JP4169780B1 - Proportional solenoid valve control method and control apparatus - Google Patents

Proportional solenoid valve control method and control apparatus Download PDF

Info

Publication number
JP4169780B1
JP4169780B1 JP2008048296A JP2008048296A JP4169780B1 JP 4169780 B1 JP4169780 B1 JP 4169780B1 JP 2008048296 A JP2008048296 A JP 2008048296A JP 2008048296 A JP2008048296 A JP 2008048296A JP 4169780 B1 JP4169780 B1 JP 4169780B1
Authority
JP
Japan
Prior art keywords
current
waveform
dither
solenoid valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008048296A
Other languages
Japanese (ja)
Other versions
JP2009103300A (en
Inventor
貴弘 川本
清 浅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toflo Corp
Original Assignee
Toflo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toflo Corp filed Critical Toflo Corp
Priority to JP2008048296A priority Critical patent/JP4169780B1/en
Application granted granted Critical
Publication of JP4169780B1 publication Critical patent/JP4169780B1/en
Publication of JP2009103300A publication Critical patent/JP2009103300A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

【課題】比例電磁弁のヒステリシスを解消すること。
【解決手段】比例電磁弁の制御装置1は、外部から入力された開度指令値をMPU3で開口量に補正するとともに、開口量に応じた弁開閉時に現れるヒステリシスを取り除くための可動鉄片に作用する静止摩擦力を阻止する力のディザ波形を生成し、開口量にディザ波形を重畳させて指示電流値を出力する。そして、定電流駆動器5は、指示電流値に相当する供給電流を比例電磁弁10のソレノイドコイル16に印加し、指示電流波形に供給電流波形を一致させた駆動電流でソレノイドコイル16を定電流駆動する。
【選択図】図1
An object of the present invention is to eliminate the hysteresis of a proportional solenoid valve.
A control device for a proportional solenoid valve corrects an opening command value input from the outside to an opening amount by an MPU, and acts on a movable iron piece for removing hysteresis appearing at the time of opening and closing the valve according to the opening amount. A dither waveform of a force that prevents the static friction force is generated, and the indicated current value is output by superimposing the dither waveform on the opening amount. Then, the constant current driver 5 applies a supply current corresponding to the indicated current value to the solenoid coil 16 of the proportional solenoid valve 10, and causes the solenoid coil 16 to become a constant current with a drive current that matches the supplied current waveform with the indicated current waveform. To drive.
[Selection] Figure 1

Description

本発明は、例えば流量調節器の流量調節、圧力調節器の圧力調節、チラーの温度調節、あるいは給湯器の火力調節等に使用される比例電磁弁の制御方法及び制御装置に関する。   The present invention relates to a control method and a control device for a proportional solenoid valve used, for example, for flow rate adjustment of a flow rate regulator, pressure adjustment of a pressure regulator, temperature adjustment of a chiller, or heating power adjustment of a water heater.

上記のような比例電磁弁を駆動する方式としては、一般にPWM駆動方式が採用されている。PWM駆動方式とは入力信号のレベルに応じてパルス幅を変調して駆動するものであり、一定の周期でON時間とOFF時間の比率(デューティー比)を調節したパルス状の電圧を比例電磁弁のソレノイドコイルに供給することにより、脈流となった電流(平均電流)を流し、弁を開閉動作させてその開度を調整している。   As a method for driving the proportional solenoid valve as described above, a PWM drive method is generally employed. The PWM drive system is driven by modulating the pulse width according to the level of the input signal. The proportional solenoid valve applies a pulsed voltage with the ratio of ON time to OFF time (duty ratio) adjusted at a constant cycle. By supplying to the solenoid coil, a pulsating current (average current) is supplied, and the valve is opened and closed to adjust the opening.

上記のような電圧をソレノイドコイルに供給する方式によると、ソレノイドコイルのインダクタンス及びコイルで発生した磁界の影響が及ぶ範囲内に磁性体が存在する場合、それらの影響によってコイルに流そうとしている電流の妨げとなり、印加した電圧に比例した電流が流れない。また、ソレノイドコイルに流れる電流はコイルの直流抵抗によって決まるため、温度変化によりコイルの直流抵抗が変化すると流れる電流が変化してしまい、最終的に比例電磁弁の開度にズレを生ずる問題が発生する。これは弁の開度を調節する可動鉄片の吸引力は磁力の強さで決まり、磁力の強さはソレノイドコイルに流れる電流値に比例するためである。また、ソレノイドコイルと制御装置との間の配線抵抗値の変動によっても同様な問題が発生する。そこで、比例電磁弁の開度ズレを低減する技術として、従来から平均電流値を保持するために電流センサを用いたフィードバック制御が行われている(例えば特許文献1を参照)。   According to the method of supplying a voltage to the solenoid coil as described above, if a magnetic substance exists within the range affected by the inductance of the solenoid coil and the magnetic field generated by the coil, the current that is going to flow through the coil due to those influences. The current proportional to the applied voltage does not flow. In addition, since the current flowing through the solenoid coil is determined by the DC resistance of the coil, if the DC resistance of the coil changes due to temperature change, the flowing current will change, resulting in a problem that the proportional solenoid valve opening will eventually shift. To do. This is because the attractive force of the movable iron piece for adjusting the opening of the valve is determined by the strength of the magnetic force, and the strength of the magnetic force is proportional to the value of the current flowing through the solenoid coil. A similar problem occurs due to fluctuations in the wiring resistance value between the solenoid coil and the control device. Therefore, feedback control using a current sensor has been conventionally performed to maintain the average current value as a technique for reducing the opening degree deviation of the proportional solenoid valve (see, for example, Patent Document 1).

また、比例電磁弁は弁作動部が機械的構造を有しているため、ソレノイドコイルに発生する吸引力の強さと弁作動部との関係には静止摩擦力によるヒステリシス特性がある。そこで、このようなヒステリシスを低減する技術として、従来から比例電磁弁の駆動時に振幅の小さな微振動を与える制御、いわゆるディザ制御が行われている(例えば特許文献2を参照)。   Further, since the proportional solenoid valve has a mechanical structure in the valve operating portion, the relationship between the strength of the suction force generated in the solenoid coil and the valve operating portion has a hysteresis characteristic due to static frictional force. Therefore, as a technique for reducing such hysteresis, conventionally, control that gives a small vibration with small amplitude when the proportional solenoid valve is driven, so-called dither control has been performed (see, for example, Patent Document 2).

しかしながら、従来のようにPWM駆動方式でディザ制御を行う場合には、PWMにより発生する脈流に脈流を重ね合わせる重畳方式やPWMにより発生する脈流成分で揺さぶる方式が採用されているが、どちらもPWMによるパルス波の実効値電圧をソレノイドコイルに印加して比例電磁弁を駆動している。このように電圧をソレノイドコイルに印加するとディザ信号の大きさは実効値電圧に現れるが、ディザ信号で急激な変化を与えようとしても、ソレノイドコイルの誘導成分によって電圧に比例した電流が流れない。したがって、実際にソレノイドコイルに流れる電流がディザ信号と一致せず、可動鉄片へ指示通りの振幅を与えられないことから、弁開閉時に現れるヒステリシスを低減することができず、期待するディザ効果が得られないという問題がある。   However, when dither control is performed by the PWM drive method as in the past, a superposition method in which the pulsating flow is superimposed on the pulsating flow generated by the PWM or a method of shaking by the pulsating flow component generated by the PWM is employed. In both cases, a proportional electromagnetic valve is driven by applying an effective value voltage of a pulse wave by PWM to a solenoid coil. When the voltage is applied to the solenoid coil in this way, the magnitude of the dither signal appears in the effective value voltage, but even if an abrupt change is caused by the dither signal, a current proportional to the voltage does not flow due to the inductive component of the solenoid coil. Therefore, since the current that actually flows through the solenoid coil does not match the dither signal and the amplitude as indicated is not given to the movable iron piece, the hysteresis that appears when the valve is opened and closed cannot be reduced, and the expected dither effect is obtained. There is a problem that can not be.

また、ディザ信号は時間と共に変動する信号であることから、ディザ信号の波形通りの振幅を与えるためにその波形に忠実に追従させた電流をソレノイドコイルに流す必要がある。ところが、従来の駆動方式は電流制御であってもパルス状の電圧を印加し、次第に平均電流を一致させる平均電流制御であるため、ソレノイドコイルに流れる電流がディザ信号の波形とは異なった電流波形になってしまい、可動鉄片へ指示通りの振幅を与えられないことから、弁開閉時に現れるヒステリシスを低減することができず、期待するディザ効果が得られないという問題もある。   Further, since the dither signal is a signal that varies with time, in order to give the amplitude corresponding to the waveform of the dither signal, it is necessary to flow a current that closely follows the waveform to the solenoid coil. However, since the conventional drive method is an average current control that applies a pulsed voltage and gradually matches the average current even in current control, the current waveform that flows through the solenoid coil is different from the waveform of the dither signal. As a result, it is impossible to reduce the hysteresis that appears when the valve is opened and closed, and the expected dither effect cannot be obtained.

特開平10−2284号公報Japanese Patent Laid-Open No. 10-2284

特開平10−198431号公報JP-A-10-198431

本発明はこのような問題を解決するためになされたものであり、その目的とするところは、比例電磁弁が有するヒステリシス特性、ソレノイドコイルの温度変化、並びに配線の抵抗値変動による影響を低減することが可能な比例電磁弁の制御方法及び制御装置を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to reduce the influence of the hysteresis characteristic of the proportional solenoid valve, the temperature change of the solenoid coil, and the resistance value fluctuation of the wiring. An object of the present invention is to provide a control method and control device for a proportional solenoid valve.

本発明者は比例電磁弁の弁開閉時のヒステリシスがどのような要因で発生しているのかを究明し、ヒステリシスが発生する主な要因が可動鉄片に作用する静止摩擦力(機械的摩擦力、慣性モーメント)によるものであり、以下のような方法によれば確実にヒステリシスを解消することができることを見出し、この知見に基づいて本発明を完成するに至った。   The present inventor has investigated what causes the hysteresis at the time of opening and closing of the proportional solenoid valve, and the main factor causing the hysteresis is the static friction force (mechanical friction force, It has been found that the hysteresis can be reliably eliminated by the following method, and the present invention has been completed based on this finding.

すなわち、本発明は、比例電磁弁のソレノイドコイルに流す電流に比例した電磁気力で可動鉄片を吸引し、所定の開度で弁を開閉して流体の流量又は圧力を制御する比例電磁弁の制御方法であって、入力された開度指令値を比例電磁弁の開口量に補正し、開口量に応じた弁開閉時に現れるヒステリシスを取り除くための可動鉄片に作用する静止摩擦力を阻止する力のディザ波形を生成し、開口量にディザ波形を重畳させて比例電磁弁の指示電流値を出力し、指示電流値に相当する電流をソレノイドコイルへ印加し、ソレノイドコイルに流れる供給電流の波形を指示電流の波形に一致させた駆動電流によってソレノイドコイルに指示電流通りの定められた電流を流して定電流駆動するものであり、定電流駆動は、ディザ信号の最大周波数をTht、指示電流波形に対する駆動電流波形の追従の遅れをΔt、印加電圧に対する電流の傾斜角度をLv、ディザ信号の最大傾斜角度をΔv、とした場合に、条件1:Tht>>Δt、及び、条件2:Lv>>Δvを満たすことを特徴とする。
That is, the present invention controls a proportional solenoid valve that attracts a movable iron piece with an electromagnetic force proportional to a current flowing through a solenoid coil of a proportional solenoid valve, and controls the flow rate or pressure of a fluid by opening and closing the valve at a predetermined opening degree. This method corrects the input opening command value to the opening amount of the proportional solenoid valve, and removes the static friction force acting on the movable iron piece to remove the hysteresis that appears when the valve opens and closes according to the opening amount. Generates a dither waveform, superimposes the dither waveform on the opening amount, outputs the indicated current value of the proportional solenoid valve, applies a current corresponding to the indicated current value to the solenoid coil, and indicates the waveform of the supply current flowing through the solenoid coil by applying a current defined instructed current as the solenoid coil by the drive current to match the waveform of the current it is intended to constant current drive, constant current drive, the maximum frequency of the dither signal Th Condition 1: Tht >> Δt, where Δt is the tracking delay of the drive current waveform with respect to the command current waveform, Lv is the current inclination angle with respect to the applied voltage, and Δv is the maximum inclination angle of the dither signal. 2: Lv >> Δv is satisfied .

また、本発明において、ディザ波形は、可動鉄片に作用する静止摩擦力を超える力を弁の開閉両方向に反転させて加え、常に静止摩擦力の発生を阻止する力の集合体からなる波形であることを特徴とする。   Further, in the present invention, the dither waveform is a waveform composed of an assembly of forces that constantly apply a force exceeding the static friction force acting on the movable iron piece in both the opening and closing directions of the valve to prevent the generation of the static friction force. It is characterized by that.

ここで、本発明について、弁開閉時のヒステリシスを取り除く方法を詳しく説明する。   Here, a method for removing hysteresis at the time of opening and closing the valve will be described in detail.

《静止摩擦力の影響を無くす方法》
比例電磁弁が所定の開度で開いてそこで止まっている場合、可動鉄片は静止した状態であり、静止摩擦力が作用している。そのため、少ない開度変更を行う場合、一旦静止した可動鉄片を別の開度位置に移動させようとして新しい開度位置相当の力を可動鉄片に加えても、静止摩擦力を超える力を加えるまで可動鉄片が停止したまま動かず、正しい位置まで移動させることができない。したがって、可動鉄片を開度位置相当の力に比例した位置まで正確に移動させるため、常に可動鉄片がスムーズに移動できるように、以下の手順で可動鉄片に静止摩擦力が発生しない状態を保つようにする。
<Method to eliminate the effect of static friction force>
When the proportional solenoid valve opens at a predetermined opening and stops there, the movable iron piece is stationary and a static frictional force is acting. Therefore, when performing a small opening change, even if a force equivalent to a new opening position is applied to the moving iron piece to move the stationary moving iron piece to another opening position, a force exceeding the static friction force is applied. The movable iron piece stops and does not move and cannot be moved to the correct position. Therefore, in order to accurately move the movable iron piece to a position proportional to the force corresponding to the opening position, in order to always move the movable iron piece smoothly, keep the state where no static friction force is generated on the movable iron piece by the following procedure. To.

a.可動鉄片に静止摩擦力の大きさを超える力を加える。力を加える方向は弁の開閉いずれの方向であっても良い。
b.可動鉄片が静止摩擦力を振り切って移動し始めた瞬間に、加えている力を解放する。この時、可動鉄片にはその質量にかかる慣性モーメントが作用していることと、可動鉄片の周囲が流体で満たされていて粘性の抵抗力が働くことにより、急激な加速(移動)は起きず徐々に加速するため、加えている力を解放すると加速力が無くなって減速する。
c.可動鉄片が減速して停止する前に逆方向の力を新たに加える。可動鉄片は逆方向の力によって「減速」→「一瞬停止」→「逆方向に加速開始」するが、この時も慣性モーメントが作用するため急激な加速は起こらない。また「一瞬停止」といっても速度が一時的に0になるだけで速度が0になった時点では逆向きの加速力が既に作用しているので静止することはない。
d.可動鉄片が逆方向へと加速し始めた瞬間に、加えている力を解放し、再度方向を反転させた力を加える。
a. A force exceeding the static friction force is applied to the movable iron piece. The direction in which the force is applied may be either the opening or closing direction of the valve.
b. Release the applied force at the moment when the movable iron piece begins to move by shaking the static friction force. At this time, a sudden acceleration (movement) does not occur because the moment of inertia acting on the mass acts on the movable iron piece, and the surrounding area of the movable iron piece is filled with fluid and viscous resistance acts. Because it accelerates gradually, when the applied force is released, the acceleration force disappears and the vehicle decelerates.
c. A new force in the opposite direction is applied before the movable iron piece decelerates and stops. The movable iron piece is "decelerated" → "stops for a moment" → "starts accelerating in the reverse direction" by the force in the reverse direction. Further, even if “stop for a moment”, the speed is temporarily zero, and when the speed becomes zero, the reverse acceleration force has already been applied, so it does not stop.
d. At the moment when the movable iron piece starts to accelerate in the opposite direction, the applied force is released and the force that reverses the direction is applied again.

このようにa〜dの力の反転を繰り返し継続し、弁開度に影響を与えない程度の力を可動鉄片に加え続ければ、可動鉄片は常に微小振動しているので、静止摩擦力の影響を受けなくなる。したがって、可動鉄片は開度位置相当の力に比例した位置へ滑らかに移動可能な状態を維持することができる。本発明では、この可動鉄片に常に静止摩擦力が発生しないように維持する力の集合体である波形を「ディザ波形」という。   In this way, if the reversal of the forces a to d is continuously repeated, and if a force that does not affect the valve opening is continuously applied to the movable iron piece, the movable iron piece always vibrates slightly, so the influence of the static friction force No longer receive. Therefore, the movable iron piece can maintain a state in which it can move smoothly to a position proportional to the force corresponding to the opening position. In the present invention, a waveform that is an assembly of forces that always maintains a static friction force on the movable iron piece is referred to as a “dither waveform”.

《ディザ波形の力を正確に加える方法》
a.可動鉄片はソレノイドコイルに発生した電磁気力(磁力線)で吸引されるため、電磁気力の強さをディザ波形パターン量の大きさで正確に変化させれば、可動鉄片に加える力(吸引力)を生成することができる。
b.電磁気力(磁力線)の強さはソレノイドコイルに流れる電流値に比例するので、可動鉄片に加える力はソレノイドコイルに流れる電流の変化量に等しいものとして扱うことができる。ただし、磁力線の経路となる可動鉄片や固定鉄芯は強磁性体であるため、これらの強磁性体が磁界を受けると残留磁気や磁力線経路の変化による電磁気的ヒステリシスが発生する。この電磁気的ヒステリシスは、可動鉄片へ目的の力を正確に伝え難くする作用があるので、可動鉄片へ目的の力を正確に伝えるためには、電磁気的ヒステリシスのヒステリシス幅を超える磁気変動を考慮して、最終的に可動鉄片へ目的の力が伝わるようにディザ波形を調整する必要がある。そのための方法として次の2つの方法が考えられる。
《How to accurately apply the power of dither waveform》
a. Because the movable iron piece is attracted by the electromagnetic force (line of magnetic force) generated in the solenoid coil, if the strength of the electromagnetic force is accurately changed by the size of the dither waveform pattern, the force (attraction force) applied to the movable iron piece is increased. Can be generated.
b. Since the strength of the electromagnetic force (lines of magnetic force) is proportional to the value of the current flowing through the solenoid coil, the force applied to the movable iron piece can be treated as being equal to the amount of change in the current flowing through the solenoid coil. However, since the movable iron piece and the fixed iron core that form the path of the lines of magnetic force are ferromagnets, when these ferromagnets are subjected to a magnetic field, electromagnetic hysteresis is generated due to residual magnetism and changes in the path of the lines of magnetic force. This electromagnetic hysteresis has the effect of making it difficult to accurately transmit the target force to the movable iron piece.Therefore, in order to accurately transmit the target force to the movable iron piece, the magnetic fluctuation exceeding the hysteresis width of the electromagnetic hysteresis must be considered. Therefore, it is necessary to adjust the dither waveform so that the target force is finally transmitted to the movable iron piece. The following two methods are conceivable as methods for that purpose.

1)電磁気的ヒステリシスにより失われる力を補う方法
可動鉄片に加える力はソレノイドコイルに流れる電流の変化量に等しいものとして扱うことができるが、実際には電磁気的ヒステリシスが存在する。この電磁気的ヒステリシスにより吸収されて失われる力を補わないと、最終的に目的の力が正確に可動鉄片へ伝わらない。したがって、事前にこの失われる力をディザ波形に補充し、ディザ波形を調整することによって目的の力を正確に可動鉄片へ伝えることができる。
1) Method for compensating for the force lost by electromagnetic hysteresis Although the force applied to the movable iron piece can be treated as being equal to the amount of change in the current flowing through the solenoid coil, there is actually an electromagnetic hysteresis. If the force absorbed and lost by this electromagnetic hysteresis is not compensated, the target force will not be transmitted to the movable iron piece accurately. Therefore, the lost force can be supplemented to the dither waveform in advance, and the target force can be accurately transmitted to the movable iron piece by adjusting the dither waveform.

2)電磁気的ヒステリシスの影響を直接取り除く方法
可動鉄片が電磁気力を受けて移動する応答速度と、電磁気的ヒステリシスとなるソレノイドコイルに発生する磁界の変化に対する応答性(応答速度)との間には大きな差がある。つまり、可動鉄片にはその質量にかかる慣性モーメントと流体の粘性抵抗力が作用しているため、極めて低い周波数帯域を有しているが、電磁気的ヒステリシスは発生要因が磁界の変化によるところが大きく、その応答性は極めて速く高周波数帯域まで応答している。そこで、この応答速度の差を利用して、ディザ波形に可動鉄片の応答速度の最大周波数よりも高い高域周波数帯域で電磁気的ヒステリシスのヒステリシス幅を超える磁気的変動(振幅)を与える電流信号を合成すると良い。すなわち、静止摩擦力の発生を阻止する低周波数帯域の信号と、可動鉄片の応答速度の最大周波数を超えた電磁気的ヒステリシスの影響を除去する高周波数帯域の信号を合成した電流波形の信号を与えるようにする。これにより、可動鉄片の移動に影響を与えることなく電磁気的ヒステリシスの影響を取り除くことが可能になり、可動鉄片に加える力に影響を及ぼすことなく弁開閉時のヒステリシスを取り除くことができる。
2) A method of directly removing the influence of electromagnetic hysteresis Between the response speed at which the movable iron piece moves under the electromagnetic force and the response (response speed) to the change of the magnetic field generated in the solenoid coil that becomes electromagnetic hysteresis. There is a big difference. In other words, the moment of inertia applied to the mass and the viscous resistance of the fluid act on the movable iron piece, so it has a very low frequency band, but electromagnetic hysteresis is largely caused by changes in the magnetic field. The response is extremely fast and responds to the high frequency band. Therefore, using this difference in response speed, a current signal that gives the dither waveform a magnetic fluctuation (amplitude) exceeding the hysteresis width of the electromagnetic hysteresis in a high frequency band higher than the maximum frequency of the response speed of the movable iron piece. It is good to synthesize. In other words, a signal with a current waveform that combines a signal in the low frequency band that prevents the generation of static frictional force and a signal in the high frequency band that eliminates the influence of electromagnetic hysteresis exceeding the maximum response speed of the movable iron piece is given. Like that. Thereby, it becomes possible to remove the influence of electromagnetic hysteresis without affecting the movement of the movable iron piece, and it is possible to remove the hysteresis at the time of opening and closing the valve without affecting the force applied to the movable iron piece.

本発明では、上記1)または2)の方法により得られる最終的な電流波形の信号を、電磁気的ヒステリシスの影響を取り除くために「調整されたディザ波形」という。   In the present invention, the final current waveform signal obtained by the above method 1) or 2) is referred to as “adjusted dither waveform” in order to remove the influence of electromagnetic hysteresis.

このように、弁開閉時のヒステリシスを取り除くためには、少なくとも可動鉄片に作用する静止摩擦力の発生を阻止する力の信号パターンを生成(ディザ波形の生成)し、そのディザ波形の力(電磁気力)に相当する電流が常にソレノイドコイルに正確に流れるように定電流駆動を行わなければならない。   Thus, in order to remove the hysteresis when the valve is opened and closed, a signal pattern of force that prevents at least the generation of static friction force acting on the movable iron piece is generated (dither waveform generation), and the force of the dither waveform (electromagnetic) The constant current drive must be performed so that the current corresponding to the force) always flows through the solenoid coil accurately.

すなわち、本発明は、比例電磁弁のソレノイドコイルに流す電流に比例した電磁気力で可動鉄片を吸引し、所定の開度で弁を開閉して流体の流量又は圧力を制御する比例電磁弁の制御装置であって、入力された開度指令値を比例電磁弁の開口量に補正する開口量補正手段と、開口量に応じた弁開閉時に現れるヒステリシスを取り除くための可動鉄片に作用する静止摩擦力を阻止する力のディザ波形を生成するディザ波形生成手段と、開口量にディザ波形を重畳させて比例電磁弁の指示電流値を出力する指示電流値出力手段と、指示電流値に相当する電流をソレノイドコイルへ印加し、ソレノイドコイルに流れる供給電流の波形を指示電流の波形に一致させた駆動電流によってソレノイドコイルに指示電流通りの定められた電流を流して定電流駆動する定電流駆動手段と、を備え、定電流駆動手段は、ディザ信号の最大周波数をTht、指示電流波形に対する駆動電流波形の追従の遅れをΔt、印加電圧に対する電流の傾斜角度をLv、ディザ信号の最大傾斜角度をΔv、とした場合に、条件1:Tht>>Δt、及び、条件2:Lv>>Δvを満たすことを特徴とする。 That is, the present invention controls a proportional solenoid valve that attracts a movable iron piece with an electromagnetic force proportional to a current flowing through a solenoid coil of a proportional solenoid valve, and controls the flow rate or pressure of a fluid by opening and closing the valve at a predetermined opening degree. An opening amount correcting means for correcting an input opening command value to an opening amount of a proportional solenoid valve, and a static friction force acting on a movable iron piece for removing hysteresis that appears when the valve is opened and closed according to the opening amount A dither waveform generating means for generating a dither waveform of force for preventing the output, an indicated current value output means for outputting the indicated current value of the proportional solenoid valve by superimposing the dither waveform on the opening, and a current corresponding to the indicated current value applied to the solenoid coil, a constant by applying a current to a defined command current as the solenoid coil by the drive current to match the waveform of the command current waveform of the supply current flowing through the solenoid coil current With a constant current drive means for moving, the constant current drive means, Tht the maximum frequency of the dither signal, Delta] t the delay in follow-up of the drive current waveform for the indicated current waveform, the inclination angle of the current with respect to applied voltage Lv, dither When the maximum inclination angle of the signal is Δv, Condition 1: Tht >> Δt and Condition 2: Lv >> Δv are satisfied .

また、本発明の比例電磁弁の制御装置において、定電流駆動手段は、ディザ波形の最大周波数成分(高調波を除く)を超える周波数に応答することを特徴とする。また、定電流駆動手段は、ソレノイドコイルに流れた供給電流の電流値を検出し、検出した供給電流の電流値と入力された指示電流値とを比較して、その偏差電位を増幅して供給電流にフィードバックする電流フィードバック手段を有する回路構成を採用することができる。   In the proportional solenoid valve control device of the present invention, the constant current driving means responds to a frequency exceeding a maximum frequency component (excluding harmonics) of the dither waveform. The constant current driving means detects the current value of the supply current flowing through the solenoid coil, compares the detected current value of the supply current with the input indicated current value, and amplifies and supplies the deviation potential. A circuit configuration having current feedback means for feeding back to the current can be adopted.

なお、本明細書において使用する用語の意味は以下の通りである。
「開度指令値」…外部から受ける弁開度値
「開口量」…開度指令値を補正(スケーリング及びリニアライズ)した値
「ヒステリシス量」…弁の開閉時に現れる応差
「ディザ波形」…可動鉄片へ常に静止摩擦力の発生を阻止する力を与えるための電流波形
「指示電流」…開度指令値に相当する弁開度を得るためにソレノイドコイルへ流す電流
「供給電流」…指示電流に従ってソレノイドコイルに供給した電流
「駆動電流」…ソレノイドコイルを駆動する電流であって、指示電流波形に供給電流波形を一致させた電流
「定電流」…指示された通りの電流を流すこと
In addition, the meaning of the term used in this specification is as follows.
“Opening command value”… Valve opening value received from the outside “Opening amount”… A value obtained by correcting (scaling and linearizing) the opening command value “Hysteresis amount”… Hysteresis appearing when opening and closing the valve “Dither waveform”… Moving Current waveform for giving force to the iron piece to prevent the generation of static frictional force “Indication current”… Current that flows to the solenoid coil to obtain the valve opening corresponding to the opening command value “Supply current”… In accordance with the indication current Current supplied to the solenoid coil “Drive current”: Current that drives the solenoid coil, and current that matches the indicated current waveform with the supplied current waveform “Constant current”: Flow the current as instructed

本発明によれば、比例電磁弁のソレノイドコイルを駆動する電流に可動鉄片に作用する静止摩擦力を阻止する力のディザ波形を重畳させ、その電流波形の信号を印加するとともに、指示電流波形に供給電流波形を正確に一致させた駆動電流で定電流駆動を行うようにした。これにより、ソレノイドコイルに指示通りの電流が流れ、静止摩擦力を阻止する指示通りの力を可動鉄片へ与えることができる。このため、静止摩擦力が取り除かれるので、期待した通りのディザ効果が得られ、ヒステリシスを解消することができる。また、入力された開度指令値に実際の開度値を正確に追従させることが可能になるので、高精度な流量又は圧力調節を行うことができる。さらに、定電流駆動を採用したことにより、ソレノイドコイルの温度上昇に伴うコイル抵抗の変化による影響を受けず、ソレノイドコイルと制御装置との間の配線抵抗の変化による影響も受けないため、ソレノイドコイルに流れる電流値変動が発生せず、比例電磁弁の弁開度の変動も同時に防止することができる。   According to the present invention, the dither waveform of the force that prevents the static friction force acting on the movable iron piece is superimposed on the current that drives the solenoid coil of the proportional solenoid valve, the signal of the current waveform is applied, and the indicated current waveform is applied. Constant current drive was performed with a drive current in which the supply current waveforms were exactly matched. Thereby, the current according to the instruction flows through the solenoid coil, and the force according to the instruction for preventing the static frictional force can be applied to the movable iron piece. For this reason, since the static friction force is removed, the dither effect as expected can be obtained, and the hysteresis can be eliminated. In addition, since the actual opening value can be accurately followed by the input opening command value, the flow rate or pressure can be adjusted with high accuracy. Furthermore, by adopting constant current drive, it is not affected by changes in coil resistance caused by temperature rise of the solenoid coil, and is not affected by changes in wiring resistance between the solenoid coil and the control device. Fluctuations in the value of the current flowing through the valve does not occur, and fluctuations in the valve opening of the proportional solenoid valve can be prevented at the same time.

以下、本発明の実施の形態について、添付図面を参照しながら説明する。図1は比例電磁弁の制御装置の全体構成を示す回路ブロック図、図2は比例電磁弁の内部構造を示す断面図、図3は制御装置の動作を示すフローチャート図、図4は電流駆動の電流波形を示すグラフ図、図5は電流駆動のヒステリシス特性を示すグラフ図、図6は定電流駆動器の詳細を示す回路ブロック図、図7は指示電流に対する駆動電流の追従特性を示すグラフ図及び印加電圧と電流の関係を示すグラフ図、図8は電磁気的ヒステリシスを考慮しないディザ波形の波形図、図9は電磁気的ヒステリシスにより失われる力を補充したディザ波形の波形図、図10は電磁気的ヒステリシスの影響を直接取り除いたディザ波形の波形図である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a circuit block diagram showing the overall configuration of a proportional solenoid valve control device, FIG. 2 is a cross-sectional view showing the internal structure of the proportional solenoid valve, FIG. 3 is a flowchart showing the operation of the control device, and FIG. FIG. 5 is a graph showing current drive hysteresis characteristics, FIG. 6 is a circuit block diagram showing details of a constant current driver, and FIG. 7 is a graph showing drive current tracking characteristics with respect to an indicated current. FIG. 8 is a waveform diagram of a dither waveform not considering electromagnetic hysteresis, FIG. 9 is a waveform diagram of a dither waveform supplemented with a force lost due to electromagnetic hysteresis, and FIG. 10 is an electromagnetic diagram. FIG. 6 is a waveform diagram of a dither waveform in which the influence of static hysteresis is directly removed.

まず、図1を参照して、比例電磁弁の制御装置の構成を説明する。   First, the configuration of the proportional solenoid valve control device will be described with reference to FIG.

図1に示すように、比例電磁弁の制御装置1は、比例電磁弁10のソレノイドコイルに駆動電流を印加し、ソレノイドコイルに流れる電流値に比例した電磁気力で可動鉄片を吸引し、所定の開度で弁を開閉して流体の流量又は圧力を制御するものであり、A/D変換器2と、MPU3と、D/A変換器4と、定電流駆動器5を備えて構成されている。また、MPU3は開口量補正器6、ディザ信号発生器7及び合成器8の各機能を有している。   As shown in FIG. 1, the proportional solenoid valve control device 1 applies a drive current to the solenoid coil of the proportional solenoid valve 10, attracts the movable iron piece with an electromagnetic force proportional to the current value flowing through the solenoid coil, The flow rate or pressure of the fluid is controlled by opening and closing the valve at the opening degree, and includes an A / D converter 2, an MPU 3, a D / A converter 4, and a constant current driver 5. Yes. The MPU 3 has functions of an aperture correction unit 6, a dither signal generator 7, and a synthesizer 8.

また、この制御装置1は定電流駆動方式を採用したものであり、入力された開度指令値を比例電磁弁10の開口量に補正し、開口量に応じた弁開閉時に現れるヒステリシスを取り除くための静止摩擦力を阻止する力のディザ波形(周波数成分、波形、振幅)を生成するとともに、開口量にディザ量を重畳させて比例電磁弁10の指示電流値を出力し、指示電流値相当の供給電流をソレノイドコイルへ印加して指示電流波形に供給電流波形を一致させた駆動電流により比例電磁弁10のソレノイドコイルを定電流駆動する。本実施形態では、A/D変換器2とMPU3(開口量補正器6)が開口量補正手段、MPU3(ディザ信号発生器7)がディザ波形生成手段、MPU3(合成器8)とD/A変換器4が指示電流値出力手段、定電流駆動器5が定電流駆動手段に相当する。   Further, the control device 1 adopts a constant current drive system, and corrects the input opening command value to the opening amount of the proportional solenoid valve 10 to remove the hysteresis that appears when the valve is opened / closed according to the opening amount. A dither waveform (frequency component, waveform, amplitude) of the force that prevents the static frictional force is generated, and the indicated current value of the proportional solenoid valve 10 is output by superimposing the dither amount on the opening amount. A supply current is applied to the solenoid coil, and the solenoid coil of the proportional solenoid valve 10 is driven at a constant current by a drive current in which the supply current waveform matches the indicated current waveform. In this embodiment, the A / D converter 2 and the MPU 3 (aperture amount corrector 6) are the aperture amount correcting means, the MPU 3 (dither signal generator 7) is the dither waveform generating means, and the MPU 3 (synthesizer 8) and the D / A. The converter 4 corresponds to the indicated current value output means, and the constant current driver 5 corresponds to the constant current driving means.

次に、図2を参照して、比例電磁弁の構造を説明する。   Next, the structure of the proportional solenoid valve will be described with reference to FIG.

図2に示すように、比例電磁弁10は、例えば流量調節器の流量調節、圧力調節器の圧力調節、チラーの温度調節、あるいは給湯器の火力調節等の用途として好適であり、バルブ本体11と、ガイドチューブ12と、ケース13と、プランジャ(可動鉄片)14と、スプリング15と、ソレノイドコイル16と、ストッパコア(固定鉄芯)17を備えて構成されている。バルブ本体11の一端面には吸入ポート18が、他端面には排出ポート19が開口され、内部には吸入ポート18と排出ポート19を連通させる流通路21が設けられている。また、流通路21の途中には弁座22が設けられ、弁の閉時において弁座22の開口部はプランジャ14の先端に埋め込まれたプランジャシール23によって完全閉止される。   As shown in FIG. 2, the proportional solenoid valve 10 is suitable for uses such as flow rate adjustment of a flow rate regulator, pressure adjustment of a pressure regulator, temperature adjustment of a chiller, or heating power adjustment of a water heater, for example. And a guide tube 12, a case 13, a plunger (movable iron piece) 14, a spring 15, a solenoid coil 16, and a stopper core (fixed iron core) 17. A suction port 18 is opened on one end face of the valve body 11, a discharge port 19 is opened on the other end face, and a flow passage 21 for communicating the suction port 18 and the discharge port 19 is provided inside. A valve seat 22 is provided in the middle of the flow passage 21, and when the valve is closed, the opening of the valve seat 22 is completely closed by a plunger seal 23 embedded in the tip of the plunger 14.

この比例電磁弁10によれば、制御装置1からソレノイドコイル16に駆動電流が供給されていない時にはスプリング15の付勢力によりプランジャ14が弁座22に着座し、弁座22の開口部がプランジャシール23で密閉され、弁が閉じた状態になる。一方、制御装置1からソレノイドコイル16に駆動電流が供給されると、ケース13の内部に磁界が形成され、励磁されたストッパコア17の電磁気力(吸引力)によりプランジャ14が上昇して弁座22から離れ、弁が開いた状態になる。   According to this proportional solenoid valve 10, when the drive current is not supplied from the control device 1 to the solenoid coil 16, the plunger 14 is seated on the valve seat 22 by the biasing force of the spring 15, and the opening of the valve seat 22 is the plunger seal. 23, the valve is closed. On the other hand, when a drive current is supplied from the control device 1 to the solenoid coil 16, a magnetic field is formed inside the case 13, and the plunger 14 is raised by the electromagnetic force (attraction force) of the excited stopper core 17 to raise the valve seat. 22 leaves the valve open.

また、弁の開口量はプランジャ14の停止位置によって変わるが、プランジャ14はストッパコア17の吸引力となる磁力線の強さによって移動量が決まり、磁力線の強さはソレノイドコイル16に流れる電流値に比例する。したがって、この比例電磁弁10は、制御装置1からソレノイドコイル16に供給される駆動電流の電流値に比例した電磁気力でプランジャ14を吸引して弁座22の開口部を開閉し、これにより弁開度を調節して流通路21を通過する流体の流量又は圧力を制御するようになっている。また、この比例電磁弁10によれば、プランジャ14はストッパコア17の電磁気力(吸引力)の強さとスプリング15の付勢力とが釣り合った位置で停止するので、全開、全閉動作だけでなくその途中の任意の開度で弁を開くことも可能である。なお、図示した構造はあくまで一例であり、電流を供給して弁開度を調節する構造の比例電磁弁であれば、本発明はこれ以外の構造のものにも同様に適用することができる。   The opening amount of the valve varies depending on the stop position of the plunger 14, but the amount of movement of the plunger 14 is determined by the strength of the magnetic line that is the attractive force of the stopper core 17. Proportional. Therefore, this proportional solenoid valve 10 attracts the plunger 14 with an electromagnetic force proportional to the current value of the drive current supplied from the control device 1 to the solenoid coil 16 to open and close the opening of the valve seat 22, thereby The flow rate or pressure of the fluid passing through the flow passage 21 is controlled by adjusting the opening degree. Further, according to the proportional solenoid valve 10, the plunger 14 stops at a position where the strength of the electromagnetic force (attraction force) of the stopper core 17 and the biasing force of the spring 15 are balanced, so that not only the fully open and fully closed operations are performed. It is also possible to open the valve at an arbitrary opening degree in the middle. Note that the illustrated structure is merely an example, and the present invention can be similarly applied to other structures as long as it is a proportional electromagnetic valve having a structure in which a current is supplied to adjust the valve opening degree.

次に、図1と図3を参照して、本発明の制御装置の動作を説明する。   Next, the operation of the control device of the present invention will be described with reference to FIGS.

図において、まずユーザはコントローラを用いて開度指令値を入力する(図3のステップ301)。入力された開度指令値はアナログ信号であるため、A/D変換器2でディジタル信号に変換されてMPU3に入力される。MPU3では、開度指令値を比例電磁弁10の制御用データである開口量に補正する(図3のステップ302)。開口量の補正は、MPU3内部の開口量補正器6における「スケーリング」と「リニアライズ」の2つの処理により行われる。ここで「スケーリング」とは、開度指令値に対する流量特性に基づいて開度に対する電流値の対応関係を設定する処理をいい、「リニアライズ」とは、電流値に対する変化が直線的でない流量特性を直線化(直線補間)する処理をいう。そして、補正された開口量のデータは合成器8へ出力されるとともにディザ信号発生器7へも出力される。   In the figure, the user first inputs an opening command value using the controller (step 301 in FIG. 3). Since the input opening command value is an analog signal, it is converted into a digital signal by the A / D converter 2 and input to the MPU 3. The MPU 3 corrects the opening command value to the opening amount that is control data for the proportional solenoid valve 10 (step 302 in FIG. 3). The opening amount is corrected by two processes of “scaling” and “linearize” in the opening amount corrector 6 inside the MPU 3. Here, “scaling” refers to the process of setting the correspondence between the current value and the opening based on the flow rate characteristic for the opening command value. “Linearize” refers to the flow characteristic whose change with respect to the current value is not linear. Is linearized (linear interpolation). The corrected aperture amount data is output to the synthesizer 8 and also to the dither signal generator 7.

次に、ディザ信号発生器7では、開口量に応じたディザ波形を生成する(図3のステップ303)。このディザ波形の生成処理は、MPU3のメモリに予め記憶されている開口量と開口量に適したディザ量との対応関係を表わすデータテーブルに基づいて、ディザ量(周波数成分、波形、振幅)を算出することにより行われる。そして、ディザ量を算出して生成されたディザ波形はディザ信号発生器7から合成器8に出力される。   Next, the dither signal generator 7 generates a dither waveform corresponding to the opening amount (step 303 in FIG. 3). This dither waveform generation processing is performed by calculating the dither amount (frequency component, waveform, amplitude) based on a data table that represents the correspondence between the opening amount stored in advance in the memory of the MPU 3 and the dither amount suitable for the opening amount. This is done by calculating. The dither waveform generated by calculating the dither amount is output from the dither signal generator 7 to the synthesizer 8.

そして、合成器8は、開口量にディザ波形を重畳し、数値化した指示電流値を生成して出力する(図3のステップ304)。この出力された指示電流値はD/A変換器4へと送られる。指示電流値はMPU3内部で処理された数値化したディジタル信号であるため、D/A変換器4はディジタル信号をアナログ信号に変換し、アナログ信号の指示電流を定電流駆動器5へと出力する(図3のステップ305)。   Then, the synthesizer 8 superimposes the dither waveform on the opening amount, and generates and outputs a numerical instruction current value (step 304 in FIG. 3). The output indicated current value is sent to the D / A converter 4. Since the command current value is a digitized digital signal processed inside the MPU 3, the D / A converter 4 converts the digital signal into an analog signal and outputs the command current of the analog signal to the constant current driver 5. (Step 305 in FIG. 3).

最後に、定電流駆動器5は外部電源により駆動し、指示電流値に供給電流値を正確に追従させた駆動電流を比例電磁弁10へと供給する定電流駆動による制御を行う(図3のステップ306)。すなわち、定電流駆動器5では、指示電流波形に供給電流波形を一致させた駆動電流を比例電磁弁10のソレノイドコイル16に印加し、その駆動電流に応じて比例電磁弁10の弁開度を調節して流体の流量又は圧力を制御する。なお、定電流駆動器5の具体的な回路構造や制御方法については後述する。   Finally, the constant current driver 5 is driven by an external power source, and performs control by constant current drive that supplies a drive current in which the supply current value accurately follows the command current value to the proportional solenoid valve 10 (FIG. 3). Step 306). That is, the constant current driver 5 applies a drive current in which the supply current waveform matches the indicated current waveform to the solenoid coil 16 of the proportional solenoid valve 10, and the valve opening degree of the proportional solenoid valve 10 is set according to the drive current. Adjust to control fluid flow or pressure. The specific circuit structure and control method of the constant current driver 5 will be described later.

以上が本発明の制御装置の構成及び動作であるが、以下に図4と図5を参照して本発明の作用効果を説明する。なお、本発明の効果を理解し易くするため、本発明の定電流駆動方式と従来のPWM駆動(電圧駆動)方式とを比較して説明する。   The above is the configuration and operation of the control device of the present invention. The operation and effect of the present invention will be described below with reference to FIGS. 4 and 5. In order to facilitate understanding of the effects of the present invention, the constant current driving method of the present invention and the conventional PWM driving (voltage driving) method will be described in comparison.

図4は本発明による定電流駆動の電流波形を示したものであり、ディザ波形を重畳していないときの駆動電流波形は同図(a)のようになり、ディザ波形を重畳したときの駆動電流波形は同図(b)のようになる。このような同図(b)の駆動電流をソレノイドコイルに印加することで、プランジャに静止摩擦力を阻止する力を発生させ、弁開閉時に現れるヒステリシスを大幅に削減することができる。また、本発明は定電流駆動方式を採用したことにより、ソレノイドコイルの誘導成分によりディザ電流が阻害されることがなく指示通りの電流がソレノイドコイルに流れるので、目的とする振幅によるディザ効果が確実に得られる。   FIG. 4 shows a current waveform of constant current driving according to the present invention. The driving current waveform when the dither waveform is not superimposed is as shown in FIG. 4A, and the driving when the dither waveform is superimposed is shown. The current waveform is as shown in FIG. By applying such a drive current shown in FIG. 5B to the solenoid coil, a force that prevents the static frictional force from being generated in the plunger can be generated, and the hysteresis that appears when the valve is opened and closed can be greatly reduced. In addition, since the present invention employs a constant current driving method, the dither current is not hindered by the inductive component of the solenoid coil, and the current as directed flows through the solenoid coil. Is obtained.

それに対して、従来のPWM駆動(電圧駆動)方式では、上述したようにパルス状の波形の実効値電圧をソレノイドコイルに印加して比例電磁弁を制御している。このように、電圧をソレノイドコイルに印加することにより、結果的にディザ信号の大きさは実効値電圧に現れるが、ディザ信号で急激な変化を与えようとしても、ソレノイドコイルの誘導成分により電圧に比例した電流が流れない。したがって、実際にソレノイドコイルに流れる電流がディザ信号と一致せず、指示通りの電流がソレノイドコイルに流れないので、目的とする振幅にならず、期待したディザ効果が得られない。   On the other hand, in the conventional PWM drive (voltage drive) method, as described above, the effective voltage of a pulse waveform is applied to the solenoid coil to control the proportional solenoid valve. As described above, when the voltage is applied to the solenoid coil, the magnitude of the dither signal appears in the effective value voltage, but even if an abrupt change is caused by the dither signal, the voltage is caused by the inductive component of the solenoid coil. Proportional current does not flow. Therefore, the current actually flowing through the solenoid coil does not coincide with the dither signal, and the current as instructed does not flow through the solenoid coil, so that the intended amplitude is not obtained and the expected dither effect cannot be obtained.

また、図5は本発明による定電流駆動のヒステリシス特性を示したものである。定電流駆動においても、比例電磁弁には同図(a)のようにソレノイドコイルに供給される電流と弁開度との関係において、弁開閉時にヒステリシスが存在する。この弁開閉時のヒステリシスは、比例電磁弁の弁作動部に作用する静止摩擦力(機械的摩擦力と慣性モーメントを含む)と、強磁性体からなるプランジャ(可動鉄片)等に生じる電磁気的ヒステリシス(残留磁気と磁力線経路の変化)とに起因して発生するものである。   FIG. 5 shows hysteresis characteristics of constant current driving according to the present invention. Even in the constant current drive, the proportional solenoid valve has hysteresis when the valve is opened and closed in the relationship between the current supplied to the solenoid coil and the valve opening as shown in FIG. The hysteresis at the time of opening and closing the valve is the electromagnetic hysteresis that occurs in the static frictional force (including mechanical frictional force and moment of inertia) acting on the valve operating part of the proportional solenoid valve and the plunger (movable iron piece) made of ferromagnetic material. This occurs due to (remanent magnetism and changes in magnetic field lines).

そこで、本発明ではこの静止摩擦力が原因で弁開閉時に現れるヒステリシスを取り除くための静止摩擦力を阻止する力のディザ波形(周波数成分、波形、振幅)を生成し、生成したディザ波形を開口量に重畳させ、さらに電磁気的ヒステリシス量を超える磁気的変動(振幅)を与える電流信号を重畳させ、これにより得られた指示電流値に基づいて、定電流駆動器によって指示電流波形に供給電流波形を一致させた駆動電流をソレノイドコイルに印加する定電流駆動を行うようにした。これにより、図示したように弁開閉時のヒステリシスが取り除かれ、ソレノイドコイル電流に対して弁開度を正確に追従させることが可能になるため、高精度な流量又は圧力調節を行うことができる。   Therefore, in the present invention, a dither waveform (frequency component, waveform, amplitude) of the force that prevents the static friction force to remove the hysteresis that appears when the valve opens and closes due to this static friction force is generated, and the generated dither waveform is the opening amount. And a current signal that gives a magnetic fluctuation (amplitude) exceeding the amount of electromagnetic hysteresis is superimposed, and based on the indicated current value obtained by this, the constant current driver converts the supplied current waveform to the indicated current waveform. Constant current driving is performed by applying the matched driving current to the solenoid coil. As a result, the hysteresis at the time of opening and closing the valve is removed as shown in the figure, and the valve opening can be accurately followed with respect to the solenoid coil current, so that highly accurate flow rate or pressure adjustment can be performed.

次に、図6を参照して、定電流駆動器の具体的な回路構造を説明する。   Next, a specific circuit structure of the constant current driver will be described with reference to FIG.

比例電磁弁を駆動する電源は、ソレノイドコイルに流れる供給電流の過渡特性を改善するため、急激な電流増加に対応できるようにソレノイドコイル自身の定格電圧よりも高い電圧を供給するとともに、駆動電流のフィードバックを高速化して時間と共に変化する指示電流値に正確に追従させることが重要である。図6に示すように、本実施形態の定電流駆動器5は、入力された指示電流波形と実際に比例電磁弁10のソレノイドコイルに流れる供給電流波形を正確に一致させた駆動電流を印加して定電流制御するものであり、オペアンプ31,32と、加算器33と、バッファ34と、トランジスタ35と、電流検出器36と、微分倍率器37を備えて構成されている。   The power supply that drives the proportional solenoid valve supplies a voltage higher than the rated voltage of the solenoid coil itself so that it can cope with a sudden increase in current in order to improve the transient characteristics of the supply current flowing in the solenoid coil. It is important to speed up the feedback and accurately follow the indicated current value that changes with time. As shown in FIG. 6, the constant current driver 5 of the present embodiment applies a drive current that accurately matches the input indicated current waveform and the supply current waveform that actually flows through the solenoid coil of the proportional solenoid valve 10. Constant current control, comprising operational amplifiers 31 and 32, an adder 33, a buffer 34, a transistor 35, a current detector 36, and a differential multiplier 37.

また、この定電流駆動器5は電流フィードバック方式を採用したものであり、入力された指示電流は第1のオペアンプ31を経由し、加算器33とバッファ34とトランジスタ35を経て比例電磁弁10のソレノイドコイルに供給され、ソレノイドコイルに流れた供給電流は電流検出器36の抵抗を経由してGNDに流れる。そして、電流検出器36は抵抗の両端電圧からオペアンプを介して出力電圧を出力することによって供給電流の電流値を検出し、その検出した供給電流の電流値は第1のオペアンプ31と第2のオペアンプ32に入力される。第1のオペアンプ31は指示電流と供給電流を比較し、その偏差は加算器33を通してバッファ34へフィードバックされ、最終的に指示電流に供給電流を一致させる。それに対して、第2のオペアンプ32は過渡特性を高速化させるために偏差を微分倍率器37で微分した後Kp倍し、加算器33で加算してバッファ34へフィードバックし、指示電流に供給電流を高速で一致させた駆動電流がソレノイドコイルに印加される。このように定電流駆動器5において、第1のオペアンプ31、第2のオペアンプ32、微分倍率器37、加算器33、バッファ34、トランジスタ35、及び電流検出器36からなる回路が高速電流駆動回路を構成している。   The constant current driver 5 adopts a current feedback system, and the input indication current passes through the first operational amplifier 31, passes through the adder 33, the buffer 34, and the transistor 35, and the proportional solenoid valve 10. The supply current supplied to the solenoid coil and flowing to the solenoid coil flows to the GND via the resistance of the current detector 36. The current detector 36 detects the current value of the supply current by outputting the output voltage from the voltage across the resistor via the operational amplifier, and the detected current value of the supply current is the same as that of the first operational amplifier 31 and the second operational amplifier 31. Input to the operational amplifier 32. The first operational amplifier 31 compares the command current with the supply current, and the deviation is fed back to the buffer 34 through the adder 33, so that the supply current finally matches the command current. On the other hand, the second operational amplifier 32 differentiates the deviation by the differential multiplier 37 and multiplies it by Kp in order to speed up the transient characteristics, adds it by the adder 33, feeds it back to the buffer 34, and supplies the indicated current as the supply current. Is applied to the solenoid coil at a high speed. Thus, in the constant current driver 5, the circuit composed of the first operational amplifier 31, the second operational amplifier 32, the differential multiplier 37, the adder 33, the buffer 34, the transistor 35, and the current detector 36 is a high-speed current drive circuit. Is configured.

さらに、この定電流駆動器5では、電流検出器36で検出された供給電流の電流値は第1のオペアンプ31と第2のオペアンプ32に入力され、指示電流と供給電流を比較してその偏差電位が増幅して出力される。そして、第1のオペアンプ31の出力は加算器33へフィードバックされるとともに、第2のオペアンプ32の出力は微分倍率器37で微分された後Kp倍され、加算器33へとフィードバックされるクローズドループ制御の定電流駆動回路になっている。このように、MPU3を経由せずに定電流駆動器5の内部で直接フィードバックを行う構造において、電流検出器36、第2のオペアンプ32、及び微分倍率器37からなる回路が過渡特性改善回路を構成している。なお、図示した定電流駆動器5の回路構造はあくまで一例であり、定電流駆動により弁開度を調節するものであれば、これ以外の回路構造や制御方法を採用することも可能である。   Further, in the constant current driver 5, the current value of the supply current detected by the current detector 36 is input to the first operational amplifier 31 and the second operational amplifier 32, and the indicated current and the supply current are compared and their deviation is detected. The potential is amplified and output. The output of the first operational amplifier 31 is fed back to the adder 33, and the output of the second operational amplifier 32 is differentiated by the differential multiplier 37, multiplied by Kp, and fed back to the adder 33. It is a constant current drive circuit for control. As described above, in the structure in which feedback is performed directly inside the constant current driver 5 without passing through the MPU 3, the circuit including the current detector 36, the second operational amplifier 32, and the differential multiplier 37 is a transient characteristic improving circuit. It is composed. The circuit structure of the constant current driver 5 shown in the figure is merely an example, and other circuit structures and control methods may be employed as long as the valve opening is adjusted by constant current driving.

次に、図7を参照して、指示電流波形に対する駆動電流波形の追従特性について説明する。   Next, the following characteristic of the drive current waveform with respect to the command current waveform will be described with reference to FIG.

定電流駆動器5に入力された指示電流は、クローズドループ制御によって供給電流波形を指示電流波形に一致させた駆動電流としてソレノイドコイルに流すことができる。ところが、定電流駆動器5の応答速度や波形の傾斜角度には限界があり、どのような条件下でも指示電流値に完全に一致させた駆動電流を流せるわけではない。本実施形態の定電流駆動器5は、ディザ波形の最大周波数成分(高調波を除く)を超える周波数に応答するように、(1)指示電流波形に含まれるディザ信号の周波数と指示電流波形に対する駆動電流波形の追従の遅れとの関係や、(2)ディザ信号の傾斜角度と印加電圧に対する電流の傾斜角度との関係について、以下の条件を満たすようにした。   The command current input to the constant current driver 5 can be passed through the solenoid coil as a drive current in which the supply current waveform is matched with the command current waveform by closed loop control. However, the response speed of the constant current driver 5 and the inclination angle of the waveform are limited, and it is not possible to flow a drive current that completely matches the indicated current value under any conditions. The constant current driver 5 of the present embodiment responds to a frequency exceeding the maximum frequency component (excluding harmonics) of the dither waveform (1) with respect to the frequency of the dither signal included in the indicated current waveform and the indicated current waveform. The following conditions were satisfied with respect to the relationship with the delay in following the drive current waveform and (2) the relationship between the tilt angle of the dither signal and the current tilt angle with respect to the applied voltage.

まず、上記(1)の関係について説明すると、図7(a)に示すように、指示電流を定電流駆動器5に入力すると駆動電流がソレノイドコイルに流れるが、この時に発生する指示電流波形に対する駆動電流波形の追従の遅れΔtは、指示電流波形と比較して駆動電流波形が変形しない程度に周波数を設定しなければならないので、ディザ信号の最大周波数Thtよりも十分に小さくする必要がある(Tht>>Δt)。   First, the relationship (1) will be described. As shown in FIG. 7A, when an instruction current is input to the constant current driver 5, the drive current flows through the solenoid coil. The follow-up delay Δt of the drive current waveform needs to be set to a frequency that does not deform the drive current waveform as compared with the command current waveform, and therefore needs to be sufficiently smaller than the maximum frequency Tht of the dither signal ( Tht >> Δt).

次に、上記(2)の関係について説明する。図7(b)は印加電圧に対してソレノイドコイルに流れる電流の傾斜角度の特性を示すものであり、例えば図の(A)のように印加電圧が低いと電流の傾斜角度Lvは小さくなるが、図の(C)のように印加電圧が高くなると電流の傾斜角度Lvは大きくなる。したがって、印加電圧に対する電流の傾斜角度Lvは、指示電流波形と比較して駆動電流波形が変形しない程度に電流の傾斜角度を設定しなければならないので、ディザ信号の最大傾斜角度Δvよりも十分に大きくする必要がある(Lv>>Δv)。   Next, the relationship (2) will be described. FIG. 7B shows the characteristics of the inclination angle of the current flowing through the solenoid coil with respect to the applied voltage. For example, as shown in FIG. 7A, when the applied voltage is low, the current inclination angle Lv becomes small. As shown in (C) of the figure, as the applied voltage increases, the current inclination angle Lv increases. Therefore, the current inclination angle Lv with respect to the applied voltage must be set to such an extent that the drive current waveform is not deformed as compared with the command current waveform, and thus is sufficiently larger than the maximum inclination angle Δv of the dither signal. It is necessary to increase (Lv >> Δv).

また、電流の傾斜角度Lvを大きくする必要があることから、急激な電流増加に対応できるように、定電流駆動器5の外部電源+Vはソレノイドコイルの定格電圧よりも高い電圧を印加することが好ましい。ただし、ソレノイドコイルが絶縁破壊を起こさない範囲の供給電圧以下にとどめるものとする。   Further, since it is necessary to increase the current inclination angle Lv, the external power source + V of the constant current driver 5 can apply a voltage higher than the rated voltage of the solenoid coil so as to cope with a sudden increase in current. preferable. However, the solenoid coil shall be kept below the supply voltage that does not cause dielectric breakdown.

最後に、図8,9,10を参照して、電磁気的ヒステリシスの影響を取り除くためにディザ波形を調整する方法について説明する。   Finally, a method for adjusting the dither waveform in order to remove the influence of electromagnetic hysteresis will be described with reference to FIGS.

図8は電磁気的ヒステリシスを考慮しないディザ波形を示したものである。ソレノイドコイルに流れる駆動電流を変化させることにより、プランジャに与えられる電磁気力(吸引力)が変わり弁開度を調節することができるが、ディザ波形と実際の吸引力との間には電磁気的ヒステリシスが発生する。すなわち、ディザ波形の電流を与えても、正逆反転時に吸引力の波形は電磁気的ヒステリシスにより図に模式的に示したようにディザ波形の頂点を超えた時点から吸引力が大きく歪むことになる。   FIG. 8 shows a dither waveform that does not take into account electromagnetic hysteresis. By changing the drive current flowing through the solenoid coil, the electromagnetic force (suction force) applied to the plunger changes and the valve opening can be adjusted, but there is an electromagnetic hysteresis between the dither waveform and the actual suction force. Will occur. That is, even when a dither waveform current is applied, the attracting force waveform is greatly distorted from the time when it exceeds the peak of the dither waveform due to the electromagnetic hysteresis during forward / reverse inversion, as schematically shown in the figure. .

図9は電磁気的ヒステリシスにより失われる力を補充して調整されたディザ波形を示したものである。図示したように、図8の電磁気的ヒステリシスを考慮しないディザ波形に対して正逆反転時に不感帯を超える帯域まで急激に電流値を増減して波形を変形させ、電磁気的ヒステリシスにより吸収されて失われる力を予め補充することでディザ波形を調整する。これにより吸引力の波形の歪みが無くなり、ディザ波形に近似した目的とする吸引力がプランジャに正確に伝えられ、電磁気的ヒステリシスの影響が取り除かれる。したがって、実際のプランジャの動きは、慣性モーメントや流体の粘性抵抗の影響による若干の遅延はあるものの、ほぼ開度電流値通りに制御することができる。   FIG. 9 shows a dither waveform adjusted to compensate for the force lost due to electromagnetic hysteresis. As shown in the figure, the dither waveform without considering the electromagnetic hysteresis in FIG. 8 is deformed by rapidly increasing / decreasing the current value up to the band exceeding the dead zone at the time of forward / reverse inversion, and absorbed and lost by the electromagnetic hysteresis. The dither waveform is adjusted by replenishing the force in advance. This eliminates the distortion of the attraction force waveform, accurately transmits the target attraction force approximated to the dither waveform to the plunger, and eliminates the influence of electromagnetic hysteresis. Therefore, the actual movement of the plunger can be controlled almost according to the opening current value, although there is a slight delay due to the influence of the moment of inertia and the viscous resistance of the fluid.

図10は電磁気的ヒステリシスの影響を直接取り除いて調整されたディザ波形を示したものである。プランジャが電磁気力を受けて移動する応答速度と、電磁気的ヒステリシスとなるソレノイドコイルに発生する磁界の変化に対する応答性(応答速度)との間には大きな差がある。つまり、プランジャにはその質量にかかる慣性モーメントと流体の粘性抵抗力が作用しているため、極めて低い周波数帯域を有しているが、電磁気的ヒステリシスは発生要因が磁界の変化によるところが大きく、その応答性は極めて速く高周波数帯域まで応答している。   FIG. 10 shows a dither waveform adjusted by directly removing the influence of electromagnetic hysteresis. There is a large difference between the response speed at which the plunger receives electromagnetic force and the response (response speed) to the change in the magnetic field generated in the solenoid coil, which becomes electromagnetic hysteresis. In other words, the moment of inertia of the mass and the viscous resistance of the fluid act on the plunger, so it has a very low frequency band, but electromagnetic hysteresis is largely caused by changes in the magnetic field. Responsiveness is extremely fast and responds up to the high frequency band.

そこで、図示したように、ディザ波形に可動鉄片の応答速度の最大周波数よりも高い高域周波数帯域で電磁気的ヒステリシス量を超える磁気的変動(振幅)を与える電流信号を合成してディザ波形を調整する。すなわち、静止摩擦力の発生を阻止する低周波数帯域の信号と、プランジャの応答速度の最大周波数を超えた電磁気的ヒステリシスの影響を除去する高周波数帯域の信号を合成した電流波形の信号を与えるようにする。これによりプランジャの移動に影響を与えることなく電磁気的ヒステリシスの影響を取り除くことが可能になり、プランジャに加える力に影響を及ぼすことなく弁開閉時のヒステリシスが取り除かれる。したがって、実際のプランジャの動きは、慣性モーメントや流体の粘性抵抗の影響による若干の遅延はあるものの、ほぼ開度電流値通りに制御することができる。   Therefore, as shown in the figure, the dither waveform is adjusted by synthesizing a current signal that gives a magnetic fluctuation (amplitude) exceeding the amount of electromagnetic hysteresis in the high frequency band higher than the maximum response speed of the movable iron piece. To do. In other words, a signal of a current waveform that combines a signal in a low frequency band that prevents the generation of static frictional force and a signal in a high frequency band that eliminates the influence of electromagnetic hysteresis exceeding the maximum frequency of the response speed of the plunger is given. To. As a result, it is possible to remove the influence of electromagnetic hysteresis without affecting the movement of the plunger, and the hysteresis at the time of opening and closing the valve is removed without affecting the force applied to the plunger. Therefore, the actual movement of the plunger can be controlled almost according to the opening current value, although there is a slight delay due to the influence of the moment of inertia and the viscous resistance of the fluid.

以上説明したように、本発明に係る比例電磁弁の制御装置によれば、比例電磁弁のソレノイドコイルに対して、ヒステリシスを取り除くための静止摩擦力を阻止する力のディザ波形を重畳させた指示電流値を出力するとともに、指示電流波形に供給電流波形を正確に一致させた駆動電流によって定電流駆動を行うようにした。したがって、静止摩擦力と電磁気的ヒステリシスに起因する弁開閉時のヒステリシスが除去され、入力された開度指令値に実際の開度量を正確に追従させることが可能になるため、高精度な流量又は圧力調節を行うことができる。   As described above, according to the proportional solenoid valve control device of the present invention, an instruction in which a dither waveform of a force that prevents static frictional force for removing hysteresis is superimposed on the solenoid coil of the proportional solenoid valve. In addition to outputting a current value, constant current driving is performed by a driving current in which the supply current waveform is exactly matched to the command current waveform. Therefore, the hysteresis at the time of opening and closing the valve due to the static friction force and electromagnetic hysteresis is removed, and the actual opening amount can be accurately followed by the input opening degree command value. Pressure adjustment can be performed.

また、定電流駆動を採用したことにより、電圧駆動のようなソレノイドコイルの温度上昇に伴うコイル抵抗の変化による影響を受けず、またソレノイドコイルと制御装置との間の配線抵抗の変化による影響も受けないため、ソレノイドコイルに流れる電流値変動が発生しないので、比例電磁弁の弁開度の変動も同時に防止することができる。   In addition, by adopting constant current drive, it is not affected by changes in coil resistance due to temperature rise of the solenoid coil, such as voltage drive, and is also affected by changes in wiring resistance between the solenoid coil and the control device. Therefore, fluctuations in the value of the current flowing through the solenoid coil do not occur, and fluctuations in the valve opening of the proportional solenoid valve can be prevented at the same time.

比例電磁弁の制御装置の全体構成を示す回路ブロック図。The circuit block diagram which shows the whole structure of the control apparatus of a proportional solenoid valve. 比例電磁弁の内部構造を示す断面図。Sectional drawing which shows the internal structure of a proportional solenoid valve. 制御装置の動作を示すフローチャート図。The flowchart figure which shows operation | movement of a control apparatus. 定電流駆動の電流波形を示すグラフ図。The graph which shows the current waveform of a constant current drive. 定電流駆動のヒステリシス特性を示すグラフ図。The graph which shows the hysteresis characteristic of a constant current drive. 定電流駆動器の詳細を示す回路ブロック図。The circuit block diagram which shows the detail of a constant current driver. (a)指示電流波形に対する駆動電流波形の追従特性を示すグラフ図、(b)印加電圧と電流の関係を示すグラフ図。(A) The graph which shows the follow-up characteristic of the drive current waveform with respect to the instruction | indication current waveform, (b) The graph which shows the relationship between an applied voltage and an electric current. 電磁気的ヒステリシスを考慮しないディザ波形の波形図。Waveform diagram of a dither waveform that does not take into account electromagnetic hysteresis. 電磁気的ヒステリシスにより失われる力を補充したディザ波形の波形図。A waveform diagram of a dither waveform supplemented with a force lost due to electromagnetic hysteresis. 電磁気的ヒステリシスの影響を直接取り除いたディザ波形の波形図。FIG. 5 is a waveform diagram of a dither waveform in which the influence of electromagnetic hysteresis is directly removed.

符号の説明Explanation of symbols

1…制御装置
2…A/D変換器
3…MPU
4…D/A変換器
5…定電流駆動器
6…開口量補正器
7…ディザ信号発生器
8…合成器
10…比例電磁弁
11…バルブ本体
12…ガイドチューブ
13…ケース
14…プランジャ(可動鉄片)
15…スプリング
16…ソレノイドコイル
17…ストッパコア(固定鉄芯)
18…吸入ポート
19…排出ポート
21…流通路
22…弁座
23…プランジャシール
31…第1のオペアンプ
32…第2のオペアンプ
33…加算器
34…バッファ
35…トランジスタ
36…電流検出器
37…微分倍率器
DESCRIPTION OF SYMBOLS 1 ... Control apparatus 2 ... A / D converter 3 ... MPU
DESCRIPTION OF SYMBOLS 4 ... D / A converter 5 ... Constant current drive 6 ... Aperture correction device 7 ... Dither signal generator 8 ... Synthesizer 10 ... Proportional solenoid valve 11 ... Valve body 12 ... Guide tube 13 ... Case 14 ... Plunger (movable) Iron piece)
15 ... Spring 16 ... Solenoid coil 17 ... Stopper core (fixed iron core)
DESCRIPTION OF SYMBOLS 18 ... Suction port 19 ... Exhaust port 21 ... Flow path 22 ... Valve seat 23 ... Plunger seal 31 ... 1st operational amplifier 32 ... 2nd operational amplifier 33 ... Adder 34 ... Buffer 35 ... Transistor 36 ... Current detector 37 ... Differentiation Multiplier

Claims (7)

比例電磁弁のソレノイドコイルに流す電流に比例した電磁気力で可動鉄片を吸引し、所定の開度で弁を開閉して流体の流量又は圧力を制御する比例電磁弁の制御方法であって、
入力された開度指令値を比例電磁弁の開口量に補正し、
開口量に応じた弁開閉時に現れるヒステリシスを取り除くための可動鉄片に作用する静止摩擦力を阻止する力のディザ波形を生成し、
開口量にディザ波形を重畳させて比例電磁弁の指示電流値を出力し、
指示電流値に相当する電流をソレノイドコイルへ印加し、ソレノイドコイルに流れる供給電流の波形を指示電流の波形に一致させた駆動電流によってソレノイドコイルに指示電流通りの定められた電流を流して定電流駆動するものであり、
定電流駆動は、
ディザ信号の最大周波数をTht、指示電流波形に対する駆動電流波形の追従の遅れをΔt、印加電圧に対する電流の傾斜角度をLv、ディザ信号の最大傾斜角度をΔv、とした場合に、
条件1:Tht>>Δt、及び、条件2:Lv>>Δvを満たす
ことを特徴とする比例電磁弁の制御方法。
A method for controlling a proportional solenoid valve that attracts a movable iron piece with an electromagnetic force proportional to a current flowing through a solenoid coil of a proportional solenoid valve and controls the flow rate or pressure of a fluid by opening and closing the valve at a predetermined opening degree,
Correct the input opening command value to the opening amount of the proportional solenoid valve,
Generate a dither waveform of the force that prevents the static friction force acting on the movable iron piece to remove the hysteresis that appears when opening and closing the valve according to the opening amount,
Output the indicated current value of the proportional solenoid valve by superimposing the dither waveform on the opening amount.
A current corresponding to the indicated current value is applied to the solenoid coil, and a constant current according to the indicated current is supplied to the solenoid coil by a drive current in which the waveform of the supply current flowing through the solenoid coil matches the indicated current waveform. Drive ,
Constant current drive
When the maximum frequency of the dither signal is Tht, the delay in following the drive current waveform with respect to the command current waveform is Δt, the current inclination angle with respect to the applied voltage is Lv, and the maximum inclination angle of the dither signal is Δv,
Condition 1: Thr >> Δt and Condition 2: Lv >> Δv are satisfied .
ディザ波形は、
可動鉄片に作用する静止摩擦力を超える力を弁の開閉両方向に反転させて加え、常に静止摩擦力の発生を阻止する力の集合体からなる波形である
ことを特徴とする請求項1に記載の比例電磁弁の制御方法。
The dither waveform is
2. The waveform is composed of a set of forces that constantly apply a force exceeding the static friction force acting on the movable iron piece by reversing the opening and closing directions of the valve to prevent the generation of the static friction force. Control method of proportional solenoid valve.
更に、電磁気力の電磁気的ヒステリシスの影響を取り除くために、ディザ波形に対して電磁気的ヒステリシスにより吸収されて失われる力を予め補充してディザ波形を調整する
ことを特徴とする請求項1または2に記載の比例電磁弁の制御方法。
Furthermore, in order to remove the influence of the electromagnetic hysteresis of the electromagnetic force, the dither waveform is adjusted by previously supplementing the dither waveform with the force absorbed and lost by the electromagnetic hysteresis. The control method of the proportional solenoid valve described in 1.
更に、電磁気力の電磁気的ヒステリシスの影響を取り除くために、ディザ波形に対して可動鉄片の応答速度の最大周波数を超える高周波数帯域の信号を合成してディザ波形を調整する
ことを特徴とする請求項1または2に記載の比例電磁弁の制御方法。
Furthermore, in order to remove the influence of electromagnetic hysteresis of the electromagnetic force, the dither waveform is adjusted by synthesizing a signal in a high frequency band exceeding the maximum frequency of the response speed of the movable iron piece to the dither waveform. Item 3. The method for controlling a proportional solenoid valve according to Item 1 or 2.
比例電磁弁のソレノイドコイルに流す電流に比例した電磁気力で可動鉄片を吸引し、所定の開度で弁を開閉して流体の流量又は圧力を制御する比例電磁弁の制御装置であって、
入力された開度指令値を比例電磁弁の開口量に補正する開口量補正手段と、
開口量に応じた弁開閉時に現れるヒステリシスを取り除くための可動鉄片に作用する静止摩擦力を阻止する力のディザ波形を生成するディザ波形生成手段と、
開口量にディザ波形を重畳させて比例電磁弁の指示電流値を出力する指示電流値出力手段と、
指示電流値に相当する電流をソレノイドコイルへ印加し、ソレノイドコイルに流れる供給電流の波形を指示電流の波形に一致させた駆動電流によってソレノイドコイルに指示電流通りの定められた電流を流して定電流駆動する定電流駆動手段と、
を備え
定電流駆動手段は、
ディザ信号の最大周波数をTht、指示電流波形に対する駆動電流波形の追従の遅れをΔt、印加電圧に対する電流の傾斜角度をLv、ディザ信号の最大傾斜角度をΔv、とした場合に、
条件1:Tht>>Δt、及び、条件2:Lv>>Δvを満たす
ことを特徴とする比例電磁弁の制御装置。
A control device for a proportional solenoid valve that attracts a movable iron piece with an electromagnetic force proportional to a current flowing through a solenoid coil of a proportional solenoid valve and controls the flow rate or pressure of a fluid by opening and closing the valve at a predetermined opening degree,
Opening amount correcting means for correcting the input opening command value to the opening amount of the proportional solenoid valve;
A dither waveform generating means for generating a dither waveform of a force for preventing a static frictional force acting on the movable iron piece to remove hysteresis appearing when opening and closing the valve according to the opening amount;
A command current value output means for outputting a command current value of the proportional solenoid valve by superimposing a dither waveform on the opening amount;
A current corresponding to the indicated current value is applied to the solenoid coil, and a constant current according to the indicated current is supplied to the solenoid coil by a drive current in which the waveform of the supply current flowing through the solenoid coil matches the indicated current waveform. Constant current driving means for driving;
Equipped with a,
The constant current driving means is
When the maximum frequency of the dither signal is Tht, the delay in following the drive current waveform with respect to the command current waveform is Δt, the current inclination angle with respect to the applied voltage is Lv, and the maximum inclination angle of the dither signal is Δv,
A control device for a proportional solenoid valve characterized by satisfying condition 1: Tht >> Δt and condition 2: Lv >> Δv .
定電流駆動手段は、
ディザ波形の最大周波数成分(高調波を除く)を超える周波数に応答する
ことを特徴とする請求項5に記載の比例電磁弁の制御装置。
The constant current driving means is
The proportional solenoid valve control device according to claim 5, wherein the control device responds to a frequency exceeding a maximum frequency component (excluding harmonics) of the dither waveform.
定電流駆動手段は、
ソレノイドコイルに流れた供給電流の電流値を検出し、検出した供給電流の電流値と入力された指示電流値とを比較して、その偏差電位を増幅して供給電流にフィードバックする電流フィードバック手段を有する
ことを特徴とする請求項5または6に記載の比例電磁弁の制御装置。
The constant current driving means is
Current feedback means for detecting the current value of the supply current flowing through the solenoid coil, comparing the detected current value of the supply current with the input indicated current value, amplifying the deviation potential and feeding back to the supply current The control device for a proportional solenoid valve according to claim 5 or 6, characterized by comprising:
JP2008048296A 2007-10-03 2008-02-28 Proportional solenoid valve control method and control apparatus Active JP4169780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008048296A JP4169780B1 (en) 2007-10-03 2008-02-28 Proportional solenoid valve control method and control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007259662 2007-10-03
JP2008048296A JP4169780B1 (en) 2007-10-03 2008-02-28 Proportional solenoid valve control method and control apparatus

Publications (2)

Publication Number Publication Date
JP4169780B1 true JP4169780B1 (en) 2008-10-22
JP2009103300A JP2009103300A (en) 2009-05-14

Family

ID=39985877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008048296A Active JP4169780B1 (en) 2007-10-03 2008-02-28 Proportional solenoid valve control method and control apparatus

Country Status (1)

Country Link
JP (1) JP4169780B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357444B2 (en) * 2015-05-21 2018-07-11 株式会社豊田中央研究所 Valve, adsorption heat pump
JP6129257B2 (en) * 2015-09-02 2017-05-17 三菱電機株式会社 Dither current supply control method and dither current supply control device
DE102015222991B4 (en) * 2015-11-20 2024-02-01 Zf Friedrichshafen Ag Current monitoring on a consumer, method for determining a current, control device and device for determining a current
CN109519585B (en) * 2018-10-26 2020-12-29 武汉智能装备工业技术研究院有限公司 Valve opener and valve opening method

Also Published As

Publication number Publication date
JP2009103300A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US6657847B1 (en) Method of using inductance for determining the position of an armature in an electromagnetic solenoid
US5991143A (en) Method for controlling velocity of an armature of an electromagnetic actuator
JP4169780B1 (en) Proportional solenoid valve control method and control apparatus
KR101167281B1 (en) An electro-hydraulic proportional flow valve speed regulating control system and its method
JPH1078163A (en) Valve spool positioning control device by internal loop and method therefor
JP5362241B2 (en) Proportional solenoid valve drive
JP2002529842A5 (en)
CN102384118A (en) Electro-hydraulic proportional valve speed regulation control method, device and system and engineering mechanical equipment
AU2017200763A1 (en) Gas Valve And Method For Actuation Thereof
US4587883A (en) High resolution control system for a pressure-responsive positioning device
JP6268012B2 (en) Control method of proportional solenoid valve
US6549390B1 (en) Actuator controller
CN111834080A (en) Switching valve dynamic characteristic regulation and control method based on composite PWM
JP6813507B2 (en) Pressure controller
JP2010276077A (en) Opening control device for solenoid driving valve
WO2019044853A1 (en) Brake control device for vehicle
JP4204155B2 (en) Control method of proportional solenoid valve
JP3183048B2 (en) Resistance welding apparatus and resistance welding method
JP2009150364A (en) Control apparatus of flow regulating valve
US20160094116A1 (en) System and method for stabilizing a voice coil
JPH09189370A (en) Control method of solenoid change-over valve and control device
JP2005049218A (en) Material testing machine
JP2001221201A (en) Electric-pneumatic positioner
JPS62256417A (en) Dc magnet apparatus
JPH09329268A (en) Drive method for electromagnetic control valve and drive device for electromagnetic control valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250