JP4171534B2 - Fiber orientation meter signal normalizer - Google Patents

Fiber orientation meter signal normalizer Download PDF

Info

Publication number
JP4171534B2
JP4171534B2 JP07174598A JP7174598A JP4171534B2 JP 4171534 B2 JP4171534 B2 JP 4171534B2 JP 07174598 A JP07174598 A JP 07174598A JP 7174598 A JP7174598 A JP 7174598A JP 4171534 B2 JP4171534 B2 JP 4171534B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
standard plate
output value
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07174598A
Other languages
Japanese (ja)
Other versions
JPH11269789A (en
Inventor
和彦 福岡
昭夫 畑野
誠一 遠藤
裕司 阿部
健二 磯崎
鉄人 仁神
祐彦 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Yokogawa Electric Corp
Original Assignee
Nippon Paper Industries Co Ltd
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Yokogawa Electric Corp filed Critical Nippon Paper Industries Co Ltd
Priority to JP07174598A priority Critical patent/JP4171534B2/en
Publication of JPH11269789A publication Critical patent/JPH11269789A/en
Application granted granted Critical
Publication of JP4171534B2 publication Critical patent/JP4171534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Paper (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紙の繊維配向を光学的に非接触測定する繊維配向計に関し、特に紙からの反射光を受光する受光素子の器差を補償する改良に関する。
【0002】
【従来の技術】
繊維配向計は、例えば特開平4−57983号公報に開示されているように、紙の繊維方向が紙の流れ方向MD及び紙幅方向CDに対してどの程度傾斜しているか測定する装置である。図8は、紙やウェブ上での光スポットの説明図で、縦軸は紙の流れ方向MD、横軸は紙幅方向CDとなっている。断面円形のレーザー光が紙やウェブに照射され、楕円状の反射光が現れる。これは、レーザー光をスリットを用いて帯光とし、測定光の強度との相関関係から、紙による反射の際の繊維方向と光軸方向が直交となった時が最も反射率が低く、平行する時が最も反射率が高くなる為である。従って、反射率が最も高くなる方向が繊維の配向方向となっている。
【0003】
【発明が解決しようとする課題】
図9は、元信号と出力信号との関係を説明する対比図である。元信号は配向のある反射強度を模したもので、EW方向に配向強度が存在している。これに対して、受光素子の特性のバラツキの影響を受ける出力信号は歪みが大きく、例えば個々の受光素子の感度補正をしない場合には、20度程度配向角度が傾いて測定されるという課題があった。
【0004】
そこで、元信号の分布を反映させるために電気回路を用いて補償を行うことができるが、受光素子間のバラツキを精度良くなくすのは大変である。また、例え精度良く合わせたとしても、受光素子を含めた電気回路の経時変化等により再調整を行わなければならず、大変面倒になるという課題があった。
【0005】
本発明は上述の課題を解決したもので、受光素子の特性にバラツキがあっても、これを補償して正確な配向方向の得られる繊維配向計の信号正規化装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成する請求項1記載の繊維配向計の信号正規化装置は、被測定対象となる紙に対してほぼ鉛直に設置されたLEDやレーザー等の光源10と、この光源を中心として同一角度反射面に複数個設けられた受光素子20とを具備し、この光源から照射された光が紙に散乱反射されて当該受光素子に検出され、この受光素子で測定された反射光の強度分布の方向性から紙の配向方向を定める繊維配向計において、黒色と白色であって、オパールガラス製であって、表面を光学研磨して無配向性とした標準板30を用いて前記受光素子の特性のバラツキを調べ、この特性のバラツキを補償する正規化演算を行って、試料に対する配向方向の演算をすることを特徴としている。
【0007】
本発明の請求項1記載の構成によれば、黒色と白色であって配向のない標準板30を用いて受光素子の特性のバラツキを調べ、この特性のバラツキを補償する正規化演算を行っているので、試料に対する配向方向に受光素子の特性のバラツキの影響が現れない。そこで、正しい配向方向が得られるという効果がある。
【0008】
請求項2のように、正規化演算は、あるチャンネル(i)の受光素子における白色標準板測定時の出力値(Bi)と黒色標準板測定時の出力値(Di)とを用いて、試料に対する当該チャンネルの受光素子の出力値(Vi)を、
'i=(Vi−Di)x(Bα−Dα)/(Bi−Di)
(ここで、αは基準となるチャンネル、Bαは基準チャンネルの白色標準板測定時の出力値、Dαは基準チャンネルの黒色標準板測定時の出力値)
によって正規化出力値(V'i)にするとよい。これにより、受光素子の特性のバラツキを除去する具体的な式が得られる。
【0009】
【発明の実施の形態】
以下図面を用いて、本発明を説明する。図1は本発明の一実施例を示す構成斜視図である。図において、光源10は、被測定対象となる紙に対してほぼ鉛直に設置されたLEDやレーザー等で、図示しないレンズを用いて光源10から放射される光を紙や標準板の位置に集光する。
【0010】
受光素子20は、光源10を中心として例えば8〜12個の複数個設けられた受光ダイオードで、紙や標準板からの反射光を受光する。尚、レーザー10とレンズの構成に代えて、LEDを複数設置すると共に散乱板を用いても、この受光素子20に適する照射光となる。
【0011】
標準板30は、白色や黒色のもので、配向性のない光学研磨された平坦なものである。白色標準板は、紙とほぼ同光量の反射強度を有しており、黒色標準板は反射光がゼロであり、データ収集部40の回路上の電気的オフセット相当の反射強度を有している。データ収集部40は、受光素子20の出力信号を各チャンネル毎に収集する。
【0012】
このように構成された装置の正規化演算について説明する。図2は、正規化演算の手順を示す流れ図である。まず、白色標準板に対する受光素子のデータを各チャンネル毎に取得する(S2)。次に、黒色標準板に対する受光素子のデータを各チャンネル毎に取得する(S4)。そして、本来の測定対象であるターゲットサンプルに対する受光素子のデータを各チャンネル毎に取得する(S6)。そして、白黒標準板による正規化演算を行う(S8)。そして、ターゲットサンプルに対する配向演算を行う(S10)。最後に、配向角、配向指数の表示を行う(S12)。
【0013】
図3は、繊維配向計の受光素子の配置と特性を説明する図で、第1欄は素子の番号、第2欄はゼロ、第3欄はスパン、第4欄は放射軸に対する角度、第5欄は元信号、第6欄は出力信号、第7欄は黒色標準板、第8欄は白色標準板信号、第9欄は正規化した値である。ここでは受光素子としてNo.1〜No.8の8個が存在し、放射軸に対して45度の間隔で配置されている。
【0014】
受光素子の特性は、ゼロ点に対する出力信号であるゼロと、出力信号の比例定数を示すスパンで表される。元信号は配向のある反射強度を模したもので、受光素子の出力信号との関係が次式で表される。
[黒色標準板の出力信号]=[元信号+素子ゼロ]x[素子スパン] (1)
【0015】
黒色標準板は、受光素子に入射する反射光をゼロとするもので、受光素子の出力信号との関係が次式で表される。
[出力信号]=[素子ゼロ]x[素子スパン] (2)
白色標準板は、受光素子に入射する反射光が元信号に相当するもので、受光素子の出力信号との関係が次式で表される。
[白色標準板の出力信号]=[元信号平均値+素子ゼロ]x[素子スパン] (3)
【0016】
元信号平均値とは、1〜8chの元信号を平均したものである。正規化値は、次に説明する正規化の式を用いて、出力信号を修正したものである。基準chにはNo.1を使用している。各受光素子の特性のばらつきにも拘らず、元信号に相似の図形が得られており、配向方向も元信号とほぼ等しい。
【0017】
図4は正規化演算の結果を説明する対比図である。出力信号は、白色標準板の信号とほぼ相似であり、各受光素子の特性のバラツキの影響が現れている。これに対して、正規化信号では、元信号に相似の図形が得られており、配向方向も元信号とほぼ等しい。
【0018】
次に、正規化演算の内容について説明する。第iチャンネルの受光素子における白色標準板測定時の出力値Biと黒色標準板測定時の出力値Diとを予め測定し、試料に対する第iチャンネルの受光素子の出力値Viに対する正規化出力値V'iを次の式により演算する。
'i=(Vi−Di)x(Bα−Dα)/(Bi−Di) (4)
ここで、αは基準となるチャンネル、Bαは基準チャンネルの白色標準板測定時の出力値、Dαは基準チャンネルの黒色標準板測定時の出力値である。
【0019】
或いは、式(4)を次のように変形することもできる。
'i=ai+bi*Vi (5)
ここで、aiは正規化係数で、基準チャンネルαについては−Dαとし、その他のチャンネルiについては−Di*biとする。biも正規化係数で、基準チャンネルαについては1とし、その他のチャンネルiについては次による。
bi=(Bα−Dα)/(Bi−Di) (6)
尚、総チャンネル数は受光素子の数と同じ8個や12個に定める。
【0020】
続いて、白色標準板と黒色標準板の材質について説明する。もし標準板の表面に方向性がある無数の細かい傷の様なものがあると、精度良く各受光素子の特性のバラツキの影響を除去できない。そこで、無配向の標準板の材質として適切なものを選択する必要がある。
【0021】
図5は、標準板における反射特性の説明図で、(A)は表側、(B)は裏側になっている。サンプル角度を0−360度とすると、光軸に対して試料が傾いて取り付けられた場合には、360度の正弦波が現れる。これに対して、180度の正弦波が現れるときは、試料に存在する配向の影響を表したものである。表側では、光学研磨の結果配向を表す180度の成分は殆ど現れていない。裏側では、配向の影響が現れているものの、反射に用いるものではないから差し支えない。ここでは、標準板の材質がアルミナ白板で、スポット径として10mmΦ、反射角として50度の場合を測定している。
【0022】
図6は、オパール硝子における反射特性の説明図で、(A)は表側、(B)は裏側になっている。表側では、光学研磨の結果配向を表す180度の成分は殆ど現れていないと共に、反射光強度の均一性が良好である。裏側では、光軸に対して試料が傾いて取り付けられた影響と配向の影響が重畳して現れているものの、反射に用いるものではないから差し支えない。従って、標準板の材質として最も好ましい。オパール硝子は、ビトロライト板や白ピトロとも呼ばれている。ここでは、スポット径として10mmΦ、反射角として50度の場合を示している。
【0023】
図7は、焼結セラミックにおける反射特性の説明図で、(A)は表側、(B)は裏側になっている。表側では、光学研磨をしたものの配向を表す180度の成分が現れていると共に、反射光強度のバラツキが大きい。裏側では、光軸の傾きの影響が現れているものの、反射に用いるものではないから差し支えない。従って、オパール硝子に対する比較例となっている。ここでは、スポット径として10mmΦ、反射角として50度の場合を示している。
【0024】
【発明の効果】
以上説明したように請求項1記載の繊維配向計によれば、黒色と白色の標準板30を用いて受光素子の特性のバラツキを調べ、この特性のバラツキを補償する正規化演算を行っているので、試料に対する配向方向に受光素子の特性のバラツキの影響が現れない。そこで、正しい配向方向が得られるという効果がある。また、標準板の材質として反射光強度の均一性が高い、オパール硝子を選択するとよい。
【0025】
請求項2記載の繊維配向計によれば、正規化演算は、あるチャンネルiの受光素子における白色標準板測定時の出力値Biと黒色標準板測定時の出力値Diとを用いて、試料に対する当該チャンネルの受光素子の出力値Viを所定の演算によって正規化出力値V'iとしているので、具体的な演算内容が把握できる
【図面の簡単な説明】
【図1】本発明の一実施例を示す構成斜視図である。
【図2】正規化演算の手順を示す流れ図である。
【図3】繊維配向計の受光素子の配置と特性を説明する図である。
【図4】正規化演算の結果を説明する対比図である。
【図5】標準板における反射特性の説明図である。
【図6】オパール硝子における反射特性の説明図である。
【図7】焼結セラミックにおける反射特性の説明図である。
【図8】紙やウェブ上での光スポットの説明図である。
【図9】元信号と出力信号との関係を説明する対比図である。
【符号の説明】
10 光源
20 受光素子
30 標準板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber orientation meter that optically measures the fiber orientation of paper in a non-contact manner, and more particularly to an improvement that compensates for instrumental differences in a light receiving element that receives reflected light from paper.
[0002]
[Prior art]
The fiber orientation meter is a device that measures how much the fiber direction of the paper is inclined with respect to the paper flow direction MD and the paper width direction CD, as disclosed in, for example, Japanese Patent Laid-Open No. 4-57983. FIG. 8 is an explanatory diagram of a light spot on paper or web, in which the vertical axis is the paper flow direction MD and the horizontal axis is the paper width direction CD. Laser light having a circular cross section is irradiated onto the paper or web, and elliptical reflected light appears. This is because the laser beam is made into a band light using a slit, and the reflectance is the lowest when the fiber direction and the optical axis direction at the time of reflection by paper are orthogonal, due to the correlation with the intensity of the measurement light. This is because the reflectance is the highest when it is performed. Therefore, the direction in which the reflectance is highest is the fiber orientation direction.
[0003]
[Problems to be solved by the invention]
FIG. 9 is a comparison diagram for explaining the relationship between the original signal and the output signal. The original signal imitates the reflection intensity with orientation, and the orientation intensity exists in the EW direction. On the other hand, the output signal affected by the variation in the characteristics of the light receiving elements is greatly distorted. For example, when the sensitivity of each light receiving element is not corrected, there is a problem that the orientation angle is measured by tilting about 20 degrees. there were.
[0004]
Thus, compensation can be performed using an electric circuit to reflect the distribution of the original signal, but it is difficult to eliminate the variation between the light receiving elements with high accuracy. In addition, even if the accuracy is adjusted, readjustment must be performed due to changes over time in the electric circuit including the light receiving element, which is very troublesome.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a signal normalization apparatus for a fiber orientation meter that can compensate for the variation in characteristics of a light receiving element and obtain an accurate orientation direction even if the characteristics of the light receiving element vary. To do.
[0006]
[Means for Solving the Problems]
The signal normalization device for a fiber orientation meter according to claim 1, which achieves the above object, includes a light source 10 such as an LED or a laser installed substantially perpendicular to the paper to be measured, and the light source as a center. A plurality of light receiving elements 20 provided on the reflection surface at the same angle, and the light emitted from the light source is scattered and reflected on the paper and detected by the light receiving elements, and the intensity of the reflected light measured by the light receiving elements In the fiber orientation meter that determines the orientation direction of the paper from the directionality of the distribution, the light receiving element using the standard plate 30 that is black and white, made of opal glass, and non-oriented by optically polishing the surface The characteristic feature is that the variation of the characteristic is examined, the normalization operation to compensate for the variation in the characteristic is performed, and the orientation direction with respect to the sample is calculated.
[0007]
According to the configuration of the first aspect of the present invention, the variation in the characteristics of the light receiving element is examined using the standard plate 30 which is black and white and has no orientation, and a normalization operation is performed to compensate for the variation in the characteristics. Therefore, the influence of variation in the characteristics of the light receiving element does not appear in the alignment direction with respect to the sample. Therefore, there is an effect that a correct orientation direction can be obtained.
[0008]
As in claim 2, the normalization calculation uses the output value (Bi) when measuring the white standard plate and the output value (Di) when measuring the black standard plate in the light receiving element of a certain channel (i), The output value (Vi) of the light receiving element of the channel with respect to
V i = (Vi−Di) × (Bα−Dα) / (Bi−Di)
(Where α is the reference channel, Bα is the output value of the reference channel when measuring the white standard plate, and Dα is the output value of the reference channel when measuring the black standard plate)
Better to normalized output value (V 'i) by. As a result, a specific expression for removing variation in characteristics of the light receiving element is obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 is a structural perspective view showing an embodiment of the present invention. In the figure, a light source 10 is an LED, laser, or the like installed substantially perpendicular to the paper to be measured, and collects light emitted from the light source 10 at the position of the paper or standard plate using a lens (not shown). Shine.
[0010]
The light receiving element 20 is, for example, a plurality of 8 to 12 light receiving diodes with the light source 10 as the center, and receives reflected light from paper or a standard plate. In addition, it replaces with the structure of the laser 10 and a lens, and even if it installs several LED and uses a scattering plate, it becomes irradiation light suitable for this light receiving element 20. FIG.
[0011]
The standard plate 30 is white or black, and is optically polished and flat without orientation. The white standard plate has a reflection intensity of almost the same amount of light as the paper, and the black standard plate has zero reflected light and has a reflection intensity equivalent to an electrical offset on the circuit of the data collection unit 40. . The data collection unit 40 collects output signals of the light receiving element 20 for each channel.
[0012]
A normalization operation of the apparatus configured as described above will be described. FIG. 2 is a flowchart showing the normalization calculation procedure. First, the light receiving element data for the white standard plate is acquired for each channel (S2). Next, the light receiving element data for the black standard plate is acquired for each channel (S4). And the data of the light receiving element with respect to the target sample which is the original measurement object is acquired for each channel (S6). Then, a normalization calculation using a black and white standard plate is performed (S8). Then, an orientation calculation is performed on the target sample (S10). Finally, the orientation angle and orientation index are displayed (S12).
[0013]
FIG. 3 is a diagram for explaining the arrangement and characteristics of the light receiving elements of the fiber orientation meter. The first column is the element number, the second column is zero, the third column is the span, the fourth column is the angle with respect to the radial axis, Column 5 is the original signal, column 6 is the output signal, column 7 is the black standard plate, column 8 is the white standard plate signal, and column 9 is the normalized value. Here, there are eight light receiving elements No. 1 to No. 8, which are arranged at an interval of 45 degrees with respect to the radiation axis.
[0014]
The characteristics of the light receiving element are represented by zero that is an output signal with respect to the zero point and a span that indicates a proportional constant of the output signal. The original signal imitates the reflection intensity with orientation, and the relationship with the output signal of the light receiving element is expressed by the following equation.
[Black standard plate output signal] = [Original signal + Element zero] x [Element span] (1)
[0015]
The black standard plate makes reflected light incident on the light receiving element zero, and the relationship with the output signal of the light receiving element is expressed by the following equation.
[Output signal] = [Element zero] x [Element span] (2)
In the white standard plate, the reflected light incident on the light receiving element corresponds to the original signal, and the relationship with the output signal of the light receiving element is expressed by the following equation.
[Output signal of white standard plate] = [Original signal average value + Element zero] x [Element span] (3)
[0016]
The original signal average value is an average of the original signals of 1 to 8 ch. The normalized value is obtained by correcting the output signal by using a normalization formula described below. The reference channel is No. 1 is used. Despite variations in the characteristics of each light receiving element, a figure similar to the original signal is obtained, and the orientation direction is almost the same as the original signal.
[0017]
FIG. 4 is a comparison diagram for explaining the result of the normalization operation. The output signal is almost similar to the signal of the white standard plate, and the influence of variation in the characteristics of each light receiving element appears. On the other hand, in the normalized signal, a figure similar to the original signal is obtained, and the orientation direction is substantially equal to the original signal.
[0018]
Next, the contents of the normalization calculation will be described. The output value Bi when measuring the white standard plate and the output value Di when measuring the black standard plate in the i-th channel light receiving element are measured in advance, and the normalized output value V with respect to the output value Vi of the i-th channel light receiving element with respect to the sample. ' Calculate i by the following formula.
V i = (Vi−Di) × (Bα−Dα) / (Bi−Di) (4)
Here, α is a reference channel, Bα is an output value when measuring the white standard plate of the reference channel, and Dα is an output value when measuring the black standard plate of the reference channel.
[0019]
Alternatively, equation (4) can be modified as follows.
V 'i = ai + bi * Vi (5)
Here, ai is a normalization coefficient, -Dα for the reference channel α, and -Di * bi for the other channels i. b i is also a normalization coefficient, which is 1 for the reference channel α and is as follows for the other channel i.
bi = (Bα−Dα) / (Bi−Di) (6)
The total number of channels is determined to be 8 or 12 as the number of light receiving elements.
[0020]
Subsequently, materials of the white standard plate and the black standard plate will be described. If there are innumerable fine scratches with directionality on the surface of the standard plate, the influence of variation in the characteristics of each light receiving element cannot be removed with high accuracy. Therefore, it is necessary to select an appropriate material for the non-oriented standard plate.
[0021]
FIG. 5 is an explanatory diagram of the reflection characteristics of the standard plate, where (A) is the front side and (B) is the back side. Assuming that the sample angle is 0 to 360 degrees, a sine wave of 360 degrees appears when the sample is mounted inclined with respect to the optical axis. On the other hand, when a sine wave of 180 degrees appears, it represents the influence of the orientation existing in the sample. On the front side, a component of 180 degrees representing orientation as a result of optical polishing hardly appears. On the back side, although the influence of orientation appears, it is not a problem because it is not used for reflection. Here, the standard plate is made of an alumina white plate, the spot diameter is 10 mmΦ, and the reflection angle is 50 degrees.
[0022]
FIG. 6 is an explanatory diagram of the reflection characteristics in opal glass, where (A) is the front side and (B) is the back side. On the front side, a component of 180 degrees representing orientation as a result of optical polishing hardly appears, and the uniformity of reflected light intensity is good. On the back side, although the influence of the sample being tilted with respect to the optical axis and the influence of the orientation appear to overlap, there is no problem because it is not used for reflection. Therefore, it is most preferable as the material for the standard plate. Opal glass is also called a vitrolite plate or white pitro. Here, the spot diameter is 10 mmΦ and the reflection angle is 50 degrees.
[0023]
FIG. 7 is an explanatory view of the reflection characteristics in the sintered ceramic, wherein (A) is the front side and (B) is the back side. On the front side, a 180-degree component representing the orientation of the optically polished material appears, and the variation in reflected light intensity is large. On the back side, although the influence of the tilt of the optical axis appears, it is not a problem because it is not used for reflection. Therefore, it is a comparative example for opal glass. Here, the spot diameter is 10 mmΦ and the reflection angle is 50 degrees.
[0024]
【The invention's effect】
As described above, according to the fiber orientation meter of the first aspect, the variation in the characteristics of the light receiving element is examined using the black and white standard plate 30, and the normalization operation for compensating for the variation in the characteristics is performed. Therefore, the influence of variation in the characteristics of the light receiving element does not appear in the alignment direction with respect to the sample. Therefore, there is an effect that a correct orientation direction can be obtained. In addition, opal glass having high uniformity of reflected light intensity may be selected as the standard plate material.
[0025]
According to the fiber orientation meter of claim 2, the normalization calculation is performed on the sample by using the output value Bi at the time of measuring the white standard plate and the output value Di at the time of measuring the black standard plate in the light receiving element of a certain channel i. Since the output value Vi of the light receiving element of the channel is set to the normalized output value V′i by a predetermined calculation, the specific calculation contents can be grasped .
[Brief description of the drawings]
FIG. 1 is a structural perspective view showing an embodiment of the present invention.
FIG. 2 is a flowchart showing a normalization calculation procedure;
FIG. 3 is a diagram illustrating the arrangement and characteristics of light receiving elements of a fiber orientation meter.
FIG. 4 is a comparison diagram for explaining the result of normalization calculation;
FIG. 5 is an explanatory diagram of reflection characteristics of a standard plate.
FIG. 6 is an explanatory diagram of reflection characteristics in opal glass.
FIG. 7 is an explanatory diagram of reflection characteristics in a sintered ceramic.
FIG. 8 is an explanatory diagram of light spots on paper or the web.
FIG. 9 is a comparison diagram for explaining a relationship between an original signal and an output signal.
[Explanation of symbols]
10 Light source 20 Light receiving element 30 Standard plate

Claims (2)

被測定対象となる紙に対してほぼ鉛直に設置されたLEDやレーザー等の光源(10)と、この光源を中心として同一角度反射面に複数個設けられた受光素子(20)とを具備し、この光源から照射された光が紙に散乱反射されて当該受光素子に検出され、この受光素子で測定された反射光の強度分布の方向性から紙の配向方向を定める繊維配向計において、
黒色と白色であって、オパールガラス製であって、表面を光学研磨して無配向性とした標準板(30)を用いて前記受光素子の特性のバラツキを調べ、この特性のバラツキを補償する正規化演算を行って、試料に対する配向方向の演算をすることを特徴とする繊維配向計の信号正規化装置。
A light source (10) such as an LED or a laser installed substantially perpendicular to the paper to be measured, and a plurality of light receiving elements (20) provided on the reflection surface at the same angle around the light source. In the fiber orientation meter that determines the orientation direction of the paper from the direction of the intensity distribution of the reflected light measured by the light receiving element, the light emitted from this light source is scattered and reflected on the paper and detected by the light receiving element.
Using a standard plate (30) that is black and white, made of opal glass, and non-orientated by optically polishing the surface, the variation in the characteristics of the light receiving element is examined, and the variation in the characteristics is compensated. A signal normalization device for a fiber orientation meter, wherein normalization is performed to calculate an orientation direction with respect to a sample.
前記正規化演算は、あるチャンネル(i)の受光素子における白色標準板測定時の出力値(Bi)と黒色標準板測定時の出力値(Di)とを用いて、試料に対する当該チャンネルの受光素子の出力値(Vi)を、
V'i=(Vi−Di)x(Bα−Dα)/(Bi−Di)
(ここで、αは基準となるチャンネル、Bαは基準チャンネルの白色標準板測定時の出力値、Dαは基準チャンネルの黒色標準板測定時の出力値)
によって正規化出力値(V'i)にすることを特徴とする請求項1記載の繊維配向計の信号正規化装置。
The normalization calculation uses the output value (Bi) at the time of measuring the white standard plate and the output value (Di) at the time of measuring the black standard plate in the light receiving element of a certain channel (i), and the light receiving element of the channel for the sample. Output value (Vi) of
V′i = (Vi−Di) × (Bα−Dα) / (Bi−Di)
(Where α is the reference channel, Bα is the output value of the reference channel when measuring the white standard plate, and Dα is the output value of the reference channel when measuring the black standard plate)
The signal normalization device of the fiber orientation meter according to claim 1, wherein the normalized output value (V'i) is set by
JP07174598A 1998-03-20 1998-03-20 Fiber orientation meter signal normalizer Expired - Fee Related JP4171534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07174598A JP4171534B2 (en) 1998-03-20 1998-03-20 Fiber orientation meter signal normalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07174598A JP4171534B2 (en) 1998-03-20 1998-03-20 Fiber orientation meter signal normalizer

Publications (2)

Publication Number Publication Date
JPH11269789A JPH11269789A (en) 1999-10-05
JP4171534B2 true JP4171534B2 (en) 2008-10-22

Family

ID=13469379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07174598A Expired - Fee Related JP4171534B2 (en) 1998-03-20 1998-03-20 Fiber orientation meter signal normalizer

Country Status (1)

Country Link
JP (1) JP4171534B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071329A (en) * 2000-09-01 2002-03-08 Dainippon Printing Co Ltd Method and system for measuring fiber submerged angle
JP4600763B2 (en) 2005-09-20 2010-12-15 横河電機株式会社 Orientation meter
JP4710510B2 (en) * 2005-09-22 2011-06-29 横河電機株式会社 Orientation meter
WO2008080602A1 (en) * 2006-12-29 2008-07-10 Isam Aktiengesellschaft Method for analyzing the surface of a work piece, especially of a lay of fibers and/or woven fibers
CN102564954A (en) * 2010-12-09 2012-07-11 苏州生物医学工程技术研究所 Multi-channel photoelectric detection device for dry type chemical analysis

Also Published As

Publication number Publication date
JPH11269789A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
US4859062A (en) Optoelectrical measuring system and apparatus
US7505150B2 (en) Device and method for the measurement of the curvature of a surface
US6987832B2 (en) Calibration and alignment of X-ray reflectometric systems
CA1319531C (en) Remote spectrophotometer
US4594509A (en) Infrared spectrometer
EP0754931A2 (en) Method of and apparatus for measuring film thickness
US6509964B2 (en) Multi-beam apparatus for measuring surface quality
JPH0248054B2 (en)
US4125328A (en) Apparatus for measuring reflectivity and transmissivity of a specimen
JP4104924B2 (en) Optical measuring method and apparatus
JPH0439004B2 (en)
JP4171534B2 (en) Fiber orientation meter signal normalizer
US4527898A (en) Distinctness of image meter
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
US5517032A (en) Thin film thickness measuring system
EP0128183B1 (en) Inspection apparatus and method
CA1254842A (en) Scan device for half-tone transparency originals
JPS6228707A (en) Apparatus having telecentric objective mirror f-theta corrected for non-contact measurement
JPH07110966A (en) Method and apparatus for measurement of warp of substance
US7414738B2 (en) Measuring device for measuring the degree of transmission of a coating
JPH0511257B2 (en)
JPS63295945A (en) Glossiness measuring apparatus
JPS6239365B2 (en)
US5359458A (en) Scanner
JP3286010B2 (en) X-ray fluorescence analyzer and X-ray irradiation angle setting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees