JP4169483B2 - Ultrasonic gas concentration flow measurement method and apparatus - Google Patents

Ultrasonic gas concentration flow measurement method and apparatus Download PDF

Info

Publication number
JP4169483B2
JP4169483B2 JP2001012861A JP2001012861A JP4169483B2 JP 4169483 B2 JP4169483 B2 JP 4169483B2 JP 2001012861 A JP2001012861 A JP 2001012861A JP 2001012861 A JP2001012861 A JP 2001012861A JP 4169483 B2 JP4169483 B2 JP 4169483B2
Authority
JP
Japan
Prior art keywords
ultrasonic
pipe
length
temperature
sample gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001012861A
Other languages
Japanese (ja)
Other versions
JP2002214012A (en
Inventor
直登志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001012861A priority Critical patent/JP4169483B2/en
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to EP02715872.4A priority patent/EP1286159B1/en
Priority to PT2715872T priority patent/PT1286159E/en
Priority to CNB028001559A priority patent/CN1285906C/en
Priority to PCT/JP2002/000438 priority patent/WO2002057770A1/en
Priority to ES02715872T priority patent/ES2431956T3/en
Priority to TW091100959A priority patent/TW520993B/en
Priority to KR1020027012306A priority patent/KR100943874B1/en
Priority to US10/239,227 priority patent/US6912907B2/en
Priority to AU2002225467A priority patent/AU2002225467B2/en
Priority to CA2403862A priority patent/CA2403862C/en
Publication of JP2002214012A publication Critical patent/JP2002214012A/en
Priority to HK04102798A priority patent/HK1059962A1/en
Application granted granted Critical
Publication of JP4169483B2 publication Critical patent/JP4169483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Description

【0001】
【発明の属する技術分野】
本発明は、超音波により、サンプルガスの濃度及び流量を測定する装置に関するものである。さらに詳細には、例えば医療目的で使用される酸素濃縮器から送り出されたサンプルガス中の酸素濃度、流量の測定に適する装置に関するものである。
【0002】
【従来の技術】
サンプルガス中を伝播する超音波の伝播速度は、サンプルガスの濃度、温度の関数として表されることが広く知られている。サンプルガスの平均分子量をM、温度をT[K]とすれば、サンプルガス中の超音波伝播速度C[m/sec]は、式(1)で表される。
【0003】
【数1】

Figure 0004169483
【0004】
ここで、k、Rは定数(k:定積モル比熱と定圧モル比熱の比、R:気体定数)である。すなわち、サンプルガス中の超音波伝播速度C[m/sec]とサンプルガスの温度T[K]が測定できれば、サンプルガスの平均分子量Mを決定できる。
【0005】
例えば該サンプルガスが酸素と窒素の2分子からなるガスであれば、k=1.4となることが知られている。該サンプルガスの平均分子量Mは、酸素の分子量をMO2、窒素の分子量をMN2として、例えば酸素100×P[%],(0≦P≦1)と窒素100×(1−P)[%]の場合においては、M=MO2P+MN2(1−P)と記述することができ、測定された平均分子量Mから酸素濃度Pを決定できる。また、サンプルガス中の超音波伝播速度がC[m/sec]、サンプルガスの流速がV[m/sec]であったとき、サンプルガスの流れに対して順方向に超音波を送信したときに測定される超音波伝播速度V1[m/sec]は、V1=C+V、逆方向に超音波を送信したときに測定される超音波伝播速度V2[m/sec]は、V2 =C−Vとなるので、サンプルガスの流速V[m/sec]は式(2)で求めることができる。
【0006】
【数2】
Figure 0004169483
【0007】
これにサンプルガスの流れている配管の内面積[m2]を乗じることで、サンプルガスの流量[m3/sec]を求めることができる。さらに体積換算、時間換算を行えば、流量を[L/min]で求めることも容易である。
【0008】
該原理を利用し、サンプルガス中を伝播する超音波の伝播速度もしくは伝播時間からサンプルガスの濃度、流量を測定する方法及び装置に関しては、種々の提案が行われている。たとえば、特開平6-213877号公報には、サンプルガスが通る配管中に超音波振動子2つを対向させて配置し、該超音波振動子間を伝播する超音波の伝播時間を計測することによってサンプルガスの濃度及び流量を測定する装置が記載されている。また、特開平7-209265号公報や特開平8-233718号公報には、超音波振動子1つを使用した音波反射方式でセンシングエリア内を伝播する超音波の伝播速度もしくは伝播時間を測定することにより、サンプルガスの濃度を測定する装置が記載されている。
【0009】
【発明が解決しようとする課題】
このような超音波の伝播速度等を用いてサンプルガスの濃度、流量を測定する方法及び装置においては、超音波振動子間を結ぶ配管の長さ及び内径が正確に決定されていなければならない。しかしながら、該配管の長さ及び内径は、サンプルガスの流れる配管を作成する際の工作精度や取り付け精度、超音波振動子の取り付け精度、超音波振動子そのものの加工精度、サンプルガスの温度変化に伴う配管の温度変化による配管の長さと内径の実質的な変化等により、超音波振動子間を結ぶ配管の正確な長さ、すなわち超音波の伝播距離、及び内径を把握することは困難であり、測定値の精度を悪化させる原因となっている。他にも、装置の持つ電子回路には温度特性があり、これが測定値の精度を悪化させる原因となる可能性があることも指摘されている。
【0010】
前述の特開平6-213877号公報や特開平8-233718号公報等には、各種要因に起因する濃度測定結果の温度特性を改善するため、温度補正係数を導入する方法が記載されている。中には、温度と超音波伝播速度と濃度の関係を、テーブルとしてあらかじめメモリ中に保存しておくという方法もある。しかしながら、これらの温度補正係数やテーブルそのものを求めるためには、何点もの温度においてサンプルガスを装置に投入し、経験的に装置の温度特性を求める方法が取られるため、装置の校正に多大な労力が必要であった。
【0011】
また、測定結果の温度特性を無くす方法として、装置自体を温度コントロール下におき、常に一定温度に保って測定する方法も考案されている。しかしながら、該方法においては温度コントロールを実施するための装置が別途必要、温度の正確なコントロール自体が困難、といった問題点があった。
【0012】
本発明は、簡便な方法にて装置の校正ができ、サンプルガスの温度に関わらず正確な濃度、流量を測定できる方法、及び装置を見出すことを目的としている。
【0013】
【課題を解決するための手段】
本発明者らは、かかる目的を達成するために鋭意研究した結果、装置の測定結果に現れる温度特性は、温度変化に伴う配管の長さ、内径の変化が主原因であると見出したものである。とりわけ、該配管長の変化は、サンプルガス濃度の測定結果に深刻な影響を与える。すなわち、2つの対向させた超音波振動子から送受信される超音波から測定されるものは超音波の伝播時間であり、該伝播時間から濃度を測定する際には、超音波の伝播した距離(超音波振動子間を結ぶ配管の長さ)を用いて、伝播速度を求める必要がある。このとき、超音波振動子間の配管の長さをすべての温度において一定であるとして計算を実施すると、実際には配管の長さには温度変化があるため、測定される伝播速度は実際とは異なる値になってしまい、濃度測定結果は温度特性を持つことになる。
【0014】
また、流量測定時には、配管中を流れるサンプルガスの流速(V[m/sec])から流量(例えばQ[m3/sec])を求める際、超音波振動子間の配管の長さと同様、配管の内径にも温度変化があるため、流量測定結果も温度特性を持つことになる。
【0015】
該配管の長さ、及び内径の温度変化は、配管材質の線膨張係数[1/K]に従って変化するものであり、配管材質の線膨張係数と、特定温度における該配管の基準長さ、及び内径が特定できれば、サンプルガス測定時の温度における真の超音波振動子間を結ぶ配管の長さ、及び内径を求めることができ、サンプルガスの温度に関わらず正確な濃度、流量を測定できる。
【0016】
本発明は、簡便な方法にて特定温度における超音波振動子間の配管の基準長さと内径を正確に求め、サンプルガス測定時の温度における超音波振動子間の配管の長さと内径を、基準長さ、基準内径と、配管材質の膨張係数を用いて求め、サンプルガスの温度に関わらず正確な濃度、流量を測定できる方法、及び装置を提供するものである。さらに本発明は、配管材質の正確な線膨張係数が不明な場合においても、配管材質の線膨張係数を正確に求めることを可能とする方法、及び装置を提供するものである。
【0017】
すなわち本発明は、サンプルガスの流れる配管中に対向させて配置した2つの超音波振動子と温度センサを具備した超音波式ガス濃度流量測定装置を用いて該サンプルガスの濃度及び流量を測定する方法において、既知濃度、既知流量の1種類の校正用ガスを該配管中に流すステップ、2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間を測定するステップ、該伝播時間の測定結果から超音波振動子間を結ぶ該配管の基準長さ及び基準内径を同時に校正するステップを備えた超音波式ガス濃度流量測定方法を提供するものである。
【0018】
また本発明は、特にサンプルガスの測定温度に応じた超音波振動子間を結ぶ該配管の長さを該配管材質の線膨張係数を用いて決定し、その結果と2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間から超音波の伝播速度を測定することにより、サンプルガスの濃度を測定する方法、サンプルガスの温度に応じた超音波振動子間を結ぶ該配管の長さと内径を該配管材質の線膨張係数を用いて決定し、その結果と2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間から超音波の伝播速度を測定することにより、サンプルガスの流量を測定する方法を提供するものである。
【0019】
また本発明は、配管材質の正確な線膨張係数が不明な場合には、異なる2種類の温度の該校正用ガスを該装置に投入し、2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間から各温度における超音波振動子間を結ぶ該配管の長さを求め、温度と該配管の長さの関係から該配管材質の線膨張係数を測定する方法を提供するものである。
【0020】
また本発明は、サンプルガスの流れる配管、該配管中に対向させて配置し超音波を送受信する2つの超音波振動子、及び温度センサを備えた超音波式ガス濃度流量測定装置において、該超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間を演算し、その結果から超音波振動子間を結ぶ配管の基準長さ及び基準内径を同時に演算する演算手段、演算した基準長さ及び基準内径の結果を記憶する記憶手段を備えたことを特徴とする超音波式ガス濃度流量測定装置を提供するものである。
【0021】
また本発明は、かかるサンプルガスの測定温度に応じた超音波振動子間を結ぶ該配管の長さを該配管材質の線膨張係数を用いて演算し、その結果と2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間の演算結果から超音波の伝播速度を演算し、該伝播速度から該サンプルガスの濃度を演算する演算手段を備えたことを特徴とする請求項5に記載の超音波式ガス濃度流量測定装置、或はサンプルガスの測定温度に応じた超音波振動子間を結ぶ該配管の長さと内径を該配管材質の線膨張係数を用いて演算し、その結果と2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間の演算結果から超音波の伝播速度を演算し、該サンプルガスの流量を演算する演算手段を備えたことを特徴とする超音波式ガス濃度流量測定装置を提供するものである。
【0022】
更に本発明は、異なる2種類の温度の該校正用ガスを該装置に投入し、2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間の演算結果から各温度における超音波振動子間を結ぶ該配管の長さを演算し、温度と該配管の長さの関係から該配管材質の線膨張係数を演算する演算手段と、該線膨張係数を記憶することのできる記憶手段を備えたことを特徴とする超音波式ガス濃度流量測定装置を提供するものである。
【0023】
【発明の実施の形態】
以下に実施例を示す。本実施例においては、酸素と窒素の2分子からなるサンプルガスの、酸素濃度と流量を測定する装置に関して示す。本発明によって測定できるサンプルガスは、本実施例に示す酸素と窒素からなるサンプルガスだけに限定されるものではなく、他の分子によって構成されるガスに対しても容易に適用できる。
【0024】
図1に本発明の超音波式ガス濃度流量測定装置の装置構成の概略図を示す。2つの超音波振動子2を結ぶ部分の配管1は円筒形状をしており、超音波振動子2は、サンプルガスの流れる配管1の中に対向させて配置する。温度センサ3は、超音波伝播経路上のガスの流れを乱すことのないように、サンプルガスの出入り口付近に2つ配置する。2つの温度センサ3を配管1の出入り口に配置することで、配管1を流れるサンプルガスの平均温度を測定できるようにしている。サンプルガスの温度変化が大きくない場合には、温度センサ3は1つでも良い。
【0025】
2つの超音波振動子2は、それぞれ超音波の送受信が可能であり、送受信の切り替えは送受信切り替え器4によって実施される。
【0026】
超音波振動子間の配管1の基準長さL0、基準内径D0を校正する際には、校正用ガスとして酸素濃度100×P[%]、窒素100×(1−P)[%]のガスをガスボンベ等で準備し、流量設定器等を用いて、流量Q0[m3/sec]で配管1に投入する。このとき、2つの温度センサ3の出力を平均した温度T0[K]を測定しておき、該温度を基準温度として、不揮発性メモリ9に保存しておく。このときの温度T0[K]は、装置の使用温度範囲として設定している温度を逸脱しなければ、何[K]であっても構わない。
【0027】
該校正用ガス投入中において、マイクロコンピュータ7より超音波の送信パルスをドライバ5に送り、送受信切り替え器4によって校正用ガスの流れと順方向に超音波を送信するように選択された超音波振動子2にパルス電圧が印加され、超音波が送信される。もう一方の超音波振動子2によって受信された超音波は、送受信切り替え器4、レシーバ6を介してマイクロコンピュータ7に入力され、超音波伝播時間t1[sec]が測定される。該伝播時間t1[sec]が測定された後、送受信切り替え器4によって超音波振動子2の送受信を切り替え、今度は校正用ガスの流れと逆方向に超音波の送信を行い、先と同様に超音波伝播時間t2[sec]を測定する。このとき、2つの超音波伝播時間の関係は、t1<t2となる。ここで、該配管中の流量がゼロであるときの超音波伝播時間t0[sec]として、t0=(t1+t2)/2を計算しておく。
【0028】
酸素濃度100×P[%]、窒素100×(1−P)[%]、温度T0[K]のガス中の超音波伝播速度C0[m/sec]は、前述の式(1)を用いて、以下の式(3)のようになる。
【0029】
【数3】
Figure 0004169483
【0030】
該校正用ガスを投入した際に測定された超音波伝播時間はt0[sec]であったため、基準温度T0[K]における超音波振動子間を結ぶ配管1の基準長さをL0[m]とすると、以下の関係が成立する。
【0031】
【数4】
Figure 0004169483
【0032】
すなわち、基準温度T0[K]における基準長さL0[m]は、以下の式(5)で求めることができる。
【0033】
【数5】
Figure 0004169483
【0034】
上記の計算は、マイクロコンピュータ7において実施され、ここで求めた基準長さL0[m]は、不揮発性メモリ9に保存される。
【0035】
さらに、該基準長さL0を利用し、校正用ガスの流れに対して順方向に超音波を送信したときに測定される超音波伝播速度V01[m/sec]、逆方向に超音波を送信したときに測定される超音波伝播速度V02[m/sec]は、それぞれV01=L0/t1、V02=L0/t2となる。すなわち、配管1中を流れる校正用ガスの流速V0[m/sec]は、前述の式(2)を用いて、以下の式(6)で求めることができる。
【0036】
【数6】
Figure 0004169483
【0037】
流速[m/sec]を流量[m3/sec]に換算する際には、流速Vに配管1の内面積[m2]を乗じればよく、すなわち、基準温度T0[K]における超音波振動子間を結ぶ配管1の基準内径をD0[m]とすると以下の関係が成立する。
【0038】
【数7】
Figure 0004169483
【0039】
すなわち、基準温度T0[K]における基準内径D0[m]は、以下の式(8)で求めることができる。
【0040】
【数8】
Figure 0004169483
【0041】
上記の計算は、マイクロコンピュータ7において実施され、ここで求めた基準内径D0[m]は、不揮発性メモリ9に保存される。
【0042】
以上の方法により、既知濃度、既知流量の校正用ガス1種類を装置に投入することで、温度T0[K]における超音波振動子間を結ぶ配管1の基準長さL0[m]と基準内径D0[m]を同時に校正できる。該方法は、装置に校正用ガスを投入中に、装置に装備されたボタンを1回押すだけで実現でき、計算自体も簡便なものなので、瞬時に校正を終えることが可能である。また、装置の経年劣化等により、超音波振動子2の位置関係が変わってしまい、超音波の伝播距離が変化してしまった場合等においても、簡単に装置を校正し直し、不揮発性メモリ9に保存された基準温度、基準長さ、基準内径を更新することが可能である。
【0043】
続いて、未知濃度、未知流量のサンプルガスの酸素濃度、流量を測定する方法について述べる。該配管1の材質の線膨張係数α[1/K]が既知の場合においては、サンプルガス測定時の温度TS[K]における配管1の長さLS[m]は、不揮発性メモリ9に保存しておいた基準長さL0[m]、基準温度T0[K]を読み出して用いることで、次式(9)から求めることができる。
【0044】
【数9】
Figure 0004169483
【0045】
ここでTS[K]は、前述のように、2つの温度センサ3の出力を平均して求めておく。
【0046】
該サンプルガス投入中において、マイクロコンピュータ7より超音波の送信パルスをドライバ5に送り、送受信切り替え器4によってサンプルガスの流れと順方向に超音波を送信するように選択された超音波振動子2にパルス電圧が印加され、超音波が送信される。もう一方の超音波振動子2によって受信された超音波は、送受信切り替え器4、レシーバ6を介してマイクロコンピュータ7に入力され、超音波伝播時間tS1[sec]が測定される。該伝播時間tS1[sec]が測定された後、送受信切り替え器4によって超音波振動子2の送受信を切り替え、今度はサンプルガスの流れと逆方向に超音波の送信を行い、先と同様に超音波伝播時間tS2[sec]を測定する。そして、該配管中の流量が0であるときの超音波伝播時間tS0[sec]として、tS0=(tS1+tS2)/2を求める。この結果より、サンプルガス中の超音波伝播速度CS[m/sec]は、CS =LS/ tS0から求めることができる。
【0047】
求めたい酸素濃度PSを未知数として式(3)を変形すると、次式(10)が得られる。
【0048】
【数10】
Figure 0004169483
【0049】
上式(10)より、サンプルガスの酸素濃度は100×PS[%]として測定できる。もしくは、サンプルガスの酸素濃度は、サンプルガス中の超音波伝播速度と、酸素100%、窒素100%のガス中の超音波伝播速度の比として求めることも可能である。すなわち、式(1)を用いれば温度TS[K]における酸素100%中の超音波伝播速度CO2[m/sec]、窒素100%中の超音波伝播速度CN2[m/sec]は容易に求めることができ、サンプルガス中の超音波伝播速度CS[m/sec]を使い、以下の式(11)によっても、PSを計算できる。
【0050】
【数11】
Figure 0004169483
【0051】
上記の計算は、マイクロコンピュータ7において実施され、濃度測定結果は表示器8に表示される。
【0052】
流量測定時には、先に求めたLSと、測定されたサンプルガスの流れに対して順方向、逆方向での超音波伝播時間tS1、tS2を用いて、サンプルガスの流れに対して順方向に超音波を送信したときに測定される超音波伝播速度VS1[m/sec]、逆方向に超音波を送信したときに測定される超音波伝播速度VS2[m/sec]は、それぞれVS1=LS/tS1、VS2=LS/tS2で求めることができ、式(6)より、サンプルガスの流速VS[m/sec]は次式(12)より求めることができる。
【0053】
【数12】
Figure 0004169483
【0054】
流速VS[m/sec]を流量QS[m3/sec]に換算する際には、配管1の内面積を求める必要がある。配管1の内面積SS[m2]は、不揮発性メモリ9に保存しておいた基準内径D0[m]、基準温度T0[K]を読み出し、配管1の材質の線膨張係数α[1/K]から次式(13)で求めることができる。
【0055】
【数13】
Figure 0004169483
【0056】
ここでの温度TS[K]は、濃度測定時のTSと同じものである。すなわち、サンプルガスの流量QS[m3/sec]は次式(14)によって測定できる。
【0057】
【数14】
Figure 0004169483
【0058】
上記の計算は、マイクロコンピュータ7において実施され、流量測定結果は表示器8に表示される。
【0059】
以上によって、配管1の材質の線膨張係数α[1/K]が既知の場合には、サンプルガスの酸素濃度、流量が測定できる。
【0060】
配管1の正確な線膨張係数α[1/K]が未知の場合には、本装置を用いて線膨張係数αを正確に求めることも可能である。すなわち、異なる2つの温度における配管1の長さを求めることができれば線膨張係数αを特定することが可能であり、異なる2つの温度において、本装置の配管1の基準長さを校正する方法を用いることによって、2つの温度における配管1の長さを正確に求めることが容易に可能である。
【0061】
より詳細には、装置をある温度T1[K]の環境下において校正用ガスを装置に投入し、上述した基準長さの校正方法によって超音波振動子間を結ぶ配管1の長さL1[m]を測定する。さらに、温度T2[K](T2≠T1)においても同様に配管1の長さL2[m]を測定する。精度良く線膨張係数αを特定するためには、T1、T2の温度差は大きいほうが良い。例えば、装置の使用温度範囲として設定している温度の最小値、最大値近傍において測定することが望ましい。
【0062】
1、L1、T2、L2が決定できれば、配管1の材質の線膨張係数α[1/K]は、T1<T2として、次式(15)にて求めることができる。
【0063】
【数15】
Figure 0004169483
【0064】
上記の計算は、マイクロコンピュータ7において実施され、ここで求めた線膨張係数α[1/K]は、不揮発性メモリ9に保存される。
【0065】
上記の方法により、異なる温度2点において校正用ガス1種類を装置に投入することで、配管1の材質の線膨張係数αを正確に求めることができる。該方法は、簡単な測定と計算だけで実現できるものなので、配管1の材質の経年劣化等により、配管1の材質の線膨張係数が変化してしまった場合においても、簡単に正確な線膨張係数を測定しなおし、不揮発性メモリ9に保存される線膨張係数を更新することが可能である。
【0066】
以上のように、本発明によれば特別な校正用の装置等を用いることなしに、測定装置そのものと校正用ガス1種類だけを準備すれば装置の校正が可能である。また、装置が経年劣化した場合においても、装置を簡便に校正しなおすことが可能となる。さらには、サンプルガスの温度に関わらず正確な濃度、及び流量を測定可能となる。
【図面の簡単な説明】
【図1】本発明の超音波式ガス濃度流量測定装置の実施態様例。
【符号の説明】
1 配管
2 超音波振動子
3 温度センサ
4 送受信切り替え器
5 ドライバ
6 レシーバ
7 マイクロコンピュータ
8 表示器
9 不揮発性メモリ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring the concentration and flow rate of a sample gas using ultrasonic waves. More specifically, the present invention relates to an apparatus suitable for measuring oxygen concentration and flow rate in a sample gas delivered from, for example, an oxygen concentrator used for medical purposes.
[0002]
[Prior art]
It is widely known that the propagation speed of ultrasonic waves propagating in a sample gas is expressed as a function of the concentration and temperature of the sample gas. Assuming that the average molecular weight of the sample gas is M and the temperature is T [K], the ultrasonic wave propagation velocity C [m / sec] in the sample gas is expressed by Equation (1).
[0003]
[Expression 1]
Figure 0004169483
[0004]
Here, k and R are constants (k: ratio of specific volume molar specific heat and constant pressure molar specific heat, R: gas constant). That is, if the ultrasonic propagation velocity C [m / sec] in the sample gas and the temperature T [K] of the sample gas can be measured, the average molecular weight M of the sample gas can be determined.
[0005]
For example, if the sample gas is a gas composed of two molecules of oxygen and nitrogen, it is known that k = 1.4. Average molecular weight M of the sample gas, the molecular weight of oxygen M O2, the molecular weight of the nitrogen as M N2, for example, oxygen 100 × P [%], ( 0 ≦ P ≦ 1) and nitrogen 100 × (1-P) [ %] Can be described as M = M O2 P + M N2 (1−P), and the oxygen concentration P can be determined from the measured average molecular weight M. Also, when the ultrasonic wave propagation velocity in the sample gas is C [m / sec] and the flow velocity of the sample gas is V [m / sec], when ultrasonic waves are transmitted in the forward direction with respect to the flow of the sample gas The ultrasonic propagation velocity V 1 [m / sec] measured in the above is V 1 = C + V, and the ultrasonic propagation velocity V 2 [m / sec] measured when ultrasonic waves are transmitted in the opposite direction is V 2. = C−V, so the flow velocity V [m / sec] of the sample gas can be obtained by Equation (2).
[0006]
[Expression 2]
Figure 0004169483
[0007]
By multiplying this by the inner area [m 2 ] of the pipe through which the sample gas flows, the flow rate [m 3 / sec] of the sample gas can be obtained. Furthermore, if volume conversion and time conversion are performed, the flow rate can be easily obtained in [L / min].
[0008]
Various proposals have been made regarding methods and apparatuses for measuring the concentration and flow rate of a sample gas from the propagation speed or propagation time of an ultrasonic wave propagating in the sample gas using the principle. For example, Japanese Patent Laid-Open No. 6-213877 discloses that two ultrasonic transducers are arranged facing each other in a pipe through which a sample gas passes, and the propagation time of ultrasonic waves propagating between the ultrasonic transducers is measured. Describes an apparatus for measuring the concentration and flow rate of a sample gas. In Japanese Patent Application Laid-Open Nos. 7-209265 and 8-233718, the propagation speed or propagation time of ultrasonic waves propagating in a sensing area is measured by a sound wave reflection method using one ultrasonic transducer. Thus, an apparatus for measuring the concentration of a sample gas is described.
[0009]
[Problems to be solved by the invention]
In the method and apparatus for measuring the concentration and flow rate of the sample gas using the ultrasonic wave propagation speed and the like, the length and inner diameter of the pipe connecting the ultrasonic transducers must be accurately determined. However, the length and inner diameter of the pipe depends on the working accuracy and mounting accuracy when creating the pipe through which the sample gas flows, the mounting accuracy of the ultrasonic transducer, the processing accuracy of the ultrasonic transducer itself, and the temperature change of the sample gas. It is difficult to know the exact length of the pipe connecting the ultrasonic transducers, that is, the ultrasonic propagation distance and the inner diameter, due to the substantial change in the length and inner diameter of the pipe due to the accompanying temperature change of the pipe. This is a cause of deteriorating the accuracy of measured values. In addition, it has been pointed out that the electronic circuit of the device has a temperature characteristic, which may cause the accuracy of the measurement value to deteriorate.
[0010]
Japanese Patent Laid-Open Nos. H6-213877 and H8-233718 described above describe a method of introducing a temperature correction coefficient in order to improve the temperature characteristics of the concentration measurement result caused by various factors. In some methods, the relationship between the temperature, the ultrasonic wave propagation speed, and the concentration is stored in advance in a memory as a table. However, in order to obtain these temperature correction coefficients and the table itself, sample gas is introduced into the device at several temperatures and the temperature characteristics of the device are empirically obtained. It took effort.
[0011]
As a method for eliminating the temperature characteristic of the measurement result, a method has been devised in which the apparatus itself is placed under temperature control and always kept at a constant temperature. However, this method has a problem that a device for controlling the temperature is separately required, and it is difficult to accurately control the temperature itself.
[0012]
An object of the present invention is to find a method and an apparatus that can calibrate the apparatus by a simple method and can accurately measure the concentration and flow rate regardless of the temperature of the sample gas.
[0013]
[Means for Solving the Problems]
As a result of diligent research to achieve such an object, the present inventors have found that the temperature characteristics appearing in the measurement results of the apparatus are mainly caused by changes in the length and inner diameter of the piping accompanying temperature changes. is there. In particular, the change in the pipe length has a serious influence on the measurement result of the sample gas concentration. That is, what is measured from the ultrasonic waves transmitted and received from the two opposed ultrasonic transducers is the propagation time of the ultrasonic waves. It is necessary to obtain the propagation velocity using the length of the pipe connecting the ultrasonic transducers. At this time, if the calculation is performed assuming that the length of the pipe between the ultrasonic transducers is constant at all temperatures, the measured propagation speed is Becomes different values, and the concentration measurement result has temperature characteristics.
[0014]
Also, when measuring the flow rate, when obtaining the flow rate (for example, Q [m 3 / sec]) from the flow velocity (V [m / sec]) of the sample gas flowing in the pipe, Since there is a temperature change in the inner diameter of the pipe, the flow measurement result also has temperature characteristics.
[0015]
The length of the pipe and the temperature change of the inner diameter change according to the linear expansion coefficient [1 / K] of the pipe material, the linear expansion coefficient of the pipe material, the reference length of the pipe at a specific temperature, and If the inner diameter can be specified, the length and inner diameter of the pipe connecting the true ultrasonic transducers at the temperature at which the sample gas is measured can be obtained, and the correct concentration and flow rate can be measured regardless of the temperature of the sample gas.
[0016]
The present invention accurately obtains the reference length and inner diameter of the pipe between the ultrasonic transducers at a specific temperature by a simple method, and calculates the length and inner diameter of the pipe between the ultrasonic transducers at the temperature at the time of sample gas measurement. It is an object of the present invention to provide a method and an apparatus that can be obtained using a length, a reference inner diameter, and an expansion coefficient of a pipe material, and that can accurately measure the concentration and flow rate regardless of the temperature of the sample gas. Furthermore, the present invention provides a method and an apparatus that make it possible to accurately determine the linear expansion coefficient of a piping material even when the accurate linear expansion coefficient of the piping material is unknown.
[0017]
That is, the present invention measures the concentration and flow rate of the sample gas using an ultrasonic gas concentration flow rate measuring device equipped with two ultrasonic transducers and a temperature sensor arranged to face each other in a pipe through which the sample gas flows. In the method, a step of flowing one kind of calibration gas having a known concentration and a known flow rate into the pipe, and propagation until the other ultrasonic transducer receives the ultrasonic wave transmitted from each of the two ultrasonic transducers. An ultrasonic gas concentration flow rate measurement method comprising a step of measuring time, and a step of simultaneously calibrating a reference length and a reference inner diameter of the pipe connecting the ultrasonic transducers from the measurement result of the propagation time. is there.
[0018]
Further, the present invention determines the length of the pipe connecting between the ultrasonic vibrators according to the measurement temperature of the sample gas, using the linear expansion coefficient of the pipe material, and the result of the two ultrasonic vibrators. A method for measuring the concentration of the sample gas by measuring the propagation speed of the ultrasonic wave from the propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from each, and the ultrasonic wave corresponding to the temperature of the sample gas. The length and inner diameter of the pipe connecting the ultrasonic transducers are determined using the linear expansion coefficient of the pipe material, and the result and the ultrasonic wave transmitted from each of the two ultrasonic transducers are used as the other ultrasonic transducer. Provides a method of measuring the flow rate of the sample gas by measuring the propagation speed of the ultrasonic wave from the propagation time until reception.
[0019]
Further, according to the present invention, when the exact linear expansion coefficient of the pipe material is unknown, the calibration gas at two different temperatures is input to the apparatus, and the supersonic waves transmitted from the two ultrasonic transducers are input. The length of the pipe connecting the ultrasonic vibrators at each temperature is obtained from the propagation time until the other ultrasonic vibrator receives the sound wave, and the linear expansion of the pipe material is determined from the relationship between the temperature and the length of the pipe. A method for measuring the coefficient is provided.
[0020]
The present invention also relates to an ultrasonic gas concentration flow measurement device comprising a pipe through which a sample gas flows, two ultrasonic vibrators arranged opposite to each other in the pipe and transmitting / receiving ultrasonic waves, and a temperature sensor. Calculates the propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from each of the ultrasonic transducers, and simultaneously calculates the reference length and reference inner diameter of the pipe connecting the ultrasonic transducers from the result There is provided an ultrasonic gas concentration flow rate measuring device comprising a calculating means for storing, and a storing means for storing the result of the calculated reference length and reference inner diameter.
[0021]
Further, the present invention calculates the length of the pipe connecting between the ultrasonic vibrators according to the measurement temperature of the sample gas using the linear expansion coefficient of the pipe material, and the result of the calculation of the two ultrasonic vibrators. Computation means is provided for computing the propagation velocity of the ultrasonic wave from the computation result of the propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from each, and computing the concentration of the sample gas from the propagation velocity. 6. The ultrasonic gas concentration flow rate measuring apparatus according to claim 5, or the length and the inner diameter of the pipe connecting the ultrasonic transducers according to the measurement temperature of the sample gas, Calculate using the expansion coefficient, and calculate the ultrasonic propagation velocity from the result and the calculation result of the propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from each of the two ultrasonic transducers. And calculating the flow rate of the sample gas There is provided a ultrasonic gas concentration flow measuring apparatus characterized by comprising a stage.
[0022]
Furthermore, the present invention provides a time for propagation until the other ultrasonic transducer receives the ultrasonic waves transmitted from each of the two ultrasonic transducers by supplying the calibration gas having two different temperatures to the apparatus. And calculating means for calculating the linear expansion coefficient of the pipe material from the relationship between the temperature and the length of the pipe, and calculating the linear expansion coefficient from the relationship between the temperature and the length of the pipe. It is an object of the present invention to provide an ultrasonic gas concentration flow rate measuring device comprising a storage means capable of storing a coefficient.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Examples are shown below. In this embodiment, an apparatus for measuring the oxygen concentration and flow rate of a sample gas composed of two molecules of oxygen and nitrogen will be described. The sample gas that can be measured according to the present invention is not limited to the sample gas composed of oxygen and nitrogen shown in the present embodiment, but can be easily applied to gases composed of other molecules.
[0024]
FIG. 1 shows a schematic diagram of an apparatus configuration of an ultrasonic gas concentration flow measuring apparatus of the present invention. The pipe 1 at the portion connecting the two ultrasonic vibrators 2 has a cylindrical shape, and the ultrasonic vibrator 2 is disposed facing the pipe 1 through which the sample gas flows. Two temperature sensors 3 are arranged near the entrance and exit of the sample gas so as not to disturb the gas flow on the ultrasonic wave propagation path. By arranging two temperature sensors 3 at the entrance and exit of the pipe 1, the average temperature of the sample gas flowing through the pipe 1 can be measured. When the temperature change of the sample gas is not large, one temperature sensor 3 may be used.
[0025]
The two ultrasonic transducers 2 can transmit / receive ultrasonic waves, and transmission / reception switching is performed by the transmission / reception switch 4.
[0026]
When calibrating the reference length L 0 and the reference inner diameter D 0 of the pipe 1 between the ultrasonic transducers, oxygen concentration 100 × P [%], nitrogen 100 × (1-P) [%] as calibration gases Is prepared in a gas cylinder or the like, and is introduced into the pipe 1 at a flow rate Q 0 [m 3 / sec] using a flow rate setting device or the like. At this time, a temperature T 0 [K] obtained by averaging the outputs of the two temperature sensors 3 is measured and stored in the nonvolatile memory 9 using the temperature as a reference temperature. The temperature T 0 [K] at this time may be any [K] as long as it does not deviate from the temperature set as the operating temperature range of the apparatus.
[0027]
During the calibration gas injection, the ultrasonic vibration pulse selected from the microcomputer 7 to send an ultrasonic transmission pulse to the driver 5 and to transmit the ultrasonic wave in the forward direction with the flow of the calibration gas by the transmission / reception switch 4. A pulse voltage is applied to the child 2 and ultrasonic waves are transmitted. The ultrasonic waves received by the other ultrasonic transducer 2 are input to the microcomputer 7 via the transmission / reception switch 4 and the receiver 6, and the ultrasonic propagation time t 1 [sec] is measured. After the propagation time t 1 [sec] is measured, transmission / reception of the ultrasonic transducer 2 is switched by the transmission / reception switch 4 and this time, ultrasonic waves are transmitted in the direction opposite to the flow of the calibration gas, and the same as before. Then, the ultrasonic propagation time t 2 [sec] is measured. At this time, the relationship between the two ultrasonic propagation times is t 1 <t 2 . Here, t 0 = (t 1 + t 2 ) / 2 is calculated as the ultrasonic propagation time t 0 [sec] when the flow rate in the pipe is zero.
[0028]
The ultrasonic wave propagation velocity C 0 [m / sec] in a gas having an oxygen concentration of 100 × P [%], nitrogen 100 × (1-P) [%], and temperature T 0 [K] is expressed by the above equation (1). The following equation (3) is obtained.
[0029]
[Equation 3]
Figure 0004169483
[0030]
Since the ultrasonic propagation time measured when the calibration gas was introduced was t 0 [sec], the reference length of the pipe 1 connecting the ultrasonic transducers at the reference temperature T 0 [K] was set to L 0. If [m], then the following relationship holds.
[0031]
[Expression 4]
Figure 0004169483
[0032]
That is, the reference length L 0 [m] at the reference temperature T 0 [K] can be obtained by the following equation (5).
[0033]
[Equation 5]
Figure 0004169483
[0034]
The above calculation is performed in the microcomputer 7, and the reference length L 0 [m] obtained here is stored in the nonvolatile memory 9.
[0035]
Further, using the reference length L 0 , the ultrasonic propagation velocity V 01 [m / sec] measured when ultrasonic waves are transmitted in the forward direction with respect to the flow of the calibration gas, and ultrasonic waves in the reverse direction. The ultrasonic wave propagation velocity V 02 [m / sec] measured when transmitting is V 01 = L 0 / t 1 and V 02 = L 0 / t 2 , respectively. That is, the flow velocity V 0 [m / sec] of the calibration gas flowing in the pipe 1 can be obtained by the following equation (6) using the above equation (2).
[0036]
[Formula 6]
Figure 0004169483
[0037]
When the flow velocity [m / sec] is converted into the flow rate [m 3 / sec], the flow velocity V may be multiplied by the inner area [m 2 ] of the pipe 1, that is, the flow rate V exceeds the reference temperature T 0 [K]. When the reference inner diameter of the pipe 1 connecting the acoustic wave transducers is D 0 [m], the following relationship is established.
[0038]
[Expression 7]
Figure 0004169483
[0039]
That is, the reference inner diameter D 0 [m] at the reference temperature T 0 [K] can be obtained by the following equation (8).
[0040]
[Equation 8]
Figure 0004169483
[0041]
The above calculation is performed in the microcomputer 7, and the reference inner diameter D 0 [m] obtained here is stored in the nonvolatile memory 9.
[0042]
By introducing one type of calibration gas having a known concentration and a known flow rate into the apparatus by the above method, the reference length L 0 [m] of the pipe 1 connecting the ultrasonic transducers at the temperature T 0 [K] The reference inner diameter D 0 [m] can be calibrated simultaneously. This method can be realized by simply pressing a button provided in the apparatus while the calibration gas is being supplied to the apparatus, and since the calculation itself is simple, the calibration can be completed instantaneously. In addition, even when the positional relationship of the ultrasonic transducer 2 changes due to aging degradation of the apparatus and the propagation distance of the ultrasonic wave changes, the apparatus is easily recalibrated, and the nonvolatile memory 9 It is possible to update the reference temperature, reference length and reference inner diameter stored in
[0043]
Next, a method for measuring the oxygen concentration and flow rate of the sample gas having an unknown concentration and an unknown flow rate will be described. When the linear expansion coefficient α [1 / K] of the material of the pipe 1 is known, the length L S [m] of the pipe 1 at the temperature T S [K] when measuring the sample gas is the non-volatile memory 9. By reading and using the reference length L 0 [m] and the reference temperature T 0 [K] stored in (1), it can be obtained from the following equation (9).
[0044]
[Equation 9]
Figure 0004169483
[0045]
Here, T S [K] is obtained by averaging the outputs of the two temperature sensors 3 as described above.
[0046]
During the introduction of the sample gas, the ultrasonic transducer 2 selected to send ultrasonic transmission pulses from the microcomputer 7 to the driver 5 and to transmit ultrasonic waves in the forward direction with the flow of the sample gas by the transmission / reception switch 4. A pulse voltage is applied to and ultrasonic waves are transmitted. The ultrasonic waves received by the other ultrasonic transducer 2 are input to the microcomputer 7 via the transmission / reception switch 4 and the receiver 6, and the ultrasonic propagation time t S1 [sec] is measured. After the propagation time t S1 [sec] is measured, transmission / reception of the ultrasonic transducer 2 is switched by the transmission / reception switch 4 and this time ultrasonic waves are transmitted in the direction opposite to the flow of the sample gas. The ultrasonic propagation time t S2 [sec] is measured. Then, t S0 = (t S1 + t S2 ) / 2 is obtained as the ultrasonic propagation time t S0 [sec] when the flow rate in the pipe is zero. From this result, the ultrasonic propagation velocity C S [m / sec] in the sample gas can be obtained from C S = L S / t S0 .
[0047]
When the equation (3) is transformed with the oxygen concentration P S to be obtained as an unknown, the following equation (10) is obtained.
[0048]
[Expression 10]
Figure 0004169483
[0049]
From the above equation (10), the oxygen concentration of the sample gas can be measured as 100 × P S [%]. Alternatively, the oxygen concentration of the sample gas can be obtained as a ratio of the ultrasonic propagation velocity in the sample gas and the ultrasonic propagation velocity in the gas of 100% oxygen and 100% nitrogen. That is, if equation (1) is used, the ultrasonic propagation velocity C O2 [m / sec] in 100% oxygen at temperature T S [K] and the ultrasonic propagation velocity C N2 [m / sec] in 100% nitrogen are P S can be easily calculated, and P S can be calculated by the following equation (11) using the ultrasonic wave propagation velocity C S [m / sec] in the sample gas.
[0050]
## EQU11 ##
Figure 0004169483
[0051]
The above calculation is performed in the microcomputer 7, and the concentration measurement result is displayed on the display 8.
[0052]
At the time of flow rate measurement, using the previously obtained L S and the ultrasonic propagation times t S1 and t S2 in the forward direction and the reverse direction with respect to the measured sample gas flow, The ultrasonic propagation velocity V S1 [m / sec] measured when an ultrasonic wave is transmitted in the direction and the ultrasonic propagation velocity V S2 [m / sec] measured when an ultrasonic wave is transmitted in the opposite direction are: V S1 = L S / t S1 and V S2 = L S / t S2 can be obtained, respectively, and the flow velocity V S [m / sec] of the sample gas is obtained from the following equation (12) from the equation (6). Can do.
[0053]
[Expression 12]
Figure 0004169483
[0054]
When converting the flow velocity V S [m / sec] into the flow rate Q S [m 3 / sec], it is necessary to obtain the inner area of the pipe 1. For the inner area S S [m 2 ] of the pipe 1, the reference inner diameter D 0 [m] and the reference temperature T 0 [K] stored in the nonvolatile memory 9 are read, and the linear expansion coefficient α of the material of the pipe 1 is read. From [1 / K], it can be obtained by the following equation (13).
[0055]
[Formula 13]
Figure 0004169483
[0056]
The temperature T S [K] here is the same as T S at the time of concentration measurement. That is, the flow rate Q S [m 3 / sec] of the sample gas can be measured by the following equation (14).
[0057]
[Expression 14]
Figure 0004169483
[0058]
The above calculation is performed in the microcomputer 7, and the flow measurement result is displayed on the display 8.
[0059]
As described above, when the linear expansion coefficient α [1 / K] of the material of the pipe 1 is known, the oxygen concentration and flow rate of the sample gas can be measured.
[0060]
When the accurate linear expansion coefficient α [1 / K] of the pipe 1 is unknown, the linear expansion coefficient α can be accurately obtained using this apparatus. That is, if the length of the pipe 1 at two different temperatures can be obtained, the linear expansion coefficient α can be specified, and a method of calibrating the reference length of the pipe 1 of the present apparatus at two different temperatures. By using it, it is possible to easily determine the length of the pipe 1 at two temperatures.
[0061]
More specifically, the length L 1 of the pipe 1 connecting the ultrasonic transducers by introducing the calibration gas into the apparatus under the environment of a certain temperature T 1 [K] and connecting the ultrasonic transducers by the reference length calibration method described above. Measure [m]. Further, the length L 2 [m] of the pipe 1 is similarly measured at the temperature T 2 [K] (T 2 ≠ T 1 ). In order to specify the linear expansion coefficient α with high accuracy, the temperature difference between T 1 and T 2 should be large. For example, it is desirable to measure in the vicinity of the minimum value and maximum value of the temperature set as the operating temperature range of the apparatus.
[0062]
If T 1 , L 1 , T 2 , and L 2 can be determined, the linear expansion coefficient α [1 / K] of the material of the pipe 1 can be obtained by the following equation (15) as T 1 <T 2 .
[0063]
[Expression 15]
Figure 0004169483
[0064]
The above calculation is performed in the microcomputer 7, and the linear expansion coefficient α [1 / K] obtained here is stored in the nonvolatile memory 9.
[0065]
By introducing one type of calibration gas into the apparatus at two different temperatures according to the above method, the linear expansion coefficient α of the material of the pipe 1 can be accurately obtained. Since this method can be realized only by simple measurement and calculation, even when the linear expansion coefficient of the material of the pipe 1 is changed due to aging deterioration of the material of the pipe 1, etc., the linear expansion can be performed easily and accurately. It is possible to remeasure the coefficient and update the linear expansion coefficient stored in the nonvolatile memory 9.
[0066]
As described above, according to the present invention, the apparatus can be calibrated by preparing only the measuring apparatus itself and one kind of calibration gas without using a special calibration apparatus or the like. In addition, even when the device has deteriorated over time, the device can be easily calibrated again. Furthermore, it becomes possible to measure the exact concentration and flow rate regardless of the temperature of the sample gas.
[Brief description of the drawings]
FIG. 1 shows an embodiment of an ultrasonic gas concentration flow measuring device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pipe 2 Ultrasonic vibrator 3 Temperature sensor 4 Transmission / reception switching device 5 Driver 6 Receiver 7 Microcomputer 8 Display device 9 Non-volatile memory

Claims (2)

サンプルガスの流れる配管中に対向させて配置した2つの超音波振動子と温度センサを具備した超音波式ガス濃度流量測定装置を用いて該サンプルガスの濃度及び流量を測定する方法において、既知濃度、既知流量の1種類の校正用ガスを該配管中に流すステップ、2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間を測定するステップ、該伝播時間の測定結果から超音波振動子間を結ぶ該配管の基準長さ及び基準内径を同時に校正するステップを備え、
サンプルガスの測定温度に応じた超音波振動子間を結ぶ該配管の長さ、または該配管の長さと内径を該配管材質の線膨張係数を用いて決定し、その結果と2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間から超音波の伝播速度を測定することにより、サンプルガスの濃度または流量を測定する方法であり、
該校正ステップが、
異なる2種類の温度の該校正用ガスを該装置に投入し、2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間から各温度における超音波振動子間を結ぶ該配管の長さを求め、温度と該配管の長さの関係から、該配管材質の正確な線膨張係数が不明な場合の線膨張係数を求めるステップを備える、
超音波式ガス濃度流量測定方法。
In a method for measuring the concentration and flow rate of a sample gas using an ultrasonic gas concentration flow rate measuring device equipped with two ultrasonic transducers and a temperature sensor arranged facing each other in a pipe through which the sample gas flows, a known concentration A step of flowing one kind of calibration gas with a known flow rate into the pipe, a step of measuring a propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from each of the two ultrasonic transducers Calibrating the reference length and the reference inner diameter of the pipe connecting the ultrasonic transducers from the measurement result of the propagation time,
The length of the pipe connecting the ultrasonic transducers according to the measurement temperature of the sample gas, or the length and inner diameter of the pipe is determined using the linear expansion coefficient of the pipe material, and the result and two ultrasonic vibrations It is a method of measuring the concentration or flow rate of sample gas by measuring the propagation speed of the ultrasonic wave from the propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from each of the children,
The calibration step comprises
The calibration gas at two different temperatures is introduced into the apparatus, and the ultrasonic wave transmitted from each of the two ultrasonic transducers is measured at each temperature based on the propagation time until the other ultrasonic transducer receives the ultrasonic waves. Obtaining the length of the pipe connecting the acoustic wave oscillators, and determining the linear expansion coefficient when the exact linear expansion coefficient of the pipe material is unknown from the relationship between the temperature and the length of the pipe,
Ultrasonic gas concentration flow measurement method.
サンプルガスの流れる配管、該配管中に対向させて配置し超音波を送受信する2つの超音波振動子、及び温度センサを備えた超音波式ガス濃度流量測定装置において、該超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間を演算し、その結果から超音波振動子間を結ぶ配管の基準長さ及び基準内径を同時に演算する演算手段、演算した基準長さ及び基準内径の結果を記憶する記憶手段を備え、
該演算手段が、
サンプルガスの測定温度に応じた超音波振動子間を結ぶ該配管の長さ、または該配管の長さと内径を該配管材質の線膨張係数を用いて演算し、その結果と2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間の演算結果から超音波の伝播速度を演算し、該サンプルガスの流量または濃度を演算する手段であり、
校正手段として、既知濃度、既知流量の 1 種類の校正用ガスを用い、異なる2種類の温度の該校正用ガスを該装置に投入し、2つの超音波振動子の各々から送信された超音波を他方の超音波振動子が受信するまでの伝播時間の演算結果から各温度における超音波振動子間を結ぶ該配管の長さを演算し、温度と該配管の長さの関係から該配管材質の線膨張係数を演算する演算手段と、該線膨張係数を記憶することのできる記憶手段を備えた、超音波式ガス濃度流量測定装置。
In an ultrasonic gas concentration flow rate measuring device provided with a pipe through which a sample gas flows, two ultrasonic vibrators arranged opposite to each other in the pipe and transmitting / receiving ultrasonic waves, and a temperature sensor, each of the ultrasonic vibrators Calculating means for calculating the propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from, and calculating the reference length and the reference inner diameter of the pipe connecting the ultrasonic transducers from the result. Storage means for storing the result of the reference length and the reference inner diameter,
The computing means is
The length of the pipe connecting between ultrasonic transducers corresponding to the measurement temperature of the sample gas, or the length and inner diameter of the pipe is calculated using the linear expansion coefficient of the pipe material, and the result and two ultrasonic vibrations It is a means for calculating the propagation speed of the ultrasonic wave from the calculation result of the propagation time until the other ultrasonic transducer receives the ultrasonic wave transmitted from each of the children, and calculating the flow rate or concentration of the sample gas,
As a calibration means, one type of calibration gas having a known concentration and a known flow rate is used, and the calibration gas at two different temperatures is introduced into the apparatus, and the ultrasonic waves transmitted from each of the two ultrasonic transducers. The length of the pipe connecting the ultrasonic vibrators at each temperature is calculated from the calculation result of the propagation time until the other ultrasonic vibrator receives the pipe material, and the pipe material is calculated from the relationship between the temperature and the length of the pipe. An ultrasonic gas concentration flow rate measuring device comprising a calculating means for calculating the linear expansion coefficient of the gas and a storage means capable of storing the linear expansion coefficient .
JP2001012861A 2001-01-22 2001-01-22 Ultrasonic gas concentration flow measurement method and apparatus Expired - Lifetime JP4169483B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2001012861A JP4169483B2 (en) 2001-01-22 2001-01-22 Ultrasonic gas concentration flow measurement method and apparatus
US10/239,227 US6912907B2 (en) 2001-01-22 2002-01-22 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
CNB028001559A CN1285906C (en) 2001-01-22 2002-01-22 Equipment and method for measuring concentration and flow rate of gas ultrasonically
PCT/JP2002/000438 WO2002057770A1 (en) 2001-01-22 2002-01-22 Equipment and method for measuring concentration and flow rate of gas ultrasonically
ES02715872T ES2431956T3 (en) 2001-01-22 2002-01-22 Equipment and method for ultrasonically measuring the concentration and flow of a gas
TW091100959A TW520993B (en) 2001-01-22 2002-01-22 An apparatus for and a method of ultrasonically measuring concentration and flow rate of a gas
EP02715872.4A EP1286159B1 (en) 2001-01-22 2002-01-22 Equipment and method for ultrasonically measuring concentration and flow rate of gas
PT2715872T PT1286159E (en) 2001-01-22 2002-01-22 Equipment and method for ultrasonically measuring concentration and flow rate of gas
AU2002225467A AU2002225467B2 (en) 2001-01-22 2002-01-22 Equipment and method for measuring concentration and flow rate of gas ultrasonically
CA2403862A CA2403862C (en) 2001-01-22 2002-01-22 Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
KR1020027012306A KR100943874B1 (en) 2001-01-22 2002-01-22 Equipment and method for measuring concentration and flow rate of gas ultrasonically
HK04102798A HK1059962A1 (en) 2001-01-22 2004-04-21 Equipment and method for measuring concentration and flow rate of gas ultrasonically

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012861A JP4169483B2 (en) 2001-01-22 2001-01-22 Ultrasonic gas concentration flow measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2002214012A JP2002214012A (en) 2002-07-31
JP4169483B2 true JP4169483B2 (en) 2008-10-22

Family

ID=18879803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012861A Expired - Lifetime JP4169483B2 (en) 2001-01-22 2001-01-22 Ultrasonic gas concentration flow measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP4169483B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002363201B2 (en) 2001-10-30 2007-03-22 Teijin Limited Oxygen enriching device
EP2366981B1 (en) * 2003-04-21 2016-09-07 Teijin Pharma Limited Oxygen concentration system for generating oxygen-enriched gas
EP1661595B1 (en) 2003-08-14 2019-04-10 Teijin Pharma Limited Oxygen enrichment device
EP1661596B1 (en) 2003-08-26 2016-05-25 Teijin Pharma Limited Oxygen-concentrating device
KR101073504B1 (en) 2005-07-26 2011-10-17 삼성전자주식회사 Air Conditioner and its Measuring Method of pipe length
GB2429061B (en) * 2005-08-13 2009-04-22 Flownetix Ltd A method of construction for a low cost plastic ultrasonic water meter
JP4911946B2 (en) * 2005-10-18 2012-04-04 ヤマハ発動機株式会社 Fuel cell system and fuel concentration detection method thereof.
KR101064324B1 (en) 2009-10-30 2011-09-14 (주)씨엠엔텍 Ultrasonic flowmeter
EP2686643A4 (en) * 2011-03-18 2014-09-10 Soneter Llc Methods and apparatus for fluid flow measurement
JP2012225756A (en) * 2011-04-19 2012-11-15 Panasonic Corp Humidity measuring apparatus
US10357629B2 (en) * 2012-04-05 2019-07-23 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
SG11201609863WA (en) * 2014-05-27 2016-12-29 Fisher & Paykel Healthcare Ltd Gases mixing and measuring for a medical device
CN104568083B (en) * 2015-01-22 2018-04-20 成都秦川物联网科技股份有限公司 Mechanical counter and the method using its measurement gas meter, flow meter data-collection durability
WO2017095241A2 (en) 2015-12-02 2017-06-08 Fisher & Paykel Healthcare Limited Flow path sensing for flow therapy apparatus
JP6832152B2 (en) 2016-12-21 2021-02-24 上田日本無線株式会社 Gas concentration measuring device and its calibration method
KR101928385B1 (en) 2017-02-20 2018-12-12 (주)씨엠엔텍 Calibration method of ultrasonic flowmeter for temperature variation
WO2018212067A1 (en) 2017-05-18 2018-11-22 帝人ファーマ株式会社 Exacerbation predicting device, oxygen concentrating device, and exacerbation predicting system
CN112730606B (en) * 2020-12-31 2022-09-27 青岛精安医疗科技有限责任公司 Ultrasonic oxygen concentration measuring method and system based on pressure detection and oxygen generation system
KR102634777B1 (en) * 2021-06-02 2024-02-07 한국전자기술연구원 Signal processing method and system for flow measurement of ultrasonic gas meter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734418A (en) * 1980-08-11 1982-02-24 Tdk Corp Ultrasonic wave measuring device
JPH02232523A (en) * 1989-03-07 1990-09-14 Toshiba Corp Flow-rate measuring apparatus
JPH04353751A (en) * 1991-05-31 1992-12-08 Mitsubishi Petrochem Co Ltd Apparatus for measuring expansion coefficient
US5247826B1 (en) * 1992-11-12 1995-07-18 Devilbiss Health Care Inc Gas concentration and/or flow sensor
JP3129563B2 (en) * 1993-02-10 2001-01-31 富士工業株式会社 Ultrasonic measurement method and device
JPH07209265A (en) * 1994-01-14 1995-08-11 Honda Motor Co Ltd Sound wave reflection type gas concentration measuring apparatus
US5644070A (en) * 1996-04-22 1997-07-01 Dynamic Manufacturing Inc. Ozone concentration sensor
JP3876370B2 (en) * 1998-11-10 2007-01-31 バブコック日立株式会社 Acoustic flow velocity measuring device

Also Published As

Publication number Publication date
JP2002214012A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP4169483B2 (en) Ultrasonic gas concentration flow measurement method and apparatus
KR100943874B1 (en) Equipment and method for measuring concentration and flow rate of gas ultrasonically
US5627323A (en) Ultrasonic binary gas measuring device
US4748857A (en) Ultrasonic apparatus for measuring the flow velocity of a fluid
JP4724714B2 (en) Acoustic flow meter calibration method
KR20090105979A (en) Method and apparatus for determining flow pressure using density information
JP4536939B2 (en) Ultrasonic reflection type gas concentration measuring method and apparatus
JP4271979B2 (en) Ultrasonic gas concentration flow measurement method and apparatus
US20220228930A1 (en) Method for Calibrating a Temperature Measuring Unit Based on Ultrasonic Measurement, Method for Measuring the Temperature of a Medium, Temperature Measuring Unit and Ultrasonic Flowmeter
JP2010261872A (en) Ultrasonic flowmeter
JP3979821B2 (en) Medical oxygen concentrator
JP4180815B2 (en) Medical oxygen concentrator
JPH11351928A (en) Flowmetr and flow rate measuring method
JP2001116733A (en) Ultrasonic sensor and material-measuring apparatus
JP4689879B2 (en) Ultrasonic flow velocity measurement method
JPH09133561A (en) Ultrasonic flowmeter
JPH0791996A (en) Ultrasonic flowmeter
JP3134984B2 (en) Vibration type measuring instrument
JP7246021B2 (en) ultrasonic flow meter
CN109708729B (en) Automatic gain adjustment method for metering signal of ultrasonic meter and ultrasonic gas meter
JPH02116745A (en) Ultrasonic solution density measuring apparatus
RU2385449C2 (en) Method and device for determining flow pressure using density information
SU964543A1 (en) Ultrasonic meter of gaseous media flow rate
JPS6098324A (en) Thermometer
JPH04296635A (en) Temperature correcting method of density sensor in vibratory gas density meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4169483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term