JP4172299B2 - Brick bottom structure of a converter with bottom-blown tuyere - Google Patents

Brick bottom structure of a converter with bottom-blown tuyere Download PDF

Info

Publication number
JP4172299B2
JP4172299B2 JP2003080585A JP2003080585A JP4172299B2 JP 4172299 B2 JP4172299 B2 JP 4172299B2 JP 2003080585 A JP2003080585 A JP 2003080585A JP 2003080585 A JP2003080585 A JP 2003080585A JP 4172299 B2 JP4172299 B2 JP 4172299B2
Authority
JP
Japan
Prior art keywords
brick
mgo
tuyere
converter
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003080585A
Other languages
Japanese (ja)
Other versions
JP2004285441A (en
Inventor
岳彦 高橋
重穂 舘野
道弘 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003080585A priority Critical patent/JP4172299B2/en
Publication of JP2004285441A publication Critical patent/JP2004285441A/en
Application granted granted Critical
Publication of JP4172299B2 publication Critical patent/JP4172299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、底吹き羽口を有する転炉の炉底レンガ積み構造に係わり、特に、該転炉が保持している溶融金属中へ酸素ガスを吹き込むための羽口を備える炉底レンガ積み構造の改良に関するものである。
【0002】
【従来の技術】
溶融金属の精錬に用いる転炉は、図5に示すように、鉄皮1の内側にレンガ等の耐火物2を積んで、該溶融金属3が炉体を溶損しないようにしている。特に、溶融金属3が溶鋼の場合は、その温度が精錬中に1600℃を超える高温となるので、該溶鋼と接触する炉底レンガ4の表面(稼動面という)側と裏面側とでは温度差が大きく、また、その差は、操業中と休止中では大きく異なるので、レンガには熱衝撃が作用することになる。そのため、前記レンガ等の耐火物3には、耐熱性及び耐溶損性に優れたMgO−Cレンガが適用されることが多い。そのMgO−Cレンガは、MgOの素材であるマグネシアにカーボン(記号C)として鱗状黒鉛を配合したものが一般に使用されていた。
【0003】
そして、転炉のうちでも溶鋼中に酸化性ガス5を吹き込む複数本の底吹き羽口6を有するものでは、羽口周辺のレンガが特に損耗を受け易く、それらが炉底全体の寿命を決める場合が多い。なお、羽口6は、材質が銅やステンレス鋼等の金属製の二重管であり、内管と外管の隙間を介してプロパン・ガス等の炭化水素ガスを溶鋼中に吹き込み、その分解による吸熱で羽口を冷却するようになっている。
【0004】
ところで、このようなMgO−C系レンガの寿命を向上させるため、従来よりMgO−C系レンガ自体の材質若しくはレンガ積み構造の改善、又はレンガの補修等の技術改良が図られてきた。
【0005】
その一つに、前記マグネシアに配合するカーボンの一部に膨張黒鉛を採用したMgO−C系レンガを転炉の炉底全体又は羽口近傍のみ(例えば、羽口の軸心からの距離で200mm程度まで)に張り、耐食性と耐スポーリング(粉化)性を向上させる技術がある(特許文献1参照)。また、耐熱スポーリング性を改善するため、上記レンガ中のC(カーボン)として薄肉黒鉛を採用すると共に、骨材としてCaOを配合したMgO−CaO−Cレンガも提案されている(特許文献2参照)。
【0006】
【特許文献1】
特開平11−209169号公報(2〜3頁)
【特許文献2】
特開2001−254117号公報(2〜3頁、図1)
【0007】
【発明が解決しようとする課題】
以上述べたように、転炉内に保持した溶鋼へ酸素ガスを吹き込む羽口の近傍に積んだレンガは大きな熱衝撃を受けて損耗するが、その原因は、熱スポーリングによる剥離にあると言われていた。そのため、上記特許文献1や特許文献2に記載された技術では、レンガ材質を耐熱スポーリング性に優れたものとすべく、配合するカーボンに膨張黒鉛あるいは薄肉黒鉛を採用したり、骨材としてCaOを採用したのである。
【0008】
しかしながら、このような膨張黒鉛や薄肉黒鉛を採用したレンガを実際に羽口近傍にのみ積んでも、全体としての耐スポーリング性は期待したほど向上しなかった。また、炉底全体に張った場合には、転炉内への溶銑やスクラップの装入時に、それらの衝撃や摩擦によって該レンガが摩耗し、羽口以外の部分において損耗速度が大きくなり、かえってレンガの寿命が短くなってしまうという問題があった。また、CaOを配合したレンガは、大気に晒されている時にCaOが雰囲気中の水分を吸収して崩壊する現象があるので、極めて取扱いが困難であることも判明した。
【0009】
本発明は、かかる事情に鑑み、炉底全体のレンガ積みの損耗を従来より低減可能な底吹き羽口を有する転炉の炉底れんが積み構造を提供することを目的としている。
【0010】
【課題を解決するための手段】
発明者は、上記課題を解決するために鋭意研究を重ね、その成果を本発明に具現化した。
【0011】
すなわち、本発明は、弾性率が室温で15GPa以上のMgO−C系レンガで施工した炉底の一部に、弾性率が室温で15GPa未満のMgO−C系レンガを施工した範囲を設け、該範囲内に、炉内の溶融金属中に酸素を吹き込む二重管羽口を配置した転炉の炉底レンガ積み構造において、前記弾性率が室温で15GPa未満のMgO−C系レンガをCaOを配合しないレンガとし、該レンガと前記弾性率が15GPa以上のMgO−C系レンガとの境界位置を、前記二重管羽口の外周から500〜600mmとしてなることを特徴とする底吹き羽口を有する転炉の炉底れんが積み構造である。この場合、前記二重管羽口が、平面視で、直線状、チドリ状、四角状又は長方形状のいずれで複数本配置されていても良い。
【0012】
本発明では、低弾性率で、耐スポーリング性の大きいレンガの領域を従来より拡大し、溶銑やスクラップの衝撃に強い、高弾性率、高強度のレンガの領域との調和を図るようにしたので、炉底全体で耐スポーリング性に優れた炉底レンガ積み構造になる。その結果、炉底レンガ積みの寿命が従来より格段に延長できるようになる。
【0013】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0014】
本発明が適用される対象は、溶融金属の精錬に利用される転炉のうちでも、炉底に酸素ガスの底吹き羽口を備えたものであり、具体的には底吹き転炉、あるいは上底吹き転炉である。
【0015】
このような転炉(図5参照)に保持した溶融金属3中に、二重金属管羽口6を介して酸素ガス5を吹き込むと、吹き込まれた位置が火点となり超高温となる一方で、該羽口6から冷却用ガス(炭化水素系ガス)も同時に流すため、前記熱衝撃は非常に大きくなる。そこで、従来より、その熱衝撃による損耗を抑制するレンガの開発なされてきた。そのレンガは、本発明者の調査によれば、図2に示すように、弾性率が15GPa未満で、従来より一般に使用されていたカーボンとして鱗状黒鉛を配合したMgO−C系レンガに比べて低弾性率で、且つ低強度であった。ここに、弾性率は、超音波弾性率測定試験で室温において測定した値である。
【0016】
このような低強度のレンガを炉底全体に使用すると、溶銑やスクラップの装入時に、その衝撃や摩擦でレンガが損耗し易く、従来よりかえって低寿命となってしまう。そこで、本発明者は、羽口周辺とそれ以外の部分で、レンガの種類を変えれば、炉底全体としてのレンガ積みの寿命を向上させ得るのではないかと考えた。この考えは、前記特許文献1及び2にも開示があり、従来においても炉底羽口6の周囲に低弾性率、低強度のレンガを施工した例がある。しかしながら、それは、単に羽口周辺の熱負荷の大きい部分にのみ、低弾性レンガを施工する提案であって、その効果は、前記したように不十分なものであった。そのため、本発明者は、前記特許文献1及び2記載の技術をさらに改良することにした。
【0017】
まず、本発明者は、前記熱衝撃の大きさを把握するため、炉底レンガの種々の位置における温度を、酸素ガスの吹錬時(精錬中)及び非吹錬時(精錬停止中)にわたって測定した。そして、同一位置での吹錬時(精錬中)と非吹錬時との測定値の差を熱衝撃の大きさとして評価することにした。つまり、吹錬時と非吹錬時とのレンガ温度の差が大きいほど、レンガに加わる熱衝撃が大きく、そのような場所には耐熱衝撃性の優れた、低弾性レンガを使用すれば良いと考えたからである。
【0018】
炉底レンガの表面(稼動面)から深さ100mmの位置で測定した温度の例を図3に示す。図3では、温度のばらつきを表す矢印の上端は冷却用ガスが流れていない非吹錬時、下端は冷却ガスが流れていて溶湯温度が低い吹錬初期である。この図3によれば、平面視で羽□の外周位置から500mmまでの範囲では、前記温度差が200℃を超えることが明らかである。従って、羽口の外周位置から少なくとも500mmまでの範囲には、耐熱衝撃性の優れた低弾性レンガ、具体的には室温での弾性率にして15GPa未満のMgO−C系レンガを施工して、スポーリングを防止することが必要である。
【0019】
一方、図3から、羽口の外周位置から600mm以上離れた位置では、前記温度差はほぼ100℃以内に納まっていることがわかる。この程度の温度差であれば、通常のMgO−C系レンガが、すなわち室温での弾性率が15GPaを超えるようなMgO−C系レンガでも特にスポーリングの発生の心配はない。むしろ、溶銑やスクラップに対する耐摩耗性を考慮して、そのようなレンガを使用することが必要となる。
【0020】
以上の知見から、本発明では、二重管羽口に近い位置に室温での弾性率が15GPa未満である低弾性MgO−C系レンガを施工し、その外側に室温での弾性率が15GPa以上である通常のMgO−C系レンガを施工するようにし、それらの境界位置を二重管羽口の外周から500〜600mmの位置と定めたのである。
【0021】
なお、本発明におけるMgO−C系レンガの材質としてはMgO−CレンガあるいはMgO−CaO−Cレンガとする。
【0022】
また、MgO−C系レンガを低弾性化する手段としては、特許文献1及び2に開示されたマグネシアにカーボンとして膨張黒鉛や薄肉黒鉛を配合する方法が一般的である。また、それ以外にも、レンガの原料粒度を調整して、レンガの気孔率を大きくすることによっても、低弾性化が可能である。つまり、一般にMgO−C系レンガは、骨材としての粒状のマグネシア(MgO)をレジンによって練り固めたものに熱処理を施して硬化させて製造するが、その際の骨材の粒度構成やレジンの添加量によって、気孔率を種々変化させることができる。
【0023】
【実施例】
炉容185トンのステンレス鋼精錬用の上底吹き転炉(図5参照)を用いて、本発明の効果を確認する実験を行った。その際、本発明の手法により築炉した炉底レンガ積み構造は、図1に示す通りである。すなわち、直径2900mmの炉底に、二重管羽口を8本直線状に配置し、この炉底羽口の周辺500mmの範囲に表1に示した低弾性、低強度のMgO−Cレンガ8(記号:レンガA)を、その外周に高弾性、高強度のMgO−Cレンガ9(記号:レンガB)を施工した。そして、この上底吹き転炉を用い、ステンレス鋼の溶製を、炉底の交換時期まで多数チャージ(ヒート)行った。また、比較のため、炉底全面に従来通りの高弾性、高強度のMgO−Cレンガを施工した場合(比較例1)及び炉底全面に低弾性、低強度のMgO−Cレンガを施工した場合(比較例2)での操業も行った。
【0024】
【表1】

Figure 0004172299
【0025】
その結果、図4に示すように、比較例1では、羽□周辺の損耗が大きく、炉底は低寿命になる。また、比較例2では、羽口周辺の損耗は小さかったが、周辺以外の部分がスクラップ装入時等の磨耗により損耗が大きくなり、本発明例に比べて、全体の寿命は短かかった。これに対して、本発明例では、羽口周辺とそれ以外の部分との損耗程度のバランスが良く、結果として炉底レンガ積みの寿命が向上した。なお、図4のボトム寿命指数は、本発明の損耗量を100とした相対値である。また、羽口の配置は、上記実施例では直線状であったが、本発明では、それに限らずチドリ状、四角状等でもかまない。
【0026】
【発明の効果】
以上に述べたように、本発明により、底吹き羽口を有する転炉の炉底レンガ積みが、羽口周辺とそれ以外の部分との損耗のバランスが良くなり、全体での寿命が向上する。
【図面の簡単な説明】
【図1】本発明に係る炉底レンガ積み構造の一例を示す平面図である。
【図2】MgO−Cレンガの圧縮強度と弾性率との関係を示す図である。
【図3】吹錬中及び非吹錬時に、炉底に施工したMgO−Cレンガの稼動面から深さ100mmの位置で測定した温度を示す図である。
【図4】本発明の実施効果を、炉底レンガ積みの寿命で評価した図である。
【図5】一般的なガスの上底吹き機能を備えた転炉を示す縦断面図である。
【符号の説明】
1 鉄皮
2 耐火物(レンガ)
3 溶融金属(溶鋼)
4 炉底レンガ
5 酸素ガス
6 二重管羽口
7 上吹きランス
8 低弾性MgO−Cレンガ
9 高弾性MgO−Cレンガ
10 スラグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a furnace bottom brick stacking structure of a converter having a bottom blowing tuyere, and in particular, a furnace bottom brick stacking structure having tuyere for blowing oxygen gas into a molten metal held by the converter. It is about improvement.
[0002]
[Prior art]
As shown in FIG. 5, the converter used for refining the molten metal is loaded with a refractory 2 such as a brick inside the iron shell 1 so that the molten metal 3 does not melt the furnace body. In particular, when the molten metal 3 is molten steel, the temperature becomes higher than 1600 ° C. during refining, and therefore the temperature difference between the surface (referred to as the working surface) side and the back surface side of the furnace bottom brick 4 in contact with the molten steel. The difference is greatly different during operation and rest, so that thermal shock acts on the brick. Therefore, the refractory 3 such as the brick is often made of MgO—C brick having excellent heat resistance and melting resistance. As the MgO-C brick, generally used is a mixture of magnesia, which is a material of MgO, with scaly graphite as carbon (symbol C).
[0003]
Of the converters, those having a plurality of bottom blowing tuyere 6 for blowing the oxidizing gas 5 into the molten steel are particularly susceptible to wear around the tuyere, which determines the life of the entire furnace bottom. There are many cases. The tuyere 6 is a double tube made of metal such as copper or stainless steel, and a hydrocarbon gas such as propane or gas is blown into the molten steel through a gap between the inner tube and the outer tube, and the decomposition is performed. The tuyere is cooled by heat absorption.
[0004]
By the way, in order to improve the lifetime of such MgO—C bricks, conventionally, technical improvements such as improvement of the material of the MgO—C brick itself or the brick stacking structure or brick repair have been attempted.
[0005]
For example, an MgO-C brick that employs expanded graphite as part of the carbon blended with the magnesia is the entire bottom of the converter or only near the tuyere (for example, 200 mm at a distance from the tuyere axis). There is a technique for improving corrosion resistance and spalling resistance (dusting) (see Patent Document 1). In addition, in order to improve heat-resistant spalling properties, MgO—CaO—C bricks in which thin-walled graphite is adopted as C (carbon) in the brick and CaO is blended as an aggregate has been proposed (see Patent Document 2). ).
[0006]
[Patent Document 1]
JP-A-11-209169 (2-3 pages)
[Patent Document 2]
JP 2001-254117 A (2-3 pages, FIG. 1)
[0007]
[Problems to be solved by the invention]
As described above, bricks stacked near the tuyere that blows oxygen gas into the molten steel held in the converter are worn out by large thermal shocks, but the cause is peeling due to thermal spalling. It was broken. Therefore, in the techniques described in Patent Document 1 and Patent Document 2, in order to make the brick material excellent in heat-resistant spalling property, expanded graphite or thin-walled graphite is adopted as the carbon to be blended, or CaO is used as the aggregate. Was adopted.
[0008]
However, even when bricks employing such expanded graphite or thin graphite were actually stacked only in the vicinity of the tuyere, the overall spalling resistance did not improve as expected. In addition, when stretched over the entire furnace bottom, when the hot metal or scrap is charged into the converter, the bricks wear due to their impact and friction, and the wear rate increases in parts other than the tuyere. There was a problem that the life of bricks was shortened. In addition, it has also been found that the brick containing CaO has a phenomenon that when it is exposed to the air, CaO absorbs moisture in the atmosphere and collapses, so that it is extremely difficult to handle.
[0009]
In view of such circumstances, an object of the present invention is to provide a furnace bottom brick stacking structure of a converter having a bottom blowing tuyere capable of reducing the wear of bricks of the entire furnace bottom from the conventional level.
[0010]
[Means for Solving the Problems]
The inventor has intensively studied to solve the above problems, and has realized the results in the present invention.
[0011]
That is, the present invention provides a range in which an MgO-C brick having an elastic modulus of less than 15 GPa at a room temperature is applied to a part of a furnace bottom made of an MgO-C brick having an elastic modulus of 15 GPa or more at room temperature, In the furnace bottom brick stacking structure of the converter where the double tube tuyere that blows oxygen into the molten metal in the furnace is placed within the range, the MgO-C brick with the elastic modulus of less than 15 GPa at room temperature is blended with CaO a non brick has a bottom tuyeres, characterized in that the bricks and the elastic modulus is a boundary position between the above MgO-C-based bricks 15 GPa, as 500~600mm from the outer periphery of the double tube tuyere The bottom brick of the converter is a stacked structure. In this case, a plurality of the double pipe tuyere may be arranged in a straight line shape, a plover shape, a square shape, or a rectangular shape in plan view.
[0012]
In the present invention, the area of bricks with low elastic modulus and high spalling resistance has been expanded from the past to achieve harmony with the areas of high elastic modulus and high strength bricks that are resistant to hot metal and scrap impacts. Therefore, it becomes a furnace bottom brick stacking structure excellent in spalling resistance in the entire furnace bottom. As a result, the life of the bottom brickwork can be significantly extended compared to the conventional case.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the circumstances leading to the invention.
[0014]
The object to which the present invention is applied is one having a bottom blowing tuyere of oxygen gas at the bottom of the converter used for refining molten metal, specifically, a bottom blowing converter, or It is a top-bottom blowing converter.
[0015]
When the oxygen gas 5 is blown into the molten metal 3 held in such a converter (see FIG. 5) through the double metal tube tuyere 6, the blown position becomes a hot spot and becomes an extremely high temperature, Since the cooling gas (hydrocarbon gas) flows simultaneously from the tuyere 6, the thermal shock becomes very large. Thus, bricks that suppress wear due to thermal shock have been developed. According to the inventor's investigation, the brick has an elastic modulus of less than 15 GPa and is lower than that of MgO-C bricks containing scaly graphite as carbon generally used conventionally. It was elastic and low in strength. Here, the elastic modulus is a value measured at room temperature in an ultrasonic elastic modulus measurement test.
[0016]
If such low-strength bricks are used for the entire furnace bottom, the bricks are likely to be worn away by the impact and friction when the hot metal or scrap is charged, resulting in a shorter life. Then, this inventor thought that if the kind of brick was changed in the vicinity of the tuyere and other parts, the life of the brick stacking as the whole furnace bottom could be improved. This idea is also disclosed in Patent Documents 1 and 2, and there is an example in which bricks having a low elastic modulus and low strength are constructed around the furnace bottom tuyere 6 in the past. However, it is a proposal to construct a low-elastic brick only in a portion where the heat load around the tuyere is large, and the effect is insufficient as described above. Therefore, the present inventor decided to further improve the techniques described in Patent Documents 1 and 2.
[0017]
First, in order to ascertain the magnitude of the thermal shock, the present inventors set the temperatures at various positions of the bottom bricks during oxygen gas blowing (during refining) and during non-blowing (during refining stop). It was measured. And it decided to evaluate the difference of the measured value at the time of blowing (during refining) and the time of non-blowing in the same position as the size of thermal shock. In other words, the greater the difference in brick temperature between blown and non-blowed, the greater the thermal shock applied to the brick, and in such places it is better to use low-elastic bricks with excellent thermal shock resistance. Because I thought.
[0018]
The example of the temperature measured in the position of 100 mm deep from the surface (working surface) of a furnace bottom brick is shown in FIG. In FIG. 3, the upper end of the arrow representing the temperature variation is at the time of non-blowing when the cooling gas is not flowing, and the lower end is the initial stage of blowing where the cooling gas is flowing and the molten metal temperature is low. According to FIG. 3, it is clear that the temperature difference exceeds 200 ° C. in the range from the outer peripheral position of the wing □ to 500 mm in plan view. Therefore, in the range from the outer peripheral position of the tuyere to at least 500 mm, a low-elastic brick excellent in thermal shock resistance, specifically, an MgO-C brick having an elastic modulus at room temperature of less than 15 GPa, It is necessary to prevent spalling.
[0019]
On the other hand, FIG. 3 shows that the temperature difference is within about 100 ° C. at a position 600 mm or more away from the outer peripheral position of the tuyere. With such a temperature difference, there is no particular concern about the occurrence of spalling even with ordinary MgO-C bricks, that is, MgO-C bricks having an elastic modulus at room temperature exceeding 15 GPa. Rather, it is necessary to use such bricks in consideration of wear resistance against hot metal and scrap.
[0020]
From the above knowledge, in the present invention, a low-elasticity MgO-C brick having a modulus of elasticity at room temperature of less than 15 GPa is constructed at a position close to the double pipe tuyere, and the modulus of elasticity at room temperature is 15 GPa or more outside thereof. The normal MgO-C bricks, which are, were constructed, and the boundary position between them was determined to be 500 to 600 mm from the outer periphery of the double pipe tuyere.
[0021]
The material of the MgO-C brick in the present invention is MgO-C brick or MgO-CaO-C brick.
[0022]
As a means for reducing the elasticity of the MgO-C brick, a method of adding expanded graphite or thin graphite as carbon to magnesia disclosed in Patent Documents 1 and 2 is common. In addition, the elasticity can be lowered by adjusting the raw material particle size of the brick to increase the porosity of the brick. That is, in general, MgO-C bricks are manufactured by applying heat treatment to granular magnesia (MgO) as an aggregate, which has been kneaded with resin, and cured. Depending on the amount added, the porosity can be changed variously.
[0023]
【Example】
An experiment for confirming the effect of the present invention was carried out using an upper bottom blowing converter (see FIG. 5) for refining stainless steel having a furnace capacity of 185 tons. At that time, the bottom brick building structure constructed by the method of the present invention is as shown in FIG. That is, eight double pipe tuyere are arranged in a straight line on the furnace bottom with a diameter of 2900 mm, and the low elasticity and low strength MgO-C brick 8 shown in Table 1 in the range of 500 mm around the furnace tuyere. (Symbol: Brick A) was applied with highly elastic and high strength MgO-C brick 9 (symbol: Brick B) on the outer periphery. Then, using this top-bottom blow converter, a lot of stainless steel was melted (heated) until the furnace bottom was replaced. In addition, for comparison, when a conventional high-elasticity, high-strength MgO-C brick was applied to the entire furnace bottom (Comparative Example 1), and a low-elasticity, low-strength MgO-C brick was applied to the entire furnace bottom. The operation in the case (Comparative Example 2) was also performed.
[0024]
[Table 1]
Figure 0004172299
[0025]
As a result, as shown in FIG. 4, in Comparative Example 1, the wear around the wing □ is large, and the furnace bottom has a short life. Further, in Comparative Example 2, the wear around the tuyere was small, but the wear on the portions other than the periphery became large due to wear during scrap charging and the like, and the overall life was shorter than that of the present invention example. On the other hand, in the example of the present invention, the balance of the wear level around the tuyere and other parts was good, and as a result, the life of the bottom brickwork was improved. In addition, the bottom life index | exponent of FIG. 4 is a relative value which made the amount of wear of this invention 100. In addition, the arrangement of the tuyere is linear in the above embodiment, but in the present invention, it is not limited to this, and may be a plover shape, a square shape, or the like.
[0026]
【The invention's effect】
As described above, according to the present invention, the bottom brick stack of a converter having a bottom blowing tuyere has a good balance of wear between the tuyere and other parts, and the overall life is improved. .
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a bottom brick building structure according to the present invention.
FIG. 2 is a diagram showing the relationship between the compressive strength and elastic modulus of MgO—C bricks.
FIG. 3 is a diagram showing temperatures measured at a position of a depth of 100 mm from the working surface of the MgO—C brick applied to the furnace bottom during blowing and non-blowing.
FIG. 4 is a diagram in which the effect of the present invention is evaluated by the life of the bottom brickwork.
FIG. 5 is a longitudinal sectional view showing a converter provided with a general gas top blowing function.
[Explanation of symbols]
1 Iron skin 2 Refractory (Brick)
3 Molten metal (molten steel)
4 Furnace bottom brick 5 Oxygen gas 6 Double pipe tuyere 7 Top blowing lance 8 Low elastic MgO-C brick 9 High elastic MgO-C brick 10 Slag

Claims (1)

弾性率が室温で15GPa以上のMgO−C系レンガで施工した炉底の一部に、弾性率が室温で15GPa未満のMgO−C系レンガを施工した範囲を設け、該範囲内に、炉内の溶融金属中に酸素を吹き込む二重管羽口を配置した転炉の炉底レンガ積み構造において、
前記弾性率が室温で15GPa未満のMgO−C系レンガをCaOを配合しないレンガとし、該レンガと前記弾性率が15GPa以上のMgO−C系レンガとの境界位置を、前記二重管羽口の外周から500〜600mmとしてなることを特徴とする底吹き羽口を有する転炉の炉底れんが積み構造。
A range in which an MgO-C brick having an elastic modulus of less than 15 GPa at room temperature is provided in a part of the furnace bottom constructed with an MgO-C brick having an elastic modulus of 15 GPa or more at room temperature . In the bottom brick-laying structure of the converter with a double pipe tuyere that blows oxygen into the molten metal
The MgO-C brick having a modulus of elasticity of less than 15 GPa at room temperature is a brick not containing CaO, and the boundary position between the brick and the MgO-C brick having a modulus of elasticity of 15 GPa or more is defined by the double pipe tuyere. A furnace bottom brick stacking structure for a converter having a bottom blowing tuyere characterized by being 500 to 600 mm from the outer periphery.
JP2003080585A 2003-03-24 2003-03-24 Brick bottom structure of a converter with bottom-blown tuyere Expired - Fee Related JP4172299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080585A JP4172299B2 (en) 2003-03-24 2003-03-24 Brick bottom structure of a converter with bottom-blown tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080585A JP4172299B2 (en) 2003-03-24 2003-03-24 Brick bottom structure of a converter with bottom-blown tuyere

Publications (2)

Publication Number Publication Date
JP2004285441A JP2004285441A (en) 2004-10-14
JP4172299B2 true JP4172299B2 (en) 2008-10-29

Family

ID=33294402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080585A Expired - Fee Related JP4172299B2 (en) 2003-03-24 2003-03-24 Brick bottom structure of a converter with bottom-blown tuyere

Country Status (1)

Country Link
JP (1) JP4172299B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055308A (en) * 2012-09-11 2014-03-27 Shinagawa Refractories Co Ltd Tuyere brick structure for gas blow
CN103740886B (en) * 2014-01-26 2015-04-01 武汉钢铁集团精鼎工业炉有限责任公司 Converter bottom structure with multi-point rider brick deploying and controlling and building method of converter bottom structure
CN108624738B (en) * 2018-07-09 2023-07-07 鞍山市和丰耐火材料有限公司 Quincuncial pile type converter bottom structure
CN113462833A (en) * 2021-07-05 2021-10-01 鞍钢建设集团有限公司 Method for accurately building blast furnace carbon bricks

Also Published As

Publication number Publication date
JP2004285441A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP2008151425A (en) Repair method of magnesia carbon brick
JP2020100511A (en) Method of producing magnesia-carbon brick
JP4172299B2 (en) Brick bottom structure of a converter with bottom-blown tuyere
JP6429190B2 (en) Electric furnace for melting steelmaking slag
JP2006056735A (en) Magnesia-graphite brick
JP3852261B2 (en) Metal smelting furnace
JPWO2020059801A1 (en) Refractory for gas blowing nozzle and gas blowing nozzle
US4238121A (en) Hearth structure of an oxygen-bottom-blowing converter
JP4187183B2 (en) Magnesia-carbon brick
WO2020203471A1 (en) Refining vessel for high temperature melt
JPH0118030B2 (en)
JP5849562B2 (en) Refractory lining structure for steelmaking containers
JP2006021972A (en) Magnesia-carbon brick
JP2020200530A (en) Brick for vacuum degassing apparatus and rh immersion tube using the same
JPWO2009028416A1 (en) Iron bath smelting reduction furnace
JP2003042667A (en) Protective structure of molten metal container
JP2000104110A (en) Heat-insulating structure of molten metal vessel
KR100241011B1 (en) Magnesia-chromia refractory brick
JP6790952B2 (en) How to line converter bottom refractory
JP4471254B2 (en) Magnesia-carbon brick
JPH10306308A (en) Carbon-containing refractory for tuyere in molten metal refining furnace
JP3662094B2 (en) Alumina-plug for carbonaceous gas injection
JP2953293B2 (en) Gas injection tuyere structure for steelmaking furnace
JP3922231B2 (en) Vacuum refining ladle lid
JP4695354B2 (en) Carbon-containing refractory brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees