JP4173691B2 - Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds - Google Patents

Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds Download PDF

Info

Publication number
JP4173691B2
JP4173691B2 JP2002160293A JP2002160293A JP4173691B2 JP 4173691 B2 JP4173691 B2 JP 4173691B2 JP 2002160293 A JP2002160293 A JP 2002160293A JP 2002160293 A JP2002160293 A JP 2002160293A JP 4173691 B2 JP4173691 B2 JP 4173691B2
Authority
JP
Japan
Prior art keywords
iron
reaction
containing compound
oxygen
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002160293A
Other languages
Japanese (ja)
Other versions
JP2004002235A (en
Inventor
清臣 金田
共雄 水垣
幸喜 海老谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Original Assignee
Maruzen Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd filed Critical Maruzen Petrochemical Co Ltd
Priority to JP2002160293A priority Critical patent/JP4173691B2/en
Publication of JP2004002235A publication Critical patent/JP2004002235A/en
Application granted granted Critical
Publication of JP4173691B2 publication Critical patent/JP4173691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の炭素−水素結合を活性化して、炭化水素化合物を過酸化水素により効率よく酸化する酸化方法に関する。さらに詳しくは、鉄/ニトリル系触媒と添加剤の共存下に炭化水素の炭素−水素結合活性化して、炭化水素化合物を過酸化水素により酸化する酸化方法およびこの方法を利用する含酸素化合物の製造方法に関する。
【0002】
【従来の技術】
従来より、炭化水素の炭素−水素結合を活性化させて高選択的に酸化生成物を得ようとする試みは数多く研究されている。例えば、金属オキソ錯体を用いて炭素−水素結合を協奏的に活性化させる方法(総説として、H. Schwarz et al., Angew. Chem. Int. Ed. Engl., 1995, 34, 1973-1995)がある。しかし、これらの反応系では触媒である錯体が不安定であり、また酸化生成物の収率が低いという問題を有しており、実用的とは言い難いものであった。
【0003】
一方、安定な系として広く研究されているのがフェントン(Fenton)およびギフ(Gif)の反応系である。フェントンの系は、pH2の水中で、鉄(II)および過酸化水素を使用するもので、芳香族炭化水素類の酸化に利用することができ、例えば、ベンゼンの場合は系内に発生した活性な水酸基が芳香族環を直接攻撃してフェノールを形成する。しかしながら、この反応は油水の反応系であるため異相間の移動が律速となり反応速度が遅く、また、ポリヒドロキシル化合物等が副生するため、フェノールの選択率が低いという問題があった。
【0004】
また、ギフの系は、フェントンの系と同様に鉄と過酸化水素を用いるが、これらは、ピリジンおよび酢酸の混合溶媒もしくはピコリン酸型配位子の存在下で使用される。ピリジンは活性な水酸基を抑制する効果があり、この反応は、飽和炭化水素類の炭素−水素結合を活性化し、アルコール等を高選択的に得る方法として利用可能である。さらに、溶媒をアセトニトリルに変更した系の検討も多くなされている(C. Sheu et al., J. Am. Chem. Soc., 1990, 112, 1936、D. H. R. Barton et al., Tetrahedron Lett., 1996, 37, 8329等)。しかしながら、これらの反応系はベンゼン等の芳香族炭化水素類の炭素−水素結合を活性化しないことや、収率3〜5%程度の低い値しか得られないことが報告されている(Menage et al., J. Mol. Cat., 1996, 113, 61)。
【0005】
これらの技術の改良法として、特開平10−251178公報では、鉄、ピコリン酸型配位子およびトリフルオロ酢酸の存在下にアセトニトリルを溶媒とし、過酸化水素により芳香族炭化水素類を酸化してフェノール誘導体を製造する方法が提示されていが、その収率は8%に満たないものであった。
【0006】
他方、チタンシリカライト(米国特許4,396,783号)担持型の鉄や貴金属触媒、ゼオライト等を用いた芳香族炭素水素類の酸化方法(特開平6−40976号、特開平8−217712号、特表平9−511445号等)、あるいは、ヒドロキノン類等のポリヒドロキシ芳香族化合物の存在下に芳香族化合物を酸素酸化する方法(特開平7−69950号)等、近年多数報告されているが、触媒の調製方法が複雑であるとか、高温高圧の反応条件を要す、あるいは収率が不十分であるといった問題がある。
【0007】
【発明が解決しようとする課題】
従って、炭素−水素結合を活性化することにより、温和な条件下で広範な炭化水素化合物を酸化することができ、炭化水素化合物から対応するフェノール、アルデヒド、アルコール等の含酸素化合物を高選択率かつ高収率で製造することができる、簡便な酸化方法が求められており、本発明はこのような方法の提供をその課題とするものである。
【0008】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を重ねた結果、鉄化合物とニトリル系溶媒からなる触媒と、特定の添加剤の共存下に、過酸化水素を用いて炭化水素化合物を酸化することにより、常温常圧という温和な条件下でフェノール、芳香族アルデヒド等の芳香族誘導体や、脂環式アルコール、ケトン等を高選択率かつ高収率で製造することができることを見出し、本発明を完成させた。
【0009】
即ち、本発明は、鉄/ニトリル系触媒と、テトラフルオロほう酸、ヘキサフルオロりん酸、およびこれらの塩よりなる群より選ばれた少なくとも一種類の添加剤の共存下、過酸化水素を用いて炭化水素化合物を酸化することを特徴とする炭化水素化合物の酸化方法を提供するものである。また本発明は、上記酸化方法により、炭化水素化合物を酸化し、対応する含酸素化合物を製造する方法を提供するものである。
【0010】
また本発明は、炭化水素化合物を、鉄/ニトリル系触媒と、テトラフルオロほう酸、ヘキサフルオロりん酸およびこれらの塩からなる群より選ばれた少なくとも一種類の添加剤との共存下、過酸化水素を用いて酸化することを特徴とする対応する含酸素化合物の製造方法を提供するものである。
【0011】
【発明の実施の形態】
本発明で酸化反応に用いる鉄/ニトリル系触媒は、3価の鉄イオンにニトリルが配位した錯体触媒であり、3価の鉄イオンを与える鉄化合物とニトリル系溶媒を混合することにより容易に得られる。
【0012】
このうち、3価の鉄イオンは、3価の鉄の無機塩または有機塩より供給される。無機塩としては、例えば、硝酸塩、硫酸塩、塩化物、過塩素酸塩等が挙げられ、有機塩としては、酢酸鉄等の有機酸塩や鉄(III)アセチルアセトナート等の錯体が挙げられる。これらのなかでも、特に硝酸塩が好適である。
【0013】
また、ニトリル系溶媒は、鉄イオンに対して錯形成剤として機能し、触媒活性を高めるほか、過剰のニトリル系溶媒は溶媒として作用し、炭化水素化合物と鉄化合物や過酸化水素由来の水との混合性を高め、系内の均一性を保持するものである。このニトリル系溶媒の具体的な例としては、アセトニトリル、プロピオニトリル、ベンゾニトリル等が挙げられ、特に、水との混合性及び錯形成の機能においてアセトニトリルが好ましい。ニトリル系溶媒の使用量は、鉄イオン1モルに対して500〜3000モルの範囲が好ましいが、これに限定されるものではない。
【0014】
一方、本発明において使用する添加剤は、テトラフルオロほう酸、ヘキサフルオロりん酸およびこれらの塩から選ばれる化合物であり、単独もしくは2種以上の混合物として用いることができる。テトラフルオロほう酸塩の具体的な例としては、テトラフルオロほう酸リチウム、テトラフルオロほう酸ナトリウム、テトラフルオロほう酸カリウム等のテトラフルオロほう酸のアルカリ金属塩や、テトラフルオロほう酸アンモニウム等が挙げられる。また、ヘキサフルオロりん酸塩の具体的な例としては、ヘキサフルオロりん酸リチウム、ヘキサフルオロりん酸ナトリウム、ヘキサフルオロりん酸カリウム等のヘキサフルオロりん酸のアルカリ金属塩や、ヘキサフルオロりん酸アンモニウム等が挙げられる。これらの化合物のなかでも、テトラフルオロほう酸およびヘキサフルオロりん酸は、本発明において特に良好な収率で酸化生成物を得ることができ好ましい。
【0015】
更に、酸化剤として用いる過酸化水素としては、特に制限はなく、水溶液、有機溶剤希釈液等市販されているものを用いることができる。反応性について希釈液の種類による影響は特にないが、環境の面から水溶液が好ましい。
【0016】
本発明の酸化反応においては、更に上記鉄/ニトリル系触媒、添加剤および過酸化水素の他、反応促進剤を添加することにより、より良好な収率で酸化生成物を得ることができる。このような反応促進剤としては、ヒドロキノン(p−ジヒドロキシベンゼン)、o−ジヒドロキシベンゼン、1,2−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、2,6−ジヒドロナフタレン、アントラヒドロキノン(9,10−ジヒドロキシアントラセン)等のヒドロキノン類、p−ベンゾキノン、o−ベンゾキノン、1,2−ナフトキノン、1,4−ナフトキノン、2,6−ナフトキノン、アントラキノン(9,10−アントラセンジオン)等のキノン類、および、これらのベンゼン核にアルキル基等の置換基を有する誘導体等を挙げることができる。これらのなかでも、ヒドロキノンは反応促進効果が高く好ましい。
【0017】
本発明の酸化方法を実施するには、上記した鉄/ニトリル系触媒、添加剤および必要により反応促進剤の共存下、炭化水素化合物に過酸化水素を反応させればよい。
【0018】
酸化反応の原料である炭化水素化合物としては、芳香族炭化水素類および脂環式炭化水素類を好適に用いることができる。より具体的には、芳香族炭化水素類としては、例えばベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、ナフタレン、メチルナフタレン、ジメチルナフタレン等が挙げられる。脂環式炭化水素類としては、例えばシクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、シクロドデカン等の単環式飽和炭化水素類および、デカリン、ノルボルナン、アダマンタン等の多環式飽和炭化水素類が挙げられる。
【0019】
この酸化反応における、鉄/ニトリル系触媒の量は、特に制約されるものではないが、炭化水素化合物100モルに対し、鉄イオンとして1〜20モルの範囲が好ましい。また、添加剤の使用量は、触媒中の鉄イオン1モルに対して1〜5モルの範囲が好ましいが、これに限定されるものではない。
【0020】
更に、過酸化水素は、炭化水素化合物に対して化学量論的に過剰になるよう使用量を調節すればよく、具体的には、炭化水素化合物1モルに対して過酸化水素が1〜10モルの範囲となるように、過酸化水素溶液の使用量を調節するとよい。なお、過酸化水素を、上記範囲を超えて過剰に用いても反応速度に変化はなく、経済的に不利である。
【0021】
更にまた、反応促進剤を使用する場合の添加量は、触媒中の鉄イオン1モルに対して1〜5モルの範囲が好ましいが、これに限定されるものではない。
【0022】
上記酸化反応は、液相反応で実施され、回分式、半回分式、液相撹拌流通式などの形式を用いて行うことができる。反応の条件は、原料となる炭化水素化合物類により、反応溶液が液相を保つように適宜条件設定すればよいが、ほとんどの場合、温和な条件下で十分反応が進行する。具体的には、反応温度は室温0〜50℃の範囲が好ましく、反応圧力は常圧で十分である。温度が50℃を超えて高くなると、過酸化水素の自己分解が促進され反応効率が悪くなる。反応圧力は加圧しても構わないが、多くの場合その必要はない。
【0023】
以上説明した本発明の酸化方法によれば、炭化水素化合物から対応する含酸素化合物を、温和な条件下で製造することができる。具体的には、ベンゼンおよびナフタレンのような化合物については、ベンゼン骨格の炭素−水素結合が活性化され、対応するフェノールやヒドロキシナフタレン等が得られる。一方、トルエン等のアルキル置換基を有する芳香族炭化水素類を用いた場合は、アルキル基の炭素−水素結合が活性化され、対応する芳香族アルデヒド、アルコール等が生成する。さらに、脂環式炭化水素類を用いた場合は、脂環骨格の炭素−水素結合が活性化され、環状ケトン、アルコール等が得られる。
【0024】
【実施例】
次に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例中の転化率、選択率及び収率(特に断りのない限りモル基準とする)については、ガスクロマトグラフ法により同定・定量した。
【0025】
実 施 例 1
テフロン製撹拌子を入れた内容積50mlのガラス製反応器に、硝酸鉄(III)・9水和物 0.024g(0.06mmol)、48%HBF4水溶液 0.075g(HBF4として0.4mmol)およびアセトニトリル 5mlを入れ、30分撹拌した。次いで、ベンゼン 0.39g(5mmol)および30%過酸化水素水溶液 1mlを加え、空気中、室温・常圧下で72時間撹拌した。反応終了後、二酸化マンガンを用いて未反応過酸化水素を処理し、生成物を同定・定量した。この結果、フェノールが生成しており(収率25%)、ベンゼンからの転化率は25%、ベンゼン基準のフェノール選択率は100%であった。
【0026】
実 施 例 2
HBF4をHPF6(60%水溶液) 0.097g(HPF6として0.4mmol)に変えて、実施例1と同様に反応を行ったところ、フェノールが生成した(収率23%)。ベンゼンからの転化率は23%、ベンゼン基準のフェノール選択率は100%であった。
【0027】
実 施 例 3
HBF4をNaBF4 0.044g(0.4mmol)に変えて、実施例1と同様に反応を行ったところ、フェノールが生成した(収率17%)。ベンゼンからの転化率は17%、ベンゼン基準のフェノール選択率は100%であった。
【0028】
実 施 例 4
テフロン製撹拌子を入れた内容積50mlのガラス製反応器に、硝酸鉄(III)・9水和物 0.073g(0.18mmol)、48%HBF4水溶液 0.075g(HBF4として0.4mmol)、ヒドロキノン 0.027g(0.25mmol)およびアセトニトリル 15mlを入れ、30分撹拌した。次いで、ベンゼン 0.39g(5mmol)および30%過酸化水素水溶液 3mlを加え、空気中、室温・常圧下で72時間撹拌した。反応終了後、二酸化マンガンを用いて未反応過酸化水素を処理し、生成物を同定・定量した。この結果、フェノールが生成しており(収率37%)、ベンゼンからの転化率は37%、ベンゼン基準のフェノール選択率は100%であった。
【0029】
実 施 例 5
ヒドロキノンを2−メチルヒドロキノン 0.031g(0.25mmol)に変えて、実施例4と同様に反応を行ったところ、フェノールが生成した(収率24%)。ベンゼンからの転化率は24%、ベンゼン基準のフェノール選択率は100%であった。
【0030】
実 施 例 6
ヒドロキノンを添加せず、実施例4と同様に反応を行ったところ、フェノールが生成した(収率21%)。ベンゼンからの転化率は21%、ベンゼン基準のフェノール選択率は100%であった。
【0031】
実 施 例 7
ベンゼンをトルエンに変え、実施例4と同様に反応を行ったところ、ベンズアルデヒド(収率11%)とベンジルアルコール(収率2%)が生成した。
【0032】
実 施 例 8
ベンゼンをシクロヘキサンに変え、反応時間を24時間として実施例4と同様に反応を行った。この結果、シクロヘキサノール(収率20%)およびシクロヘキサノン(収率12%)が生成した。
【0033】
【発明の効果】
本発明方法によれば、炭素−水素結合を活性化することにより、常温常圧という温和な条件下で広範な炭化水素化合物を酸化することができ、対応する含酸素化合物を得ることができる。例えば、ベンゼンやアルキル置換ベンゼン等の芳香族炭化水素類からフェノール、芳香族アルデヒド等の芳香族誘導体を、また、脂環式炭化水素類から脂環式アルコール、ケトン等を高選択率かつ高収率で製造することができる。
【0034】
従って、本発明方法は、含酸素化合物の製造方法として、工業的に有利なものである。
以 上
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxidation method for activating hydrocarbon carbon-hydrogen bonds to efficiently oxidize hydrocarbon compounds with hydrogen peroxide. More specifically, an oxidation method in which a hydrocarbon compound is oxidized with hydrogen peroxide by activating hydrocarbon carbon-hydrogen bonds in the presence of an iron / nitrile catalyst and an additive, and production of an oxygen-containing compound using this method Regarding the method.
[0002]
[Prior art]
Conventionally, many attempts have been made to activate a carbon-hydrogen bond of a hydrocarbon to obtain an oxidation product with high selectivity. For example, a method of concertively activating carbon-hydrogen bonds using metal oxo complexes (reviewed by H. Schwarz et al., Angew. Chem. Int. Ed. Engl., 1995, 34, 1973-1995) There is. However, in these reaction systems, the catalyst complex is unstable, and the yield of the oxidation product is low, and it is difficult to say practical.
[0003]
On the other hand, the Fenton and Gif reaction systems are widely studied as stable systems. The Fenton system uses iron (II) and hydrogen peroxide in pH 2 water and can be used for the oxidation of aromatic hydrocarbons. For example, in the case of benzene, the activity generated in the system Hydroxyl groups directly attack the aromatic ring to form phenol. However, since this reaction is an oil-water reaction system, there is a problem that the transfer between different phases is rate-determining and the reaction rate is slow, and polyhydroxyl compounds and the like are by-produced, so that the selectivity of phenol is low.
[0004]
The Gifu system uses iron and hydrogen peroxide in the same manner as the Fenton system, and these are used in the presence of a mixed solvent of pyridine and acetic acid or a picolinic acid type ligand. Pyridine has an effect of suppressing active hydroxyl groups, and this reaction can be used as a method for activating the carbon-hydrogen bond of saturated hydrocarbons to obtain alcohol or the like with high selectivity. In addition, many studies have been made on systems in which the solvent is changed to acetonitrile (C. Sheu et al., J. Am. Chem. Soc., 1990, 112, 1936, DHR Barton et al., Tetrahedron Lett., 1996). , 37, 8329 etc.). However, it has been reported that these reaction systems do not activate the carbon-hydrogen bond of aromatic hydrocarbons such as benzene, and can only obtain a low value of about 3 to 5% (Menage et al.). al., J. Mol. Cat., 1996, 113, 61).
[0005]
As an improved method of these techniques, in JP-A-10-251178, acetonitrile is used as a solvent in the presence of iron, a picolinic acid type ligand and trifluoroacetic acid, and aromatic hydrocarbons are oxidized with hydrogen peroxide. A method for producing a phenol derivative has been proposed, but the yield was less than 8%.
[0006]
On the other hand, a method for oxidizing aromatic carbon hydrogens using titanium, silicalite (US Pat. No. 4,396,783) supported iron, noble metal catalyst, zeolite or the like (JP-A-6-40976, JP-A-8-217712). No. 9-511445, etc.), or a method for oxygen-oxidizing aromatic compounds in the presence of polyhydroxy aromatic compounds such as hydroquinones (Japanese Patent Laid-Open No. 7-69950), etc. However, there are problems that the preparation method of the catalyst is complicated, high temperature and high pressure reaction conditions are required, or the yield is insufficient.
[0007]
[Problems to be solved by the invention]
Therefore, by activating the carbon-hydrogen bond, a wide range of hydrocarbon compounds can be oxidized under mild conditions, and the corresponding oxygen-containing compounds such as phenols, aldehydes and alcohols from the hydrocarbon compounds have high selectivity. In addition, there is a need for a simple oxidation method that can be produced in a high yield, and the object of the present invention is to provide such a method.
[0008]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies, and as a result, by oxidizing a hydrocarbon compound using hydrogen peroxide in the presence of a catalyst composed of an iron compound and a nitrile solvent and a specific additive. And found that aromatic derivatives such as phenol and aromatic aldehyde, alicyclic alcohols, ketones, etc. can be produced with high selectivity and high yield under mild conditions of room temperature and normal pressure. I let you.
[0009]
That is, the present invention provides carbonization using hydrogen peroxide in the presence of an iron / nitrile catalyst and at least one additive selected from the group consisting of tetrafluoroboric acid, hexafluorophosphoric acid, and salts thereof. The present invention provides a method for oxidizing a hydrocarbon compound characterized by oxidizing a hydrogen compound. The present invention also provides a method for producing a corresponding oxygen-containing compound by oxidizing a hydrocarbon compound by the above oxidation method.
[0010]
The present invention also provides a hydrocarbon compound containing hydrogen peroxide in the presence of an iron / nitrile catalyst and at least one additive selected from the group consisting of tetrafluoroboric acid, hexafluorophosphoric acid and salts thereof. It provides a method for producing a corresponding oxygen-containing compound, characterized in that oxidation is carried out using an oxygen.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The iron / nitrile catalyst used in the oxidation reaction in the present invention is a complex catalyst in which nitrile is coordinated to a trivalent iron ion, and can be easily obtained by mixing an iron compound giving a trivalent iron ion and a nitrile solvent. can get.
[0012]
Among these, trivalent iron ions are supplied from an inorganic salt or organic salt of trivalent iron. Examples of inorganic salts include nitrates, sulfates, chlorides, perchlorates, and the like, and examples of organic salts include organic acid salts such as iron acetate and complexes such as iron (III) acetylacetonate. . Of these, nitrate is particularly preferable.
[0013]
The nitrile solvent functions as a complexing agent for iron ions and enhances the catalytic activity, and the excess nitrile solvent acts as a solvent, so that hydrocarbon compounds and iron compounds or hydrogen peroxide-derived water To maintain the uniformity in the system. Specific examples of the nitrile solvent include acetonitrile, propionitrile, benzonitrile and the like, and acetonitrile is particularly preferable in terms of the miscibility with water and the function of complex formation. The amount of nitrile solvent used is preferably in the range of 500 to 3000 moles per mole of iron ions, but is not limited thereto.
[0014]
On the other hand, the additive used in the present invention is a compound selected from tetrafluoroboric acid, hexafluorophosphoric acid and salts thereof and can be used alone or as a mixture of two or more. Specific examples of the tetrafluoroborate include alkali metal salts of tetrafluoroborate such as lithium tetrafluoroborate, sodium tetrafluoroborate, and potassium tetrafluoroborate, and ammonium tetrafluoroborate. Specific examples of hexafluorophosphate include alkali metal salts of hexafluorophosphate such as lithium hexafluorophosphate, sodium hexafluorophosphate, potassium hexafluorophosphate, ammonium hexafluorophosphate, etc. Is mentioned. Among these compounds, tetrafluoroboric acid and hexafluorophosphoric acid are preferable because an oxidation product can be obtained in a particularly good yield in the present invention.
[0015]
Furthermore, there is no restriction | limiting in particular as hydrogen peroxide used as an oxidizing agent, What is marketed, such as aqueous solution and an organic solvent dilution liquid, can be used. The reactivity is not particularly affected by the type of the diluent, but an aqueous solution is preferable from the viewpoint of the environment.
[0016]
In the oxidation reaction of the present invention, an oxidation product can be obtained in a better yield by further adding a reaction accelerator in addition to the iron / nitrile catalyst, additive and hydrogen peroxide. Examples of the reaction accelerator include hydroquinone (p-dihydroxybenzene), o-dihydroxybenzene, 1,2-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 2,6-dihydronaphthalene, anthrahydroquinone (9,10- Hydroquinones such as dihydroxyanthracene), quinones such as p-benzoquinone, o-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, 2,6-naphthoquinone, anthraquinone (9,10-anthracenedione), and Examples thereof include derivatives having a substituent such as an alkyl group on the benzene nucleus. Among these, hydroquinone is preferable because of its high reaction promoting effect.
[0017]
In order to carry out the oxidation method of the present invention, hydrogen peroxide may be reacted with a hydrocarbon compound in the presence of the iron / nitrile catalyst, additives and, if necessary, reaction accelerators.
[0018]
Aromatic hydrocarbons and alicyclic hydrocarbons can be suitably used as the hydrocarbon compound as the raw material for the oxidation reaction. More specifically, examples of aromatic hydrocarbons include benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, naphthalene, methylnaphthalene, and dimethylnaphthalene. Examples of the alicyclic hydrocarbons include monocyclic saturated hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, and cyclododecane, and polycyclic saturated hydrocarbons such as decalin, norbornane, and adamantane. Is mentioned.
[0019]
The amount of the iron / nitrile catalyst in this oxidation reaction is not particularly limited, but is preferably in the range of 1 to 20 moles as iron ions with respect to 100 moles of the hydrocarbon compound. Moreover, although the usage-amount of an additive has the preferable range of 1-5 mol with respect to 1 mol of iron ions in a catalyst, it is not limited to this.
[0020]
Furthermore, the amount of hydrogen peroxide may be adjusted so as to be stoichiometrically excessive with respect to the hydrocarbon compound. Specifically, the amount of hydrogen peroxide is 1 to 10 per mole of the hydrocarbon compound. The amount of the hydrogen peroxide solution used may be adjusted so as to be in the molar range. Even if hydrogen peroxide is used in excess of the above range, the reaction rate is not changed, which is economically disadvantageous.
[0021]
Furthermore, the addition amount in the case of using a reaction accelerator is preferably in the range of 1 to 5 moles per mole of iron ions in the catalyst, but is not limited thereto.
[0022]
The oxidation reaction is performed by a liquid phase reaction, and can be performed using a batch system, a semi-batch system, a liquid phase stirring flow system, or the like. The reaction conditions may be set appropriately depending on the hydrocarbon compounds used as the raw material so that the reaction solution maintains a liquid phase. In most cases, the reaction proceeds sufficiently under mild conditions. Specifically, the reaction temperature is preferably in the range of room temperature from 0 to 50 ° C., and the reaction pressure is sufficient at normal pressure. When the temperature exceeds 50 ° C., the self-decomposition of hydrogen peroxide is promoted and the reaction efficiency is deteriorated. The reaction pressure may be increased, but in many cases it is not necessary.
[0023]
According to the oxidation method of the present invention described above, a corresponding oxygen-containing compound can be produced from a hydrocarbon compound under mild conditions. Specifically, for compounds such as benzene and naphthalene, the carbon-hydrogen bond of the benzene skeleton is activated, and the corresponding phenol and hydroxynaphthalene are obtained. On the other hand, when an aromatic hydrocarbon having an alkyl substituent such as toluene is used, the carbon-hydrogen bond of the alkyl group is activated to produce a corresponding aromatic aldehyde, alcohol, or the like. Furthermore, when alicyclic hydrocarbons are used, the carbon-hydrogen bond of the alicyclic skeleton is activated, and cyclic ketones, alcohols and the like are obtained.
[0024]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these Examples. The conversion, selectivity and yield (on a molar basis unless otherwise specified) in the examples were identified and quantified by gas chromatography.
[0025]
Example 1
Glass reactor having an inner volume of 50ml containing the Teflon stir bar, iron nitrate (III) · 9 hydrate 0.024 g (0.06 mmol), as a 48% HBF 4 solution 0.075g (HBF 4 0. 4 mmol) and 5 ml of acetonitrile were added and stirred for 30 minutes. Subsequently, 0.39 g (5 mmol) of benzene and 1 ml of 30% aqueous hydrogen peroxide were added, and the mixture was stirred in air at room temperature and normal pressure for 72 hours. After the reaction was completed, unreacted hydrogen peroxide was treated with manganese dioxide, and the product was identified and quantified. As a result, phenol was produced (yield 25%), the conversion from benzene was 25%, and the phenol selectivity based on benzene was 100%.
[0026]
Example 2
When HBF 4 was changed to HPF 6 (60% aqueous solution) 0.097 g (0.4 mmol as HPF 6 ) and reacted in the same manner as in Example 1, phenol was produced (yield 23%). The conversion from benzene was 23%, and the phenol selectivity based on benzene was 100%.
[0027]
Example 3
When HBF 4 was changed to NaBF 4 0.044 g (0.4 mmol) and a reaction was carried out in the same manner as in Example 1, phenol was produced (yield 17%). The conversion from benzene was 17%, and the phenol selectivity based on benzene was 100%.
[0028]
Example 4
Into a 50 ml glass reactor containing a Teflon stir bar, 0.073 g (0.18 mmol) of iron (III) nitrate nonahydrate, 0.075 g of 48% HBF 4 aqueous solution (0.05 g of HBF 4 was added). 4 mmol), 0.027 g (0.25 mmol) of hydroquinone and 15 ml of acetonitrile were added and stirred for 30 minutes. Next, 0.39 g (5 mmol) of benzene and 3 ml of 30% aqueous hydrogen peroxide were added, and the mixture was stirred in air at room temperature and normal pressure for 72 hours. After the reaction was completed, unreacted hydrogen peroxide was treated with manganese dioxide, and the product was identified and quantified. As a result, phenol was produced (yield 37%), the conversion rate from benzene was 37%, and the phenol selectivity based on benzene was 100%.
[0029]
Example 5
When hydroquinone was changed to 0.031 g (0.25 mmol) of 2-methylhydroquinone and reacted in the same manner as in Example 4, phenol was produced (yield 24%). The conversion from benzene was 24%, and the phenol selectivity based on benzene was 100%.
[0030]
Example 6
When the reaction was carried out in the same manner as in Example 4 without adding hydroquinone, phenol was produced (yield 21%). The conversion from benzene was 21%, and the phenol selectivity based on benzene was 100%.
[0031]
Example 7
When benzene was replaced with toluene and the reaction was carried out in the same manner as in Example 4, benzaldehyde (yield 11%) and benzyl alcohol (yield 2%) were produced.
[0032]
Example 8
The reaction was carried out in the same manner as in Example 4 except that benzene was changed to cyclohexane and the reaction time was 24 hours. As a result, cyclohexanol (yield 20%) and cyclohexanone (yield 12%) were produced.
[0033]
【The invention's effect】
According to the method of the present invention, by activating a carbon-hydrogen bond, a wide range of hydrocarbon compounds can be oxidized under a mild condition of normal temperature and pressure, and a corresponding oxygen-containing compound can be obtained. For example, aromatic hydrocarbons such as benzene and alkyl-substituted benzenes, aromatic derivatives such as phenols and aromatic aldehydes, and alicyclic hydrocarbons such as alicyclic alcohols and ketones are highly selective and have high yield. Can be manufactured at a rate.
[0034]
Therefore, the method of the present invention is industrially advantageous as a method for producing an oxygen-containing compound.
more than

Claims (9)

鉄/ニトリル系触媒と、テトラフルオロほう酸、ヘキサフルオロりん酸およびこれらの塩からなる群より選ばれた少なくとも一種類の添加剤と、ヒドロキノン類およびキノン類からなる群より選ばれた少なくとも一種類の反応促進剤の共存下、過酸化水素を用いて炭化水素化合物を酸化することを特徴とする炭化水素化合物の酸化方法。An iron / nitrile catalyst, at least one additive selected from the group consisting of tetrafluoroboric acid, hexafluorophosphoric acid and salts thereof , and at least one type selected from the group consisting of hydroquinones and quinones A method for oxidizing a hydrocarbon compound comprising oxidizing a hydrocarbon compound using hydrogen peroxide in the presence of a reaction accelerator . 添加剤が、テトラフルオロほう酸、テトラフルオロほう酸ナトリウム、ヘキサフルオロりん酸およびヘキサフルオロりん酸ナトリウムからなる群から選ばれた化合物の1種または2種以上の混合物である請求項1記載の酸化方法。  The oxidation method according to claim 1, wherein the additive is one or a mixture of two or more compounds selected from the group consisting of tetrafluoroboric acid, sodium tetrafluoroborate, hexafluorophosphoric acid and sodium hexafluorophosphate. 反応促進剤が、ヒドロキノンである請求項1記載の酸化方法。The oxidation method according to claim 1, wherein the reaction accelerator is hydroquinone. 鉄/ニトリル系触媒が、3価の鉄イオンとニトリル系溶媒からなるものである請求項1記載の酸化方法。The oxidation method according to claim 1, wherein the iron / nitrile catalyst comprises a trivalent iron ion and a nitrile solvent. ニトリル系溶媒が、アセトニトリルである請求項4記載の酸化方法。The oxidation method according to claim 4, wherein the nitrile solvent is acetonitrile. 炭化水素化合物を、鉄/ニトリル系触媒と、テトラフルオロほう酸、ヘキサフルオロりん酸およびこれらの塩からなる群より選ばれた少なくとも一種類の添加剤と、ヒドロキノン類およびキノン類からなる群より選ばれた少なくとも一種類の反応促進剤の共存下、過酸化水素を用いて酸化することを特徴とする対応する含酸素化合物の製造方法。The hydrocarbon compound is selected from the group consisting of iron / nitrile catalysts, at least one additive selected from the group consisting of tetrafluoroboric acid, hexafluorophosphoric acid and salts thereof, and hydroquinones and quinones. And a method for producing a corresponding oxygen-containing compound, characterized by oxidizing with hydrogen peroxide in the presence of at least one kind of reaction accelerator. 炭化水素化合物がベンゼンであり、対応する含酸素化合物がフェノールである請求項6記載の含酸素化合物の製造方法。The method for producing an oxygen-containing compound according to claim 6, wherein the hydrocarbon compound is benzene and the corresponding oxygen-containing compound is phenol. 炭化水素化合物がトルエンであり、対応する含酸素化合物がベンズアルデヒドである請求項6記載の含酸素化合物の製造方法。The method for producing an oxygen-containing compound according to claim 6, wherein the hydrocarbon compound is toluene and the corresponding oxygen-containing compound is benzaldehyde. 炭化水素化合物が脂環式炭化水素類であり、対応する含酸素化合物が脂環式アルコールおよび/またはケトンである請求項6記載の含酸素化合物の製造方法。The method for producing an oxygen-containing compound according to claim 6, wherein the hydrocarbon compound is an alicyclic hydrocarbon and the corresponding oxygen-containing compound is an alicyclic alcohol and / or a ketone.
JP2002160293A 2002-05-31 2002-05-31 Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds Expired - Fee Related JP4173691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160293A JP4173691B2 (en) 2002-05-31 2002-05-31 Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160293A JP4173691B2 (en) 2002-05-31 2002-05-31 Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds

Publications (2)

Publication Number Publication Date
JP2004002235A JP2004002235A (en) 2004-01-08
JP4173691B2 true JP4173691B2 (en) 2008-10-29

Family

ID=30429757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160293A Expired - Fee Related JP4173691B2 (en) 2002-05-31 2002-05-31 Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds

Country Status (1)

Country Link
JP (1) JP4173691B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851112B1 (en) 2008-12-19 2018-05-31 질레코 인코포레이티드 Processing biomass
JP5258050B2 (en) * 2009-03-02 2013-08-07 公益財団法人名古屋産業科学研究所 Method for producing aromatic aldehyde compound

Also Published As

Publication number Publication date
JP2004002235A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP5265123B2 (en) Method for producing carbonyl compound
Kanemoto et al. Cerium or ruthenium catalyzed oxidation of alcohols to carbonyl compounds by means of sodium bromate.
JP2003529582A (en) Method for producing aromatic alcohol, especially phenol
Monflier et al. Wacker oxidation of various olefins in the presence of per (2, 6-di-O-methyl)-β-cyclodextrin: mechanistic investigations of a multistep catalysis in a solvent-free two-phase system
Ogino et al. Homogeneous permanganate oxidation in non-aqueous organic solution. Selective oxidations of olefins into 1, 2-diols or aldehydes
CA2656931A1 (en) Oxidation catalyst
Yoo et al. An advanced MC-type oxidation process—the role of carbon dioxide
CN102516054A (en) Method for synthesizing 2-methyl-1, 4-naphthoquinone
JP2016517846A (en) Method for synthesizing acetophenone
Sarmah et al. Novel dicopper (II)-tetracarboxylates as catalysts for selective oxidation of benzyl alcohols with aqueous TBHP
JP4173691B2 (en) Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds
CN102241624B (en) Preparation method of pyridine-2-formaldehyde
CN104557468A (en) Method for phenol hydroxylation
Yang et al. Aerobic oxidation of alcohols using a novel combination of N-hydroxyphthalimide (NHPI) and CuBr
CN107602393B (en) Method for directly oxidizing benzylic C-H bond into ketone or acid
Stuchinskaya et al. Novel efficient catalysts based on Ru or Pd oxide for selective liquid-phase oxidation of alcohols with nitrous oxide
US6071848A (en) Process for the hydroxylation of aromatic hydrocarbons
Choudhary et al. A novel route for in-situ H 2 O 2 generation from selective reduction of O 2 by hydrazine using heterogeneous Pd catalyst in an aqueous medium
Vennat et al. Oxidative cleavage of cycloalkanones with dioxygen catalyzed by supported catalysts or homogeneous systems: Evidence for novel active ruthenium (II) and/or (III) species
Dimitratos et al. Supported metal nanoparticles in liquid-phase oxidation reactions
JPH07149685A (en) Production of carbonyl compound
Choudhary et al. Factors influencing the in situ generation of hydrogen peroxide from the reduction of oxygen by hydroxylamine from hydroxylammonium sulfate over Pd/alumina
Zhu et al. Ionic liquids:“green” solvent for catalytic oxidations with hydrogen peroxide
KR20060050698A (en) Process for producing cycloalkanol and/or cycloalkanone
CN104549414A (en) Catalyst for hydroxylating aromatics directly and preparation method of catalyst

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20020612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020821

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20030612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees