移動状態に移行すると、FPD3がX線管2の2倍の速度で移動すると共に、X線管2の方は相変わらず一定速度で移動し続けながらファンビーム状X線FBのビーム厚みFdに相応する距離だけ進む毎にファンビーム状X線FBをパルス照射する。ファンビーム状X線FBのパルス照射が繰り返される度にファンビーム状X線FBの照射位置は依然として一定速度Vtで被検体Mの体軸方向Xに進み続けるが、FPD3が2倍の速度で進むので、図7に一点鎖線矢印で示すように、FPD3のX線検出面8に対してはファンビーム状X線FBの照射位置が逆に後方に移動し続け、透過X線fbの入射位置がX線検出面8の他端側の終点から一端側の始点まで逆方向に変化する。
【0034】
1回のファンビーム状X線FBに伴う透過X線fbは被検体Mの体側方向Yに沿って並ぶX線検出素子3Aのラインの複数ラインにまたがって同時に入射する。透過X線fbの幅はファンビーム状X線FBのビーム厚みFdと同じ寸法であって、通常20mm前後であるので、1回のファンビーム状X線FB照射の度に数十ライン〜50ライン程度のX線検出素子3Aに透過X線fbが同時入射する。透過X線fbの入射に伴って各X線検出素子3Aでは入射線量に見合う電荷が蓄積されると共に、ファンビーム状X線FBの照射停止に引き続いて直ちに各X線検出素子3Aに蓄積された電荷、即ちX線検出信号の読み出しがおこなわれる。
【0035】
さらに、透過X線fbの入射位置がFPD3のX線検出面8の一端側の始点まで戻ると、FPD倍速移動状態からFPD移動停止状態に再移行し、同様に撮影が進行し、撮影が終了する迄の間は、FPD倍速移動状態とFPD移動停止状態の下での検出動作が交互に繰り返される。
言い換えれば、1回のファンビーム状X線FBの照射では長尺X線撮影対象である長尺領域MAのうちファンビーム状X線FBのビーム厚みFdに見合う短冊状エリアだけが部分撮影されることになるので、撮影対象の長尺領域MAは長手方向(即ち被検体Mの体軸方向X)に沿ってファンビーム状X線FBの照射回数の分だけ短冊状エリアずつに分割されながら部分撮影が繰り返されて撮影が進行することになる。
【0036】
そして、実施例装置においては、このように部分撮影が繰り返されて長尺X線撮影が進行する間、FPD3のX線検出面8ではファンビーム状X線FBの透過X線fbを検出する位置が特定の位置に固定されることなく、ファンビーム状X線FBのパルス照射毎に逐次変化する。
また、実施例装置の場合、長尺X線撮影の際、X線管2を常に一定の速度で移動させ、FPD3を間歇的にX線管2の2倍の速度で移動させれば済むので、X線管2およびFPD3の移動は容易である。
【0037】
一方、FPD3の後段には検出信号収集部(DAS)20が配備されていて、X線管2によるファンビーム状X線FBのパルス照射に伴ってFPD3から出力されるX線検出信号は検出信号収集部(DAS)20により収集されて長尺画像作成部19に全て送り込まれる。長尺画像作成部19は送り込まれてくるX線検出信号に基づき、短冊状エリア毎に部分撮影したいわば部分X線画像が被検体Mの体軸方向Xに繋ぎ合わされて全体で1枚のX線画像となるように信号処理をおこなうことにより、撮影対象の長尺領域MAの全体が1枚のX線画像に納まった長尺X線画像を作成して長尺画像メモリ部21に送出する。なお、実施例装置の場合、長尺X線画像の作成は、全X線検出信号の収集を終えてから始めることも可能であるし、X線検出信号を収集しながら同時平行的におこなうこともできる構成となっている。
【0038】
また、実施例装置の場合、長尺領域MAに対する各ファンビーム状X線FBの照射は、隣合うファンビーム状X線同士が体軸方向Xに若干重なりを持つようにしておこなわれるので、重なり部分についてはX線検出信号が2回分収集可能であるが、後で収集されたX線検出信号には先の検出時の残留電荷の影響が出るので、重なり部分におけるX線検出信号は先に収集した分だけを用いる。しかし、FPD3の検出特性や部分撮影の速度などによっては、先・後の2回分のX線検出信号をそれぞれ適当な重み付けをして加算するなどの後処理をして用いるように構成してもよい。
【0039】
長尺画像メモリ部21に記憶された長尺X線画像は、必要に応じて読み出され、画像モニタ22の画面に映し出されたり、プリンタ(図示省略)で印画紙に印刷されたりする。
なお、長尺X線撮影を主として担うX線照射制御部17や照射検出系移動制御部18および長尺画像作成部19は、操作部23から入力される指示やデータあるいはX線撮影の進行に従って主制御部24から送出される各種命令にしたがって適切な制御信号を必要個所に送出するように構成されている。
【0040】
続いて、上述した実施例装置による長尺X線撮影のプロセスを具体的に図面を参照しながら説明する。図8は実施例装置による長尺X線撮影の実行状況を示すフローチャートである。なお、以下では、長尺X線撮影対象の長尺領域MAは被検体Mの首から膝までの区間とする。
【0041】
〔ステップS1〕FPD3が停止したままであるFPD移動停止状態の下、X線管2が撮影対象の長尺領域MAを被検体Mの体軸方向Xに沿ってファンビーム状X線FBのビーム厚みFdに相応する距離だけ移動する毎にファンビーム状X線FBを被検体Mに照射すると共に、個々のファンビーム状X線FBの照射終了に引き続いてX線検出信号の収集が行われ、部分撮影が進行するのと平行して長尺X線画像の作成が進行してゆく。
【0042】
〔ステップS2〕長尺領域MAに対するファンビーム状X線FBの照射が全て完了であれば(X線照射終了の割り込みがかかれば)、ステップS7へ飛び、長尺領域MAに対するファンビーム状X線FBの照射が未了であれば(X線照射終了の割り込みがかからなければ)、次のステップS3に進む。
【0043】
〔ステップS3〕透過X線fbの入射位置がFPD3のX線検出面8の他端側の終点に達する迄はステップS1に戻り、部分撮影の進行と長尺X線画像の作成を継続する。透過X線fbの入射位置がFPD3のX線検出面8の他端側の終点に達すると、次のステップS4へ進む。
【0044】
〔ステップS4〕FPD移動停止状態からFPD倍速移動状態へ移行し、FPD3がX線管2の2倍の速度で移動する他は、ステップS1と同様に部分撮影と長尺X線画像の作成が進行する。
【0045】
〔ステップS5〕長尺領域MAに対するファンビーム状X線FBの照射が全て完了であれば、ステップS7へ飛び、長尺領域MAに対するファンビーム状X線FBの照射が未了であれば、次のステップS6へ進む。
【0046】
〔ステップS6〕透過X線fbの入射位置がFPD3のX線検出面8の一端側の始点に戻る迄はステップS4に戻り、部分撮影の進行と長尺X線画像の作成を継続する。透過X線fbの入射位置がFPD3のX線検出面8の一端側の始点に戻るとFPD倍速移動状態からFPD移動停止状態へ移行してからステップ1へ戻る。
【0047】
〔ステップS7〕長尺X線画像が完成し、必要に応じて、図9に示すように、長尺X線画像PAを画像モニタ22の画面に表示したり、プリントしたりすれば、長尺X線撮影は終了である。
【0048】
以上に詳述したように、実施例のX線撮影装置の場合、FPD3のX線検出面8ではファンビーム状X線FBの透過X線fbを検出する位置が特定の位置に固定されずファンビーム状X線FBのパルス照射毎に逐次変化する構成を備え、過去の残留電荷がX線検出信号にノイズ分として加わる事態を回避することができるうえに、FPD3は軽量で補正困難な複雑な画像歪みもない軽量のX線検出器であるので、高画質の長尺X線画像を容易に撮影することができる。
加えて、I・I管の場合は透過X線の検出がX線検出面の中央部分に限られるので、I・I管の移動範囲全域より短い領域しか長尺X線撮影対象として設定することができないが、FPD3の場合はX線検出面の端から端まで透過X線の検出に使用できるので、FPD3の移動範囲全域に対応する広い領域を長尺X線撮影対象として設定することも可能となる。
【0049】
この発明は、上記の実施例に限られるものではなく、以下のように変形実施することも可能である。
(1)実施例装置は、透過X線fbの入射位置がFPD3のX線検出面8の他端側の終点に達するとFPD3をX線管2の2倍の速度で移動させる構成であったが、透過X線fbの入射位置がFPD3のX線検出面8の他端側の終点に達する毎にFPD3を高速でX線検出面8の被検体Mの体軸方向Xの寸法だけ先送りして止めておく瞬時先送り移動を繰り返すように構成された装置を、変形例として挙げることができる。
【0050】
(2)実施例装置は、X線管2を移動させてファンビーム状X線FBの照射位置を変化させる構成であったが、X線管2は停止したままで天板1を移動させることでファンビーム状X線FBの照射位置を変化させると共に、X線管2の直下でFPD3を体軸方向Xに沿って端から端まで繰り返し往復移動させてX線検出面8における透過X線fbの入射位置を変化させるように構成した装置を、変形例として挙げることができる。
【0051】
【発明の効果】
以上の説明から明らかなように、この発明のX線撮影装置によれば、FPDのX線検出面ではファンビーム状X線の透過X線を検出する位置が特定の位置に固定されずファンビーム状X線のパルス照射毎に逐次変化する構成を備え、過去の残留電荷がX線検出信号にノイズ分として加わる事態を回避することができるうえに、FPDは軽量で補正困難な複雑な画像歪みもない軽量のX線検出器であるので、高画質の長尺X線画像を容易に撮影することができる。
【図面の簡単な説明】
【図1】実施例に係るX線撮影装置の全体構成を示すブロック図である。
【図2】実施例装置の撮影台の概略構成を示す側面図である。
【図3】実施例装置に用いられているFPDのX線検出面を示す平面図である。
【図4】実施例装置のX線照射系移動機構の概略構成を示す模式図である。
【図5】実施例装置のX線検出系移動機構の概略構成を示す模式図である。
【図6】実施例での被検体へのファンビーム状X線の照射状況を示す模式図である。
【図7】実施例でのX線検出面での透過X線の入射位置変化を示す模式図である。
【図8】実施例装置による長尺X線撮影の実行状況を示すフローチャートである。
【図9】実施例装置の画像モニタに表示された長尺X線画像を示す模式図である。
【図10】従来装置で長尺X線撮影をおこなう時の様子を示す模式図である。
【図11】従来装置で作成した長尺X線画像を示す模式図である。
【符号の説明】
1 … 天板
2 … X線管
3 … FPD(フラットパネル型X線検出器)
6 … X線照射系移動機構(X線照射系移動手段)
7 … X線検出系移動機構(X線検出系移動手段)
8 … X線検出面
17 … X線照射制御部(X線照射制御手段)
18 … 照射検出系移動制御部(照射検出系移動制御手段)
19 … 長尺画像作成部(長尺画像作成手段)
FB … ファンビーム状X線
Fd … ビーム厚み
fb … 透過X線
M … 被検体
MA … 長尺領域
X … 体軸方向
Y … 体側方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray imaging apparatus configured to be able to capture a long X-ray image in which an entire long region to be imaged that continues along the body axis direction of a subject is contained in one X-ray image. In particular, the present invention relates to a technique for easily capturing a high-quality long X-ray image.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an X-ray imaging apparatus installed in a medical institution such as a hospital, for example, the entire long area from the vicinity of the neck of the subject (patient) to the vicinity of the knee is imaged. In some cases, long X-ray imaging is performed so that an X-ray image is captured.
[0003]
As shown in FIGS. 10A and 10B, the conventional X-ray imaging apparatus has a fan beam-like X-ray FB to the subject M on the top plate 51 whose beam spreading direction is above the top plate 51. An X-ray tube 52 that irradiates in a body-side direction Y perpendicular to the body axis direction X of the subject M, and an X-ray detector that detects transmitted X-rays from the subject M on the top 51 A certain image intensifier (hereinafter, abbreviated as “I / I tube” where appropriate) 53 is disposed opposite to the top plate 51.
[0004]
When long X-ray imaging is performed with a conventional X-ray imaging apparatus, the X-ray tube 52 and the I / I tube 53 are kept facing each other and the longitudinal direction of the long region to be imaged is maintained. Each time the X-ray tube 52 and the I / I tube 53 move by a distance corresponding to the beam thickness Fd of the fan beam-like X-ray FB while moving in the body axis direction X of the specimen M, the fan beam-like X-ray FB is pulsed. At the same time, the X-ray detection signals output from the I / I tube 53 along with the irradiation of the fan beam-shaped X-ray FB are collected at the subsequent stage of the I / I tube 53.
[0005]
Therefore, as shown in FIG. 10B, only one strip-shaped area AR corresponding to the beam thickness Fd of the fan beam-shaped X-ray FB out of the long region to be imaged in one irradiation of the fan beam-shaped X-ray FB. Since partial imaging is to be performed, the long imaging target area is divided into strip-shaped areas AR by the number of times of irradiation of the fan beam-shaped X-rays FB along the longitudinal direction. The entire area will be photographed.
[0006]
On the other hand, in the subsequent stage of the I / I tube 53, X-ray detection signals output from the I / I tube 53 in accordance with the irradiation of the fan beam-shaped X-ray FB are collected, and a partial X-ray image of the strip area is displayed. As a result of editing all X-ray detection signals so as to form a single X-ray image connected in the longitudinal direction of the long region, as shown in FIG. A long X-ray image Pa in which the entire scale area MA is accommodated in one X-ray image is created and displayed on the screen of the image monitor 54 or printed on photographic paper by a printer (not shown).
[0007]
[Problems to be solved by the invention]
However, in the above conventional X-ray imaging apparatus, since the I / I tube 53 is heavy, in addition to requiring a large mechanism for mounting and movement, the I / I tube 53 has an X-ray detection surface. Since complex image distortion that is difficult to correct at the periphery occurs, there is a problem that it is difficult to create a high-quality long X-ray image.
[0008]
In recent years, a flat panel X-ray detector in which an extremely large number of X-ray detection elements are arranged vertically and horizontally on an X-ray detection surface as an X-ray detector that is lightweight and has no complicated image distortion that is difficult to correct. FPD) has appeared. However, even if a flat panel X-ray detector is used as it is in place of the I / I tube 53, the created long X-ray image does not have high image quality. In the case of an FPD, transmitted X-rays are converted into charges and read out and output as an X-ray detection signal. However, the FPD has a large stray capacitance and charges cannot be completely read out, and some charges are generated in the X-ray detection element. The residual image phenomenon that remains is likely to occur, and the residual charge in the X-ray detection element is added as noise to the next X-ray detection signal, so that the image quality of the long X-ray image is deteriorated (see, for example, Patent Document 1). ).
[0009]
[Patent Document 1]
JP 2001-212122 A (paragraphs “0002” to “0007”)
[0010]
The present invention has been made in view of such circumstances, and it is easy to obtain a high-quality long X-ray image in which the entire long region to be imaged in the subject is contained in one X-ray image. An object is to provide an X-ray imaging apparatus capable of imaging.
[0011]
[Means for Solving the Problems]
In order to achieve such an object, the present invention has the following configuration.
That is, in the X-ray imaging apparatus according to the first aspect of the present invention, (A) a fan beam-shaped X-ray is applied to the subject placed on the top plate so that the beam spreading direction is perpendicular to the body axis direction of the subject. An X-ray tube that irradiates in the body side direction, and (B) a number of X-ray detection elements that detect transmitted X-rays from the subject are along the body axis direction and body side direction of the subject on the X-ray detection surface. A flat panel X-ray detector (FPD) arranged vertically and horizontally, and (C) the X-ray tube of the subject over a range corresponding to a long region to be imaged that continues along the body axis direction of the subject. X-ray irradiation system moving means for relatively moving in the body axis direction, and (D) an X-ray detection system for relatively moving the FPD in the body axis direction of the subject over a range corresponding to the long region to be imaged. And (E) an X-ray tube is a fan beam X-ray beam in the body axis direction of the subject. X-ray irradiation control means for irradiating the X-ray tube with fan beam-like X-rays every time it moves by a distance corresponding to the distance, and (F) the position of the X-ray tube is relative to the body axis direction of the subject. The position where the transmitted X-ray of the fan beam X-ray irradiated with pulses while moving to the X-ray enters the X-ray detection surface of the FPD By moving the X-ray tube and FPD, Along the body axis of the subject Round trip from one end to the other (X) an irradiation detection system movement control means for controlling the X-ray irradiation system movement means and the X-ray detection system movement means so as to move; and (G) output from the FPD with fan beam-like X-ray pulse irradiation by the X-ray tube. And a long image creating means for editing all X-ray detection signals collected in this way and creating a long X-ray image in which the entire long region to be imaged is contained in one X-ray image. , (H) Photographing a long region of a subject to be photographed that is longer than the length of one side of the X-ray detection surface of the flat panel X-ray detector (FPD) It is characterized by this.
[0012]
(Operation / Effect) When a long region to be imaged that continues in the body axis direction of the subject is photographed by a long X-ray by the apparatus of the invention described in claim 1, the imaging proceeds in the following process. An X-ray tube for irradiating a fan beam-like X-ray to a subject placed on a top plate in such a manner that the beam expanding direction is a body side direction perpendicular to the body axis direction of the subject is an X-ray. The range corresponding to the long region to be imaged can be moved relatively in the body axis direction of the subject by the irradiation system moving means. On the other hand, a flat panel X-ray detector (hereinafter referred to as appropriate) in which a number of X-ray detection elements for detecting transmitted X-rays from the subject are arranged vertically and horizontally on the X-ray detection surface along the body axis direction and the body side direction. "FPD") is relatively moved in the body axis direction of the subject within the range corresponding to the long region to be imaged by the X-ray detection system moving means. Every time the X-ray tube moves in the body axis direction of the subject by a distance corresponding to the beam thickness of the fan beam-like X-rays by the control of the X-ray irradiation control means, the fan beam-like X-rays are pulsed on the subject. In parallel, the X-ray irradiation system moving means and the X-ray detection system moving means controlled by the irradiation detection system movement control means irradiate an X-ray tube that moves relatively in the body axis direction of the subject. The position at which the transmitted X-ray of the X-rays enters the X-ray detection surface of the FPD also moves along the body axis direction of the subject. Then, all X-ray detection signals output and collected from the FPD with the fan beam-shaped X-ray pulse irradiation by the X-ray tube are edited by the long image creating means, and the entire long region to be imaged is 1 A long X-ray image stored in one X-ray image is created.
[0013]
That is, in the case of the first aspect of the invention, only one strip-shaped area corresponding to the beam thickness of the fan beam-shaped X-ray is partially imaged in the long region to be imaged by one irradiation of the fan beam-shaped X-ray FB. Therefore, the long region of the long X-ray imaging target is partially imaged while being divided into strip-shaped areas by the number of times of fan beam X-ray irradiation along the longitudinal direction (that is, the body axis direction of the subject). Are repeated and the partially photographed X-ray images are joined in the body axis direction of the subject, and the entire long region to be imaged is created as a long X-ray image contained in one X-ray image. The
[0014]
While the long X-ray imaging is in progress, the position where the transmitted X-rays of the fan beam X-rays are incident on the X-ray detection surface of the FPD moves along the body axis direction of the subject, so that the X-rays of the FPD On the detection surface, the position for detecting the transmitted X-ray of the fan beam-shaped X-ray is not fixed at a specific position, but sequentially changes every time the fan beam-shaped X-ray pulse is irradiated. A situation where noise is added can be avoided.
[0015]
Thus, according to the first aspect of the present invention, the position of detecting the transmitted X-ray of the fan beam X-ray is not fixed at a specific position on the X-ray detection surface of the FPD, and the fan beam X-ray pulse irradiation is performed. It is possible to avoid the situation where past residual charges are added to the X-ray detection signal as noise, and the FPD is lightweight and lightweight X-ray detection without complicated image distortion that is difficult to correct. Therefore, it is possible to easily take a high-quality long X-ray image.
[0016]
According to a second aspect of the present invention, in the X-ray imaging apparatus according to the first aspect, the X-ray irradiation system moving means continues to move the X-ray tube at a constant speed under the control of the irradiation detection system movement control means. The X-ray detection system moving means is configured such that the incident position of the transmitted X-ray of the fan beam-shaped X-ray is such that the X-ray detection surface has an incident position on the X-ray detection surface from one end side to the other end side in the body axis direction. The FPD movement stop state in which the FPD is stopped while changing to the forward direction until the other end side in the body axis direction of the subject on the X-ray detection surface is the incident position of the transmitted X-ray of the fan beam X-ray. While changing in the reverse direction from the end point to the start point on one end side, the FPD double speed moving state in which the FPD is moved at twice the speed of the X-ray tube is adopted, and the incident position of the transmitted X-ray is the other end of the X-ray detection surface From the FPD movement stop state to the FPD double speed movement state When the incident position of the transmitted X-ray returns to the starting point on one end side of the X-ray detection surface, the FPD double speed movement state is changed to the FPD movement stop state, and the setting is made alternately. is there.
[0017]
(Function / Effect) According to the invention described in claim 2, when the FPD movement is stopped, only the X-ray tube continues to move at a constant speed while the FPD is stopped, and this corresponds to the beam thickness of the fan beam-like X-ray. A fan beam-shaped X-ray is pulsed every time the distance advances. Even when the FPD is stopped, the fan beam X-ray irradiation position continues to advance in the body axis direction every time the fan beam X-ray pulse irradiation is repeated. Continues to move forward, and the incident position of transmitted X-rays changes in the forward direction from the start point on one end side of the body axis direction of the subject on the X-ray detection surface of the FPD to the end point on the other end side.
[0018]
When the incident position of the transmitted X-ray reaches the end point on the other end side of the X-ray detection surface of the FPD, the FPD movement stop state shifts to the FPD double speed movement state, and the FPD moves at twice the speed of the X-ray tube. While the X-ray tube continues to move at a constant speed, the fan beam-shaped X-rays are pulse-irradiated each time a distance corresponding to the beam thickness of the fan beam-shaped X-rays travels. Each time the fan beam X-ray pulse irradiation is repeated, the irradiation position of the fan beam X ray continues to advance in the direction of the body axis of the subject. As a result, the irradiation position of the fan beam-like X-ray continues to move backward, and the incident position of the transmitted X-ray on the X-ray detection surface changes in the reverse direction from the end point on the other end side to the start point on the one end side.
[0019]
Furthermore, when the incident position of the transmitted X-ray returns to the starting point on one end side of the X-ray detection surface of the FPD, the FPD double speed movement state shifts again to the FPD movement stop state, and the FPD double speed movement is performed until imaging is completed. The detection operation under the state and the FPD movement stop state is repeated alternately.
[0020]
Therefore, according to the second aspect of the present invention, the X-ray tube is always moved at a constant speed, and the FPD only needs to be moved at twice the speed of the X-ray tube. Therefore, the X-ray tube and the FPD are easily moved. Be made.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the X-ray imaging apparatus of the present invention will be described below. FIG. 1 is a block diagram showing an overall configuration of a medical digital X-ray fluoroscopic imaging apparatus (hereinafter abbreviated as “X-ray imaging apparatus”) according to the embodiment, and FIG. 2 shows a schematic configuration of an imaging stand of the embodiment apparatus. FIG. 3 is a side view, and FIG. 3 is a plan view showing the X-ray detection surface of the FPD used in the embodiment apparatus.
[0022]
In the case of the embodiment apparatus, as shown in FIG. 1, the X-ray tube 2 for irradiating the subject M placed on the top board 1 with X-rays and the transmitted X-rays from the subject M as shown in FIG. The FPD 3 to be detected is disposed so as to face the top plate 1 with the top plate 1 interposed therebetween, and based on the X-ray detection signal output from the FPD 3 when the subject M is irradiated by the X-ray tube 2 at the subsequent stage of the FPD 3. Thus, an X-ray image is created and displayed. Hereinafter, each part structure of an Example apparatus is demonstrated concretely.
[0023]
The top plate 1 is placed with the subject M placed when the subject M is set at an imaging position by a well-known top plate moving mechanism 4 that operates under the control of the top plate movement control unit 5. In addition to being configured to be able to move in the body axis direction X or the body side direction Y, the subject M is placed in the vertical direction Z when the subject M is placed on the tabletop 1 or lowered from the tabletop 1. It is also configured to be moved.
[0024]
On the other hand, the X-ray tube 2 is thinned with a beam thickness Fd in the body axis direction X of the subject M, as shown in FIG. The subject M can be irradiated with a fan beam-shaped X-ray FB whose beam shape is adjusted so that the direction is the body side direction Y of the subject M. In the case of the X-ray tube 2, a cone beam-shaped X-ray whose beam shape is adjusted so that the beam expands in both the body-side direction Y and the body-axis direction X of the subject M by the collimator 2A provided on the front side. It is possible to irradiate the subject M (not shown). Accordingly, the embodiment apparatus performs not only fan beam mode imaging in which X-ray imaging is performed using the fan beam-shaped X-ray FB but also cone beam mode imaging in which X-ray imaging is performed using the cone beam X-ray FB. Can do.
[0025]
The X-ray tube 2 is configured to be movable in either direction along the body axis direction X of the subject M by the X-ray irradiation system moving mechanism 6.
As shown in FIG. 4, the X-ray irradiation system moving mechanism 6 includes a column 9 for mounting and supporting the X-ray tube 2 on the upper end side, and extends along the body axis direction X to the side of the top plate 1 and an electric motor. 4 is provided with a feed screw rod 10 that rotates with the rotation of the motor 11, the support 9 is screwed to the screw rod 10 on the base side, and the screw rod 10 rotates forward by the rotation of the electric motor 11. As shown by the one-dot chain line, the X-ray tube 2 moves to the knee side of the subject M along the body axis direction X as the support column 9 moves to the knee side of the subject M, and the electric motor 11 is reversed. When the screw rod 10 is reversed, the X-ray tube 2 is reversed along the body axis direction X as the column 9 moves to the neck side of the subject M as shown by a two-dot chain line in FIG. It is configured to move to the neck side of the subject M. The encoder 12 detects the rotation direction and rotation amount of the electric motor 11 corresponding to the movement direction and movement amount of the X-ray tube 2 and controls the detected data as current position data in the body axis direction X of the X-ray tube 2. Feedback to the side.
[0026]
On the other hand, as shown in FIG. 3, the FPD 3 includes a number of semiconductor-type X-ray detection elements 3 </ b> A on the X-ray detection surface 8 that detects transmitted X-rays from the subject M, and the body axis direction X and the body side of the subject M. It is configured to be arranged vertically and horizontally along the direction Y. For example, the X-ray detection elements 3A are arranged in a matrix in the number of vertical 1024 × horizontal 1024 on the X-ray detection surface 8 having a size of about 40 cm long × 40 cm wide. Unlike the I / I tube, the flat-shaped FPD 3 is an X-ray detector that is light in weight and does not have complicated image distortion that is difficult to correct because the arrangement accuracy of the X-ray detection elements 3A is high.
[0027]
The FPD 3 is also configured to move in either direction along the body axis direction X of the subject M by the X-ray detection system moving mechanism 7.
As shown in FIG. 5, the X-ray detection system moving mechanism 7 includes a rack 13 installed on the top plate 1 side, a pinion 14 installed on the FPD 3 side, an electric motor 15, and an encoder 16. When the pinion 14 is rotated by 15 rotations, the FPD 3 is moved along the body axis direction X as the pinion 14 advances along the rack 13 toward the knee side of the subject M, as indicated by a one-dot chain line in FIG. When the pinion 14 is moved to the knee side of the specimen M and the pinion 14 is reversed by the reversal of the electric motor 15, the pinion 14 advances along the rack 13 to the neck side of the subject M as shown by a two-dot chain line in FIG. Accordingly, the FPD 3 is also configured to move toward the neck side of the subject M along the body axis direction X. The encoder 16 detects the rotation direction and the rotation amount of the electric motor 15 corresponding to the movement direction and movement amount of the FPD 3 and feeds back the detected data to the control side as current position data in the body axis direction X of the FPD 3.
[0028]
Furthermore, the X-ray imaging apparatus according to the embodiment is a long region that extends over a long section along the body axis direction X of the subject M, such as from the neck to the knee, in fan beam mode imaging using a fan beam-shaped X-ray FB. Is configured to perform long X-ray imaging to obtain a long X-ray image in which the entire long region is contained in one X-ray image.
[0029]
That is, in the case of the embodiment apparatus, every time the X-ray tube 2 moves in the body axis direction X of the subject M by a distance corresponding to the beam thickness Fd of the fan beam-shaped X-ray FB, the fan beam-shaped X-ray is moved to the X-ray tube. X-ray irradiation control unit 17 that performs pulse irradiation of FB, and transmission X-ray of fan beam-like X-ray FB that performs pulse irradiation while the position of the X-ray tube 2 moves relatively along the body axis direction X of the subject M Irradiation detection system movement for controlling the X-ray irradiation system moving mechanism 6 and the X-ray detection system moving mechanism 7 so that the position where the light enters the X-ray detection surface 8 of the FPD 3 also moves along the body axis direction X of the subject M. The entire long region to be imaged is edited by editing all X-ray detection signals output and collected from the FPD 3 along with the pulse irradiation of the fan beam-shaped X-ray FB by the X-ray tube 2 with the control unit 18. Long image creation unit for creating a long X-ray image stored in an X-ray image And a 9.
[0030]
Specifically, on the X-ray tube 2 side, the X-ray tube 2 moves the object to be imaged at a constant speed Vt by the X-ray irradiation system moving mechanism 6 under the control of the irradiation detection system movement control unit 18. When the X-ray tube 2 moves by a distance corresponding to the beam thickness Fd of the fan beam-like X-ray FB while moving along the body axis direction X of M, the fan M The beam X-ray FB is irradiated with pulses. As a result, the beam divergence direction of the fan beam-shaped X-ray FB is the body side direction Y of the subject M, so that the long region MA to be imaged is along the body axis direction X of the subject M as shown in FIG. X-rays continue to be irradiated while being divided into strip-shaped areas corresponding to the beam thickness Fd of the fan beam-shaped X-ray FB, and the entire long region MA of the subject M is subjected to X-ray scanning along the body axis direction X. It will be. In the case of the embodiment apparatus, irradiation of each fan beam-shaped X-ray FB to the long area MA is performed so that adjacent fan beam-shaped X-rays are slightly in the body axis direction X so that there is no unscanned area. It is done with overlapping.
[0031]
On the FPD 3 side, the incident position of the transmitted X-ray fb of the fan beam-shaped X-ray FB is changed by the X-ray detection system moving mechanism 7 under the control of the irradiation detection system movement control unit 18 as indicated by the solid line arrow in FIG. FIG. 7 shows an FPD movement stop state in which the FPD 3 remains stopped while changing in the forward direction from the start point on one end side in the body axis direction X of the subject M on the X-ray detection surface 8 to the end point on the other end side. As indicated by a one-dot chain line arrow, the incident position of the transmitted X-ray fb of the fan beam-like X-ray FB is reversed from the end point on the X-ray detection surface 8 on the other end side in the body axis direction X of the subject M to the start point on one end side. The FPD double speed movement state in which the FPD 3 is moved at a constant speed 2 Vt that is twice that of the X-ray tube 2 while the direction of the X-ray tube 2 is changed, the incident position of the transmitted X-ray fb reaches the end point on the other end side of the X-ray detection surface 8. Shifts from FPD movement stop state to FPD double speed movement state , It is set alternately so as to shift the FPD movement stop state from the FPD speed moving state when the incident position of the transmitted X-ray is returned to the one end side of the starting point of the X-ray detection surface 8.
[0032]
In other words, when the FPD movement is stopped, the fan beam X-ray is generated each time the FPD 3 is stopped and only the X-ray tube 2 continues to move at a constant speed Vt and travels a distance corresponding to the beam thickness Fd of the fan beam X-ray FB. FB is irradiated with pulses. Therefore, even if the FPD 3 is stopped, the irradiation position of the fan beam X-ray FB continues to advance in the body axis direction X of the subject M every time the pulse irradiation of the fan beam X-ray FB is repeated. On the surface 8, the incident position of the transmitted X-ray fb continues to move forward, and the incident position of the transmitted X-ray fb is one end side in the body axis direction X of the X-ray detection surface 8 of the FPD, as indicated by a solid arrow in FIG. It changes in the forward direction from the start point to the end point on the other end.
When the incident position of the transmitted X-ray fb reaches the end point on the other end side of the X-ray detection surface 8 of the FPD 3, the FPD movement stop state shifts to the FPD double speed movement state.
[0033]
When shifting to the FPD double speed movement state, the FPD 3 moves at a speed twice that of the X-ray tube 2 and the X-ray tube 2 continues to move at a constant speed to the beam thickness Fd of the fan beam X-ray FB. Each time it travels a corresponding distance, it is irradiated with a fan beam X-ray FB. Each time the pulse irradiation of the fan beam X-ray FB is repeated, the irradiation position of the fan beam X-ray FB continues to advance in the body axis direction X of the subject M at a constant speed Vt, but the FPD 3 advances at a double speed. Therefore, as indicated by a dashed line arrow in FIG. 7, the irradiation position of the fan beam-shaped X-ray FB continues to move backward with respect to the X-ray detection surface 8 of the FPD 3 and the incident position of the transmitted X-ray fb is The X-ray detection surface 8 changes in the reverse direction from the end point on the other end side to the start point on the one end side.
[0034]
The transmitted X-ray fb associated with one fan beam-like X-ray FB is simultaneously incident across a plurality of lines of the X-ray detection elements 3A arranged along the body-side direction Y of the subject M. The width of the transmitted X-ray fb is the same as the beam thickness Fd of the fan beam-shaped X-ray FB, and is usually around 20 mm. Therefore, every time the fan beam-shaped X-ray FB is irradiated, several tens to 50 lines. The transmitted X-rays fb are incident on the X-ray detection element 3A. With the incidence of the transmitted X-ray fb, each X-ray detection element 3A accumulates charges corresponding to the incident dose and immediately accumulates in each X-ray detection element 3A following the stop of the irradiation of the fan beam-shaped X-ray FB. A charge, that is, an X-ray detection signal is read out.
[0035]
Further, when the incident position of the transmitted X-ray fb returns to the start point on one end side of the X-ray detection surface 8 of the FPD 3, the FPD double speed movement state is again shifted to the FPD movement stop state, and the photographing proceeds in the same manner, and the photographing is finished. Until this time, the detection operation under the FPD double speed movement state and the FPD movement stop state is repeated alternately.
In other words, only one strip-shaped area corresponding to the beam thickness Fd of the fan beam-shaped X-ray FB is partially imaged in the long area MA that is the object of the long X-ray imaging in one irradiation of the fan beam-shaped X-ray FB. Therefore, the long region MA to be imaged is a portion that is divided into strip-shaped areas by the number of times of irradiation with the fan beam-shaped X-ray FB along the longitudinal direction (that is, the body axis direction X of the subject M). Shooting is repeated and shooting proceeds.
[0036]
In the embodiment apparatus, the position where the X-ray detection surface 8 of the FPD 3 detects the transmitted X-ray fb of the fan beam-shaped X-ray FB while the partial X-ray imaging is repeated and the long X-ray imaging proceeds. Are successively changed for each pulse irradiation of the fan beam-shaped X-ray FB without being fixed at a specific position.
Further, in the case of the embodiment apparatus, during long X-ray imaging, the X-ray tube 2 is always moved at a constant speed, and the FPD 3 is intermittently moved at a speed twice that of the X-ray tube 2. The movement of the X-ray tube 2 and the FPD 3 is easy.
[0037]
On the other hand, a detection signal collection unit (DAS) 20 is provided at the subsequent stage of the FPD 3, and the X-ray detection signal output from the FPD 3 when the X-ray tube 2 emits the fan beam-like X-ray pulse is detected signal. Collected by the collecting unit (DAS) 20 and sent to the long image creating unit 19. Based on the X-ray detection signal sent in, the long image creation unit 19 is connected to the body axis direction X of the subject M so as to capture partial X-ray images for each strip area. By performing signal processing so as to form a line image, a long X-ray image in which the entire long region MA to be imaged is contained in one X-ray image is created and sent to the long image memory unit 21. . In the case of the embodiment apparatus, the creation of the long X-ray image can be started after the collection of all X-ray detection signals, or can be performed in parallel while collecting the X-ray detection signals. It is also possible to configure.
[0038]
Further, in the case of the embodiment apparatus, irradiation of each fan beam X-ray FB to the long region MA is performed so that adjacent fan beam X-rays are slightly overlapped in the body axis direction X. The X-ray detection signal can be collected twice for the portion, but the X-ray detection signal collected later is influenced by the residual charge at the time of the previous detection. Use only the amount collected. However, depending on the detection characteristics of the FPD 3, the speed of partial imaging, etc., it may be configured to be used after post-processing such as adding and weighting the X-ray detection signals for the previous and subsequent two times with appropriate weights. Good.
[0039]
The long X-ray image stored in the long image memory unit 21 is read out as necessary and displayed on the screen of the image monitor 22 or printed on photographic paper by a printer (not shown).
Note that the X-ray irradiation control unit 17, the irradiation detection system movement control unit 18, and the long image creation unit 19 mainly responsible for long X-ray imaging follow the instructions and data input from the operation unit 23 or the progress of X-ray imaging. In accordance with various commands sent from the main control unit 24, an appropriate control signal is sent to a necessary place.
[0040]
Next, the process of long X-ray imaging by the above-described embodiment apparatus will be specifically described with reference to the drawings. FIG. 8 is a flowchart showing the execution state of long X-ray imaging by the apparatus of the embodiment. In the following, the long region MA to be subjected to long X-ray imaging is a section from the neck to the knee of the subject M.
[0041]
[Step S1] Under the FPD movement stop state in which the FPD 3 remains stopped, the X-ray tube 2 passes the long region MA to be imaged along the body axis direction X of the subject M, and the beam of the fan beam X-ray FB Each time it moves by a distance corresponding to the thickness Fd, the subject M is irradiated with a fan beam X-ray FB, and X-ray detection signals are collected following the end of irradiation of each fan beam X-ray FB. In parallel with the progress of partial imaging, the creation of a long X-ray image proceeds.
[0042]
[Step S2] If all the irradiation of the fan beam-shaped X-ray FB to the long area MA is completed (if the interruption of the X-ray irradiation is interrupted), the process jumps to Step S7, and the fan beam-shaped X-ray to the long area MA. If the FB irradiation has not been completed (if no interruption of the X-ray irradiation is applied), the process proceeds to the next step S3.
[0043]
[Step S3] The process returns to Step S1 until the incident position of the transmitted X-ray fb reaches the end point on the other end side of the X-ray detection surface 8 of the FPD 3, and the progress of partial imaging and the creation of a long X-ray image are continued. When the incident position of the transmitted X-ray fb reaches the end point on the other end side of the X-ray detection surface 8 of the FPD 3, the process proceeds to the next step S4.
[0044]
[Step S4] Partial imaging and creation of a long X-ray image are performed in the same manner as in Step S1, except that the FPD moving stop state is shifted to the FPD double speed moving state and the FPD 3 moves at twice the speed of the X-ray tube 2. proceed.
[0045]
[Step S5] If the irradiation of the fan beam-shaped X-ray FB to the long region MA is all completed, the process jumps to Step S7, and if the irradiation of the fan-beam X-ray FB to the long region MA is not completed, The process proceeds to step S6.
[0046]
[Step S6] The process returns to Step S4 until the incident position of the transmitted X-ray fb returns to the starting point on one end side of the X-ray detection surface 8 of the FPD 3, and the progress of partial imaging and the creation of a long X-ray image are continued. When the incident position of the transmitted X-ray fb returns to the starting point on the one end side of the X-ray detection surface 8 of the FPD 3, the FPD double speed movement state shifts to the FPD movement stop state, and then the process returns to step 1.
[0047]
[Step S7] When a long X-ray image is completed and the long X-ray image PA is displayed on the screen of the image monitor 22 or printed as shown in FIG. X-ray imaging is complete.
[0048]
As described in detail above, in the case of the X-ray imaging apparatus of the embodiment, the position of detecting the transmitted X-ray fb of the fan beam-like X-ray FB is not fixed at a specific position on the X-ray detection surface 8 of the FPD 3. It has a structure that sequentially changes for each pulse irradiation of the beam-like X-ray FB, so that it is possible to avoid the situation where past residual charges are added to the X-ray detection signal as noise, and the FPD 3 is a lightweight and complicated correction that is difficult to correct Since it is a lightweight X-ray detector without image distortion, a high-quality long X-ray image can be easily captured.
In addition, in the case of the I / I tube, since transmission X-ray detection is limited to the central portion of the X-ray detection surface, only an area shorter than the entire moving range of the I / I tube should be set as a long X-ray imaging target. However, in the case of FPD3, it can be used to detect transmitted X-rays from end to end of the X-ray detection surface, so a wide area corresponding to the entire movement range of FPD3 can be set as a long X-ray imaging target. It becomes.
[0049]
The present invention is not limited to the above embodiment, and can be modified as follows.
(1) The embodiment apparatus is configured to move the FPD 3 at twice the speed of the X-ray tube 2 when the incident position of the transmitted X-ray fb reaches the end point on the other end side of the X-ray detection surface 8 of the FPD 3. However, every time the incident position of the transmitted X-ray fb reaches the end point on the other end side of the X-ray detection surface 8 of the FPD 3, the FPD 3 is advanced at a high speed by the dimension in the body axis direction X of the subject M on the X-ray detection surface 8. A device that is configured to repeat the instantaneous forward movement that is stopped can be given as a modified example.
[0050]
(2) The apparatus of the embodiment is configured to move the X-ray tube 2 to change the irradiation position of the fan beam-shaped X-ray FB, but the top plate 1 is moved while the X-ray tube 2 is stopped. Then, the irradiation position of the fan beam X-ray FB is changed, and the FPD 3 is repeatedly reciprocated from end to end along the body axis direction X immediately below the X-ray tube 2 to transmit the transmitted X-ray fb on the X-ray detection surface 8. An apparatus that is configured to change the incident position can be given as a modification.
[0051]
【The invention's effect】
As is apparent from the above description, according to the X-ray imaging apparatus of the present invention, the position of detecting the transmitted X-ray of the fan beam X-ray is not fixed at a specific position on the X-ray detection surface of the FPD. In addition to avoiding the situation where past residual charges are added to the X-ray detection signal as noise, the FPD is a lightweight and complex image distortion that is difficult to correct. Since it is a light-weight X-ray detector, a high-quality long X-ray image can be easily taken.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an overall configuration of an X-ray imaging apparatus according to an embodiment.
FIG. 2 is a side view illustrating a schematic configuration of an imaging stand of the embodiment apparatus.
FIG. 3 is a plan view showing an X-ray detection surface of an FPD used in an embodiment apparatus.
FIG. 4 is a schematic diagram showing a schematic configuration of an X-ray irradiation system moving mechanism of the embodiment apparatus.
FIG. 5 is a schematic diagram showing a schematic configuration of an X-ray detection system moving mechanism of the embodiment apparatus.
FIG. 6 is a schematic diagram showing a state of irradiation of a fan beam-shaped X-ray on a subject in an example.
FIG. 7 is a schematic diagram showing a change in incident position of transmitted X-rays on an X-ray detection surface in an example.
FIG. 8 is a flowchart showing a state of execution of long X-ray imaging by the embodiment apparatus.
FIG. 9 is a schematic diagram showing a long X-ray image displayed on the image monitor of the embodiment apparatus.
FIG. 10 is a schematic diagram showing a state when long X-ray imaging is performed with a conventional apparatus.
FIG. 11 is a schematic diagram showing a long X-ray image created by a conventional apparatus.
[Explanation of symbols]
1 ... Top plate
2 ... X-ray tube
3 ... FPD (flat panel X-ray detector)
6 ... X-ray irradiation system moving mechanism (X-ray irradiation system moving means)
7 ... X-ray detection system moving mechanism (X-ray detection system moving means)
8 ... X-ray detection surface
17 ... X-ray irradiation control unit (X-ray irradiation control means)
18 ... Irradiation detection system movement control unit (irradiation detection system movement control means)
19 ... Long image creation unit (long image creation means)
FB ... Fan beam X-ray
Fd ... Beam thickness
fb ... X-ray transmission
M… Subject
MA ... Long area
X ... Body axis direction
Y ... Body side direction

Claims (2)

(A)天板の上に載置された被検体へファンビーム状X線をビーム拡がり方向が被検体の体軸方向と直角の体側方向となるようにして照射するX線管と、(B)被検体からの透過X線を検出する多数のX線検出素子がX線検出面に被検体の体軸方向と体側方向に沿って縦横に配列されているフラットパネル型X線検出器(FPD)と、(C)被検体の体軸方向に沿って続く撮影対象の長尺領域に対応する範囲にわたってX線管を被検体の体軸方向に相対的に移動させるX線照射系移動手段と、(D)前記撮影対象の長尺領域に対応する範囲にわたってFPDを被検体の体軸方向に相対的に移動させるX線検出系移動手段と、(E)X線管が被検体の体軸方向にファンビーム状X線のビーム厚みに相応する距離だけ移動する毎にX線管にファンビーム状X線をパルス照射させるX線照射制御手段と、(F)X線管の位置が被検体の体軸方向に沿って相対的に移動しながらパルス照射するファンビーム状X線の透過X線がFPDのX線検出面に入射する位置も、X線管の移動とFPDの移動とにより、被検体の体軸方向に沿って一端側から他端側まで往復移動するようにX線照射系移動手段およびX線検出系移動手段を制御する照射検出系移動制御手段と、(G)X線管によるファンビーム状X線のパルス照射に伴ってFPDから出力されて収集される全X線検出信号を編集して撮影対象の長尺領域全体が1枚のX線画像に納まった長尺X線画像を作成する長尺画像作成手段とを備え、(H)前記フラットパネル型X線検出器(FPD)のX線検出面の一辺の長さより長い撮影対象の長尺領域を撮影することを特徴とするX線撮影装置。(A) an X-ray tube that irradiates a subject placed on a top plate with a fan beam-shaped X-ray so that the beam expansion direction is a body side direction perpendicular to the body axis direction of the subject; ) A flat panel X-ray detector (FPD) in which a number of X-ray detection elements for detecting transmitted X-rays from the subject are arranged vertically and horizontally along the body axis direction and the body side direction of the subject on the X-ray detection surface. And (C) X-ray irradiation system moving means for relatively moving the X-ray tube in the body axis direction of the subject over a range corresponding to the long region of the imaging target that continues along the body axis direction of the subject. (D) X-ray detection system moving means for relatively moving the FPD in the body axis direction of the subject over a range corresponding to the long region to be imaged; and (E) the body axis of the subject. Each time the fan beam-like X-ray moves in the direction by a distance corresponding to the beam thickness, X-ray irradiation control means for pulsed X-ray irradiation, and (F) transmission of fan-beam X-rays for pulse irradiation while the position of the X-ray tube moves relatively along the body axis direction of the subject. The position at which the X-rays are incident on the X-ray detection surface of the FPD is also reciprocated from one end side to the other end side along the body axis direction of the subject by the movement of the X-ray tube and the movement of the FPD. An irradiation detection system movement control means for controlling the irradiation system movement means and the X-ray detection system movement means; and (G) the total X output from the FPD and collected along with the pulse irradiation of the fan beam X-rays by the X-ray tube. (H) the flat panel type X-ray, comprising: a long image creating unit that edits the line detection signal and creates a long X-ray image in which the entire long region to be imaged is contained in one X-ray image. Length of imaging object longer than the length of one side of the X-ray detection surface of the detector (FPD) X-ray imaging apparatus characterized by photographing the area. 請求項1に記載のX線撮影装置において、照射検出系移動制御手段の制御を受け、X線照射系移動手段は、X線管を一定速度で移動し続けるように構成されており、X線検出系移動手段は、ファンビーム状X線の透過X線の入射位置がX線検出面における被検体の体軸方向の一端側の始点から他端側の終点まで順方向に変化する間はFPDを停止させたままとするFPD移動停止状態と、ファンビーム状X線の透過X線の入射位置がX線検出面における被検体の体軸方向の他端側の終点から一端側の始点まで逆方向に変化する間はFPDをX線管の2倍の速度で移動させるFPD倍速移動状態とを採り、透過X線の入射位置がX線検出面の他端側の終点に達した時にはFPD移動停止状態からFPD倍速移動状態に移行し、透過X線の入射位置がX線検出面の一端側の始点に戻った時にはFPD倍速移動状態からFPD移動停止状態に移行するようにして交互に設定するように構成されているX線撮影装置。  2. The X-ray imaging apparatus according to claim 1, wherein the X-ray irradiation system moving means is configured to continue moving the X-ray tube at a constant speed under the control of the irradiation detection system movement control means. The detection system moving means performs FPD while the incident position of the transmitted X-ray of the fan beam-shaped X-ray changes in the forward direction from the start point on one end side in the body axis direction of the subject on the X-ray detection surface to the end point on the other end side. The FPD movement stop state in which the beam is kept stopped and the incident position of the transmitted X-ray of the fan beam-like X-ray are reversed from the end point on the X-ray detection surface in the body axis direction to the start point on the one end side. While the direction changes, the FPD double speed movement state is adopted in which the FPD is moved at twice the speed of the X-ray tube. When the incident position of the transmitted X-ray reaches the end point on the other end side of the X-ray detection surface, the FPD moves. Transition from the stopped state to the FPD double speed moving state, and the incident position of transmitted X-ray There Configured X-ray imaging apparatus as set alternately so as to shift the FPD movement stop state from the FPD speed moving state when returned to the one end side of the starting point of the X-ray detection surface.
JP2003030615A 2003-02-07 2003-02-07 X-ray equipment Expired - Fee Related JP4174628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030615A JP4174628B2 (en) 2003-02-07 2003-02-07 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030615A JP4174628B2 (en) 2003-02-07 2003-02-07 X-ray equipment

Publications (2)

Publication Number Publication Date
JP2004236929A JP2004236929A (en) 2004-08-26
JP4174628B2 true JP4174628B2 (en) 2008-11-05

Family

ID=32957451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030615A Expired - Fee Related JP4174628B2 (en) 2003-02-07 2003-02-07 X-ray equipment

Country Status (1)

Country Link
JP (1) JP4174628B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756366B2 (en) * 2005-11-16 2011-08-24 株式会社島津製作所 Radiation imaging device
JP5231725B2 (en) * 2006-06-20 2013-07-10 株式会社東芝 X-ray diagnostic apparatus and control method thereof
US7940887B2 (en) 2006-08-08 2011-05-10 Shimadzu Corporation Radiographic apparatus
CN101686817B (en) 2007-06-29 2011-06-15 株式会社岛津制作所 Radiation imaging apparatus
CN101674775B (en) * 2007-08-13 2011-08-17 株式会社岛津制作所 Radiation imaging apparatus
JP4873178B2 (en) * 2007-10-19 2012-02-08 株式会社島津製作所 Radiation imaging device
US8737562B2 (en) 2010-12-03 2014-05-27 Shimadzu Corporation Body section radiographic apparatus, and a noise removing method for the body section radiographic apparatus
US10251617B2 (en) 2014-09-22 2019-04-09 Shimadzu Corporation Fluoroscopic imaging apparatus
US10307128B2 (en) 2016-05-12 2019-06-04 Shimadzu Corporation X-ray imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782538B2 (en) * 1989-04-18 1995-09-06 富士写真フイルム株式会社 Method and apparatus for energy subtraction of radiation image
JP2002085392A (en) * 2000-09-14 2002-03-26 Konica Corp Radiographic image processing method and apparatus
US6807250B2 (en) * 2001-04-30 2004-10-19 Eastman Kodak Company Collimation device and method for acquiring a radiation image of a long body part using direct digital X-ray detectors

Also Published As

Publication number Publication date
JP2004236929A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
US8351568B2 (en) Long length multiple detector imaging apparatus and method
WO2011013164A1 (en) Radiographic apparatus
WO2013005833A1 (en) X-ray imaging device and calibration method therefor
JP4740779B2 (en) Radiography equipment
JP5665875B2 (en) X-ray CT system
JPH10243944A (en) Device for setting-up x-ray photographing of human body part
JP5702236B2 (en) X-ray imaging apparatus and calibration method thereof
JP4378812B2 (en) Cone beam type radiation CT system
JP4174628B2 (en) X-ray equipment
JP2010119507A (en) Tomographic image capturing apparatus
JP2008023241A (en) Digital x-ray photography device and method
JP2010233906A (en) X-ray diagnostic apparatus and long-sized image forming method
JPWO2008072310A1 (en) Imaging device
CN102378598B (en) X-ray diagnosis equipment and long-length image generation method
JP4756366B2 (en) Radiation imaging device
KR100704245B1 (en) Radiographic apparatus and radiation detection signal processing method
JP2005204810A (en) X-ray imaging apparatus
JP5743731B2 (en) Radiation imaging apparatus and method
JP2011072404A (en) Radiographic system
JP5049836B2 (en) Radiography method
JP2003010168A (en) X-ray ct apparatus
JP2015047392A (en) X-ray tomography apparatus
JP2009291548A (en) Radiographic device
JP2012161472A (en) Radiographic imaging apparatus and method of radiographic imaging
JPH11188024A (en) X ray diagnostic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4174628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees