JP4169147B2 - Planetary gear mechanism - Google Patents

Planetary gear mechanism Download PDF

Info

Publication number
JP4169147B2
JP4169147B2 JP2002256349A JP2002256349A JP4169147B2 JP 4169147 B2 JP4169147 B2 JP 4169147B2 JP 2002256349 A JP2002256349 A JP 2002256349A JP 2002256349 A JP2002256349 A JP 2002256349A JP 4169147 B2 JP4169147 B2 JP 4169147B2
Authority
JP
Japan
Prior art keywords
gear
planetary
planetary gear
sun gear
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002256349A
Other languages
Japanese (ja)
Other versions
JP2004092815A (en
Inventor
浩二 秋山
勉 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2002256349A priority Critical patent/JP4169147B2/en
Publication of JP2004092815A publication Critical patent/JP2004092815A/en
Application granted granted Critical
Publication of JP4169147B2 publication Critical patent/JP4169147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ロボットアーム,複写機,自動車部品等の各種動力伝達装置に使用される遊星歯車機構に関するものである。
【0002】
【従来の技術】
各種動力伝達装置に使用され、入力側の回転数を減速して出力するように構成された遊星歯車機構は、例えば、特開2001−271893号公報,特開2000−274495号公報及び実開平2−102043号公報に開示されたように、太陽歯車に噛み合う複数の遊星歯車が固定内歯車と可動内歯車に跨って噛み合っており、太陽歯車や固定内歯車及び可動内歯車に対して自由に回転できるように取り付けられたキャリア(支持部材)によって各遊星歯車が回動可能に支持されるようになっているが、キャリアを使用することがスペース上困難である場合や、より小型化を図る必要がある場合に、そのキャリアを省略した構成の遊星歯車機構が使用される(例えば、特開2002−116057号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、このような遊星歯車機構は、太陽歯車の周囲にキャリアを使用しないで遊星歯車を配置すると、必ずしも遊星歯車を等間隔に配置することができない場合がある。このような場合には、動力伝達時に太陽歯車に作用する力がその周方向に均等でなくなり、動力伝達軸の芯ブレや振動を発生させる虞がある。
【0004】
また、上述のようなキャリアを使用しない遊星歯車機構が極めて小さい場合(例えば、太陽歯車の外径寸法が0.5mm程度の場合)には、各歯車の噛み合い量も極めて小さいため、動力伝達時にオーバーロード状態になると、遊星歯車と他の歯車との噛み合いがスリップし、その噛み合いがスリップした遊星歯車と噛み合いがスリップしない遊星歯車との間の距離が狭まり、遊星歯車同士が干渉して作動不能という最悪の状態に陥る虞がある。
【0005】
そこで、本発明は、スペース的にキャリアを使用できない場合でも、各遊星歯車間の間隔を適正な状態に保持することができ、動力伝達軸の芯ブレや振動を発生させることがなく、円滑な作動状態を確保することができる遊星歯車機構を提供することを目的とする。
【0006】
【課題を解決するための手段】
すなわち、本発明に係る遊星歯車機構は、太陽歯車の周囲に、この太陽歯車と噛み合う遊星歯車を等間隔で複数配置し、これら遊星歯車に噛み合う固定内歯車を配置すると共に、この固定内歯車と異なる歯数の可動内歯車を前記複数の遊星歯車に噛み合わせてある。そして、前記各遊星歯車間の間隔を適正に保ちながら、且つ前記各遊星歯車と共に前記太陽歯車の周りを公転するスペーサ、前記各遊星歯車間のスペースにそれぞれ収容され、前記太陽歯車,前記遊星歯車,前記固定内歯車及び前記可動内歯車に対して独立して回動する、 ことを特徴としている。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳述する。
【0008】
[第1の実施の形態]
図1〜図3は、本実施の形態に係る遊星歯車機構1を示すものである。このうち、図1は、太陽歯車2の軸線CLの延びる方向に沿って切断して示す遊星歯車機構の断面図である。また、図2は、図1のA−A線に沿って切断して示す断面図である。また、図3は、図1のB−B線に沿って切断して示す断面図である。
【0009】
これらの図に示すように、本実施の形態の遊星歯車機構1は、入力軸3に一体回動できるように取り付けられる太陽歯車2と、この太陽歯車2の外周側に等間隔に3個配置された遊星歯車4と、これら遊星歯車4に噛み合う固定内歯車5及び可動内歯車6と、遊星歯車4と遊星歯車4の間に配置されたスペーサ7と、を備えている。ここで、可動内歯車6は、固定内歯車と異なる歯数になるように構成されている。
【0010】
このうち、遊星歯車4は、太陽歯車2の全長よりも僅かに短い寸法に形成されており、太陽歯車2に噛み合うと共に、固定内歯車5及び可動内歯車6に跨って噛み合い、太陽歯車2の周囲を自転しながら公転するようになっている。固定内歯車5と可動内歯車6は、太陽歯車2の軸線CLの延びる方向(歯幅方向)に沿って、互いに対向するように配置されている。そして、固定内歯車5,可動内歯車6及び太陽歯車2との間に生じるスペース8内には、3個の遊星歯車4と、これら3個の遊星歯車4,4間の間隔を一定に保つスペーサ7とが収容されている。
【0011】
スペーサ7は、球状体であり、隣り合う遊星歯車4,4間で且つ遊星歯車4と固定内歯車5及び可動内歯車6とで形成されるスペース内に収容され、太陽歯車2の軸線CL方向に沿って複数(本実施の形態においては2個)配置されており、固定内歯車5,可動内歯車6及び遊星歯車4に対して自由に回転できる寸法に形成されている。このようなスペーサ7を使用することにより、太陽歯車2と各遊星歯車4の噛み合い位置を太陽歯車2の周方向にほぼ等間隔に配置し、太陽歯車2の外周側に作用する負荷の均衡を図ることができる。また、このスペーサ7は、太陽歯車2,遊星歯車4,固定内歯車5及び可動内歯車6に対して独立して回動することができるので、これらのうちのいずれかの歯車(2,4,5,6)に接触したとしても、接触した歯車(2,4,5,6)に対して転動し、接触した歯車(2,4,5,6)を磨耗させたり、問題となるような摩擦接触に起因するエネルギーロスを生じることがない。また、個々のスペーサ7は、他のスペーサ7や他の部材(太陽歯車2や遊星歯車4等)に対して独立した部材であり、他のスペーサ7や他の部材との寸法的位置関係が固定されないため、遊星歯車機構1の組立時の自由性が高く、遊星歯車機構1の組立が容易になる。また、スペーサ7は、遊星歯車4,4と固定内歯車5及び可動内歯車6とで形成されるスペース内に収容され、遊星歯車4,4と太陽歯車2とで形成されるスペース内に収容されるようになっていないため、遊星歯車機構1の作動時に作用する遠心力によって、隣接する遊星歯車4,4間の隙間に噛み込まれることがない。
【0012】
可動内歯車6は、歯が形成された一方の側面(図の左側側面)10と反対側の側面(図の右側側面)11の中心部に出力軸12が形成されており、この出力軸12が軸受け部によって回動可能に支持されている。尚、本実施の形態においては、ハウジング13の軸受け穴14が可動内歯車6の出力軸12を回動可能に支持する軸受け部になっている。
【0013】
このように構成された遊星歯車機構1は、太陽歯車2の歯数をZa、固定内歯車5の歯数をZc、可動内歯車6の歯数をZdとすれば、太陽歯車2が一回転した場合の可動内歯車6の回転数をNとすると、
【数1】

Figure 0004169147
となり、固定内歯車5と可動内歯車6の歯数の差が小さいほど、大きく減速されることになる。すなわち、本実施の形態の遊星歯車機構1は、固定内歯車5と可動内歯車6の歯数の差が小さいほど、入力軸3(太陽歯車2)の回転を大きく減速し、その減速した回転を出力軸12(可動内歯車6)を介して出力する。
【0014】
以上のように、本実施の形態の遊星歯車機構1は、各遊星歯車4の間隔をスペーサ7で適正に保つように構成されており、遊星歯車4を太陽歯車2に対して自転可能に且つ公転可能に支持するキャリアを必要としないため、キャリアで遊星歯車4を支持するようにした従来の遊星歯車機構に比較して小型化することができる。
【0015】
しかも、本実施の形態の遊星歯車機構1は、スペーサ7によって遊星歯車4,4間の間隔を常時適正に保つことにより、太陽歯車2に作用する負荷が太陽歯車2の周方向において均衡化するため、太陽歯車2に作用する不均衡な負荷に起因する入力軸3や出力軸12の軸振れや振動の発生を防止することができる。
【0016】
また、本実施の形態の遊星歯車機構1は、スペーサ7によって各遊星歯車4,4間の間を常時適正に保つことができるため、全体寸法を極小化(例えば、太陽歯車2を、0.5mm程度の外径寸法に極小化)した場合に、作動時のオーバーロード状態で遊星歯車4の噛み合いがスリップしたとしても、各遊星歯車4,4同士が干渉して作動不能状態に陥るようなことがなく、常時円滑な作動状態を確保することができる。

【0017】
尚、本実施の形態の遊星歯車機構1は、太陽歯車2を極小のモータの出力軸(入力軸3)に固定し、極小のギアードモータとして使用する場合に特に効果的であるが、動力伝達機構における減速機構として広く適用することができる。
【0018】
また、本実施の形態の遊星歯車機構1は、太陽歯車2,遊星歯車4,固定内歯車5,可動内歯車6及びスペーサ7の構成物を、樹脂材料で成形すれば軽量化や作動音の静粛性を図ることができるが、これに限定されるものではなく、金属やその他の材料で形成するようにしてもよい。
【0019】
また、本実施の形態の遊星歯車機構1は、スペーサ7が太陽歯車2の軸線CL方向に沿って2個配置するように構成されているが、これに限られず、太陽歯車2の長さ寸法等に応じた個数のスペーサ7を配置すればよく、1個のスペーサ7で足りる場合には1個のスペーサ7でもよく、又2個のスペーサ7で足りない場合には3個以上のスペーサ7を配置するようにしてもよい。
【0020】
[第2の実施の形態]
図4は、本発明の第2の実施の形態に係る遊星歯車機構1の断面図である。この図に示す遊星歯車機構1は、前述の第1の実施の形態における球状のスペーサ7の代わりに、遊星歯車4の長さ(幅方向寸法)とほぼ同一長さ寸法の略円柱状のスペーサ15を使用するように構成されたものである。本実施の形態の遊星歯車機構1においても、前述の第1の実施の形態に係る遊星歯車機構1と同様の作用効果を奏することが可能である。
【0021】
[第3の実施の形態]
図5は、本発明の第3の実施の形態に係る遊星歯車機構1の断面図である。この図に示す遊星歯車機構1は、前述の第2の実施の形態における略円柱状のスペーサ16を円板状の支持部材17に一体形成したものであり、支持部材17の中心部の軸穴18を可動内歯車6の中心部の支持軸部20に係合することにより、支持軸部20の周りに回動できるようになっている。尚、図6は、スペーサ16が一体形成された支持部材17の正面図であり、支持部材17の軸穴18の周囲に等間隔で略円柱状のスペーサ16が位置している。
【0022】
このような構成の本実施の形態によれば、遊星歯車4が微小であり且つキャリアで遊星歯車4を回動可能に支持できないような場合(例えば、支持軸を遊星歯車4に貫通させることができない場合)に、遊星歯車4,4間のスペース8にスペーサ16を配置し、各遊星歯車4間の間隔を適正に保つことができるため、前述の第1及び第2の実施の形態に係る遊星歯車機構1と同様の作用効果を得ることができる。尚、本実施の形態のスペーサ16は、略円柱状のスペーサを例示したが、各遊星歯車4,4間の間隔を適正に保つことができ、且つ、前述の第1の実施の形態と同様の回転伝達を可能にする限り、これに限定されるものではなく、設計条件等に合致する形状に適宜変更してもよい。また、本実施の形態において、支持部材17を可動内歯車6によって相対回動可能に支持する態様を例示したが、これに限られず、支持部材17を太陽歯車2,固定内歯車5,可動内歯車6に対して相対回動可能に支持してあればよい。
【0023】
【発明の効果】
以上のように、本発明は、遊星歯車の間隔をスペーサで適正に保つように構成されているため、遊星歯車を太陽歯車に対して自転可能に且つ公転可能に支持するキャリアを必要とせず、小型化することができる。
【0024】
また、本発明は、スペーサによって遊星歯車間の間隔を常時適正に保つことにより、太陽歯車に作用する負荷が太陽歯車の周方向において均衡化するため、太陽歯車の作用する不均衡な負荷に起因する入力軸や出力軸の軸振れや振動の発生を防止することができると共に、遊星歯車同士の干渉の虞を解消し、円滑な動力伝達を可能にする。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る遊星歯車機構の断面図であり、太陽歯車の軸線の延びる方向に沿って切断して示す断面図である。
【図2】図1のA−A線に沿って切断して示す断面図である。
【図3】図1のB−B線に沿って切断して示す断面図である。
【図4】本発明の第2の実施の形態に係る遊星歯車機構の断面図であり、太陽歯車の軸線の延びる方向に沿って切断して示す断面図である。
【図5】本発明の第3の実施の形態に係る遊星歯車機構の断面図であり、太陽歯車の軸線の延びる方向に沿って切断して示す断面図である。
【図6】本発明の第3の実施の形態に係る遊星歯車機構に使用されるスペーサ及びこのスペーサが一体形成された支持部材の正面図である。
【符号の説明】
1……遊星歯車機構、2……太陽歯車、4……遊星歯車、5……固定内歯車、6……可動内歯車、7,15,16……スペーサ、8……スペース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a planetary gear mechanism used in various power transmission devices such as robot arms, copying machines, and automobile parts.
[0002]
[Prior art]
Examples of planetary gear mechanisms that are used in various power transmission devices and configured to reduce and output the rotational speed on the input side include, for example, Japanese Patent Laid-Open Nos. 2001-271893, 2000-274495, and Japanese Utility Model Laid-Open No. 2 As disclosed in Japanese Patent No. -102043, a plurality of planetary gears meshing with the sun gear are meshed between the fixed internal gear and the movable internal gear, and freely rotate with respect to the sun gear, the fixed internal gear, and the movable internal gear. Each planetary gear is rotatably supported by a carrier (support member) that can be mounted so that it is difficult to use the carrier in terms of space or to reduce the size. If there is a planetary gear mechanism, the carrier is omitted (see, for example, Japanese Patent Application Laid-Open No. 2002-116057).
[0003]
[Problems to be solved by the invention]
However, in such a planetary gear mechanism, when the planetary gear is arranged without using a carrier around the sun gear, the planetary gear may not necessarily be arranged at equal intervals. In such a case, the force acting on the sun gear at the time of power transmission is not uniform in the circumferential direction, and there is a risk of causing core blurring or vibration of the power transmission shaft.
[0004]
Further, when the planetary gear mechanism that does not use the carrier as described above is extremely small (for example, when the outer diameter of the sun gear is about 0.5 mm), the meshing amount of each gear is also extremely small. When an overload condition occurs, the meshing between the planetary gear and the other gear slips, the distance between the planetary gear with the meshing slip and the planetary gear with which the meshing does not slip is narrowed, and the planetary gears interfere with each other and cannot operate. There is a risk of falling into the worst state.
[0005]
Therefore, the present invention can maintain the space between the planetary gears in an appropriate state even when the carrier cannot be used in a space, and does not cause a core blur or vibration of the power transmission shaft, and can be smoothly performed. It is an object of the present invention to provide a planetary gear mechanism that can ensure an operating state.
[0006]
[Means for Solving the Problems]
That is, in the planetary gear mechanism according to the present invention, a plurality of planetary gears meshing with the sun gear are arranged at equal intervals around the sun gear, and fixed internal gears meshing with the planetary gears are arranged. Movable internal gears having different numbers of teeth are meshed with the plurality of planetary gears. Then, the while properly maintaining the spacing between the planetary gears, and the spacer which revolves around the respective planetary gears with the sun gears are housed respectively the space between the planetary gears, the sun gear, the planetary It rotates independently with respect to a gear, the fixed internal gear, and the movable internal gear .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0008]
[First Embodiment]
1 to 3 show a planetary gear mechanism 1 according to the present embodiment. Among these, FIG. 1 is a sectional view of the planetary gear mechanism shown cut along the direction in which the axis CL of the sun gear 2 extends. 2 is a cross-sectional view taken along line AA in FIG. 3 is a cross-sectional view taken along line BB in FIG.
[0009]
As shown in these figures, the planetary gear mechanism 1 of the present embodiment is arranged with three sun gears 2 attached so as to be able to rotate integrally with the input shaft 3 and three at equal intervals on the outer peripheral side of the sun gear 2. The planetary gear 4, the fixed internal gear 5 and the movable internal gear 6 that mesh with the planetary gear 4, and the spacer 7 disposed between the planetary gear 4 and the planetary gear 4 are provided. Here, the movable internal gear 6 is configured to have a different number of teeth from that of the fixed internal gear.
[0010]
Among these, the planetary gear 4 is formed in a dimension slightly shorter than the total length of the sun gear 2, meshes with the sun gear 2, meshes with the fixed internal gear 5 and the movable internal gear 6, and It is designed to revolve while spinning around. The fixed internal gear 5 and the movable internal gear 6 are disposed so as to face each other along the direction (tooth width direction) in which the axis CL of the sun gear 2 extends. In the space 8 formed between the fixed internal gear 5, the movable internal gear 6 and the sun gear 2, the three planetary gears 4 and the distance between the three planetary gears 4 and 4 are kept constant. A spacer 7 is accommodated.
[0011]
The spacer 7 is a spherical body, and is accommodated in a space formed between the planetary gears 4, 4 adjacent to each other and by the planetary gear 4, the fixed internal gear 5, and the movable internal gear 6, and is in the direction of the axis CL of the sun gear 2. A plurality of (two in the present embodiment) are arranged along the shaft, and are dimensioned so as to be freely rotatable with respect to the fixed internal gear 5, the movable internal gear 6 and the planetary gear 4. By using such a spacer 7, the meshing positions of the sun gear 2 and the planetary gears 4 are arranged at substantially equal intervals in the circumferential direction of the sun gear 2, and the load acting on the outer peripheral side of the sun gear 2 is balanced. Can be planned. The spacer 7 can rotate independently of the sun gear 2, the planetary gear 4, the fixed internal gear 5, and the movable internal gear 6. Therefore, any one of these gears (2, 4 , 5, 6), it rolls against the contacted gears (2, 4, 5, 6) and wears the contacted gears (2, 4, 5, 6). Such energy loss due to frictional contact does not occur. Each spacer 7 is an independent member with respect to other spacers 7 and other members (sun gear 2, planetary gear 4, etc.), and has a dimensional positional relationship with other spacers 7 and other members. Since it is not fixed, the freedom in assembling the planetary gear mechanism 1 is high, and the planetary gear mechanism 1 can be easily assembled. The spacer 7 is accommodated in a space formed by the planetary gears 4, 4, the fixed internal gear 5 and the movable internal gear 6, and is accommodated in a space formed by the planetary gears 4, 4 and the sun gear 2. Therefore, the centrifugal force acting during the operation of the planetary gear mechanism 1 is not engaged in the gap between the adjacent planetary gears 4 and 4.
[0012]
The movable internal gear 6 has an output shaft 12 formed at the center of a side surface (right side surface in the drawing) 11 opposite to one side surface (left side surface in the drawing) 10 on which teeth are formed. Is rotatably supported by the bearing portion. In the present embodiment, the bearing hole 14 of the housing 13 is a bearing portion that rotatably supports the output shaft 12 of the movable internal gear 6.
[0013]
In the planetary gear mechanism 1 configured as described above, if the number of teeth of the sun gear 2 is Za, the number of teeth of the fixed internal gear 5 is Zc, and the number of teeth of the movable internal gear 6 is Zd, the sun gear 2 rotates once. If the number of rotations of the movable internal gear 6 is N,
[Expression 1]
Figure 0004169147
Thus, the smaller the difference in the number of teeth between the fixed internal gear 5 and the movable internal gear 6, the greater the speed is reduced. That is, in the planetary gear mechanism 1 of the present embodiment, as the difference in the number of teeth between the fixed internal gear 5 and the movable internal gear 6 is smaller, the rotation of the input shaft 3 (sun gear 2) is greatly decelerated and the decelerated rotation is performed. Is output via the output shaft 12 (movable internal gear 6).
[0014]
As described above, the planetary gear mechanism 1 of the present embodiment is configured to keep the distance between the planetary gears 4 properly by the spacers 7 so that the planetary gears 4 can rotate with respect to the sun gear 2. Since a carrier that supports revolving is not required, the size can be reduced as compared with the conventional planetary gear mechanism in which the planetary gear 4 is supported by the carrier.
[0015]
Moreover, in the planetary gear mechanism 1 of the present embodiment, the load acting on the sun gear 2 is balanced in the circumferential direction of the sun gear 2 by keeping the distance between the planetary gears 4 and 4 always appropriate by the spacer 7. Therefore, it is possible to prevent the occurrence of shaft runout and vibration of the input shaft 3 and the output shaft 12 due to an unbalanced load acting on the sun gear 2.
[0016]
Further, the planetary gear mechanism 1 of this embodiment, it is possible to maintain proper respective planetary gears 4,4 interval between each constantly by spacers 7, minimizing the overall size (e.g., the sun gear 2, 0 If the outer diameter of the planetary gear is reduced to about 5 mm, even if the meshing of the planetary gear 4 slips in an overloaded state during operation, the planetary gears 4 and 4 interfere with each other so that the planetary gear 4 falls into an inoperable state. It is possible to ensure a smooth operating state at all times.

[0017]
The planetary gear mechanism 1 of the present embodiment is particularly effective when the sun gear 2 is fixed to the output shaft (input shaft 3) of a minimum motor and used as a minimum geared motor. It can be widely applied as a deceleration mechanism in the mechanism.
[0018]
Further, the planetary gear mechanism 1 of the present embodiment can reduce the weight and operation noise by molding the components of the sun gear 2, the planetary gear 4, the fixed internal gear 5, the movable internal gear 6 and the spacer 7 from a resin material. Although silence can be aimed at, it is not limited to this, You may make it form with a metal and another material.
[0019]
Further, the planetary gear mechanism 1 of the present embodiment is configured such that two spacers 7 are arranged along the axis CL direction of the sun gear 2, but the present invention is not limited to this, and the length dimension of the sun gear 2 is not limited thereto. The number of spacers 7 may be arranged in accordance with the number of spacers 7. If one spacer 7 is sufficient, one spacer 7 may be used. If two spacers 7 are not enough, three or more spacers 7 are used. May be arranged.
[0020]
[Second Embodiment]
FIG. 4 is a cross-sectional view of the planetary gear mechanism 1 according to the second embodiment of the present invention. The planetary gear mechanism 1 shown in this figure is a substantially cylindrical spacer having substantially the same length as the length (width direction dimension) of the planetary gear 4 instead of the spherical spacer 7 in the first embodiment. 15 is used. Also in the planetary gear mechanism 1 of the present embodiment, it is possible to achieve the same operational effects as the planetary gear mechanism 1 according to the first embodiment described above.
[0021]
[Third Embodiment]
FIG. 5 is a cross-sectional view of the planetary gear mechanism 1 according to the third embodiment of the present invention. The planetary gear mechanism 1 shown in this figure is formed by integrally forming a substantially columnar spacer 16 in the above-described second embodiment on a disc-like support member 17, and a shaft hole at the center of the support member 17. By engaging 18 with a support shaft portion 20 at the center of the movable internal gear 6, it can be rotated around the support shaft portion 20. FIG. 6 is a front view of the support member 17 in which the spacer 16 is integrally formed. The substantially cylindrical spacer 16 is positioned around the shaft hole 18 of the support member 17 at equal intervals.
[0022]
According to the present embodiment having such a configuration, when the planetary gear 4 is very small and the planetary gear 4 cannot be rotatably supported by the carrier (for example, the support shaft can be passed through the planetary gear 4). In the case where this is not possible, the spacer 16 can be arranged in the space 8 between the planetary gears 4 and 4 so that the distance between the planetary gears 4 can be kept appropriate. Therefore, according to the first and second embodiments described above. The same effect as the planetary gear mechanism 1 can be obtained. In addition, although the spacer 16 of this Embodiment illustrated the substantially cylindrical spacer, the space | interval between each planetary gear 4 and 4 can be kept appropriate, and is the same as that of the above-mentioned 1st Embodiment. As long as this rotation transmission is possible, it is not limited to this, You may change suitably in the shape which matches design conditions etc. In the present embodiment, the support member 17 is supported by the movable internal gear 6 so as to be relatively rotatable. However, the present invention is not limited thereto, and the support member 17 is not limited to the sun gear 2, the fixed internal gear 5, and the movable internal gear. What is necessary is just to support so that relative rotation with respect to the gearwheel 6 is possible.
[0023]
【The invention's effect】
As described above, the present invention is configured so as to keep the interval between the planetary gears properly with the spacers, and therefore does not require a carrier that supports the planetary gears so that they can rotate and revolve with respect to the sun gear, It can be downsized.
[0024]
In addition, the present invention maintains an appropriate distance between the planetary gears by the spacer so that the load acting on the sun gear is balanced in the circumferential direction of the sun gear. As a result, the occurrence of shaft runout and vibration of the input shaft and output shaft can be prevented, and the possibility of interference between the planetary gears can be eliminated, thereby enabling smooth power transmission.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a planetary gear mechanism according to a first embodiment of the present invention, and is a cross-sectional view cut along a direction in which an axis of a sun gear extends.
2 is a cross-sectional view taken along line AA in FIG.
3 is a cross-sectional view taken along line BB in FIG. 1. FIG.
FIG. 4 is a cross-sectional view of a planetary gear mechanism according to a second embodiment of the present invention, cut along the direction in which the axis of the sun gear extends.
FIG. 5 is a cross-sectional view of a planetary gear mechanism according to a third embodiment of the present invention, cut along the direction in which the axis of the sun gear extends.
FIG. 6 is a front view of a spacer used in a planetary gear mechanism according to a third embodiment of the present invention and a support member integrally formed with the spacer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Planetary gear mechanism, 2 ... Sun gear, 4 ... Planetary gear, 5 ... Fixed internal gear, 6 ... Movable internal gear, 7, 15, 16 ... Spacer, 8 ... Space

Claims (1)

太陽歯車の周囲に、この太陽歯車と噛み合う遊星歯車を等間隔で複数配置し、これら遊星歯車に噛み合う固定内歯車を配置すると共に、この固定内歯車と異なる歯数の可動内歯車を前記複数の遊星歯車に噛み合わせてなる遊星歯車機構であって、
前記各遊星歯車間の間隔を適正に保ちながら、且つ前記各遊星歯車と共に前記太陽歯車の周りを公転するスペーサ、前記各遊星歯車間のスペースにそれぞれ収容され、前記太陽歯車,前記遊星歯車,前記固定内歯車及び前記可動内歯車に対して独立して回動する、 ことを特徴とする遊星歯車機構。
Around the sun gear, a plurality of planetary gears meshing with the sun gear are arranged at equal intervals, a fixed internal gear meshing with the planetary gears is arranged, and a plurality of movable internal gears having a different number of teeth from the fixed internal gear are arranged. A planetary gear mechanism meshed with a planetary gear,
Each properly while maintaining the spacing between the planetary gears, and a spacer which revolves around the said sun gear together with the planetary gears are housed respectively the space between the planetary gears, the sun gear, the planetary gear, A planetary gear mechanism characterized by rotating independently with respect to the fixed internal gear and the movable internal gear .
JP2002256349A 2002-09-02 2002-09-02 Planetary gear mechanism Expired - Fee Related JP4169147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256349A JP4169147B2 (en) 2002-09-02 2002-09-02 Planetary gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256349A JP4169147B2 (en) 2002-09-02 2002-09-02 Planetary gear mechanism

Publications (2)

Publication Number Publication Date
JP2004092815A JP2004092815A (en) 2004-03-25
JP4169147B2 true JP4169147B2 (en) 2008-10-22

Family

ID=32061598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256349A Expired - Fee Related JP4169147B2 (en) 2002-09-02 2002-09-02 Planetary gear mechanism

Country Status (1)

Country Link
JP (1) JP4169147B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843523B2 (en) * 2016-04-25 2021-03-17 セイコーインスツル株式会社 Thermal printers and portable terminals
DE112022003334T5 (en) * 2021-06-30 2024-04-11 Denso Corporation Gear motor and clutch actuator using it

Also Published As

Publication number Publication date
JP2004092815A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP5297756B2 (en) Gear transmission
JP4997574B2 (en) Reduction gear
JPWO2002023065A1 (en) Series of motors with reduction gears
JP7068102B2 (en) Hypocycloid reducer
JP2020153412A (en) Cycloid reduction gear and motor unit
JP5480845B2 (en) Planetary gear mechanism
JP4319344B2 (en) Speed reducer series
JP4169147B2 (en) Planetary gear mechanism
JPH076470B2 (en) Coaxial starter device
JP2016008633A (en) Inscription gear type speed reducer
JP3616804B2 (en) Roller with built-in motor with reduction gear, and reduction gear
JP3550433B2 (en) Planetary gear type reduction gear
JP2015124791A (en) Gear device
CN102022479B (en) Eccentric cycloid type speed reducing mechanism
JP6369274B2 (en) Inscribed mesh planetary gear mechanism
JP2017040312A (en) Reduction gear
JP4373597B2 (en) Swing intermeshing planetary gear mechanism and angle transmission error reduction method
TWI428521B (en) Cycloidal gear device
JP2020051541A (en) Gear speed reducer
JP2525593B2 (en) Gearbox with planetary gear mechanism
JP4331483B2 (en) Motor built-in roller
JP3963586B2 (en) Internal gear swing type intermeshing planetary gear unit
JP3830021B2 (en) Inner pin support structure of planetary gear reducer
JP6175298B2 (en) Balance weight device
JP7074628B2 (en) Planetary speed reducer and electric actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees