JP4168667B2 - In-line annealing furnace for continuous hot dip galvanizing - Google Patents

In-line annealing furnace for continuous hot dip galvanizing Download PDF

Info

Publication number
JP4168667B2
JP4168667B2 JP2002157263A JP2002157263A JP4168667B2 JP 4168667 B2 JP4168667 B2 JP 4168667B2 JP 2002157263 A JP2002157263 A JP 2002157263A JP 2002157263 A JP2002157263 A JP 2002157263A JP 4168667 B2 JP4168667 B2 JP 4168667B2
Authority
JP
Japan
Prior art keywords
zone
oxidizing atmosphere
annealing furnace
continuous hot
hot dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002157263A
Other languages
Japanese (ja)
Other versions
JP2003342645A (en
Inventor
宏幸 中島
敏明 天笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002157263A priority Critical patent/JP4168667B2/en
Publication of JP2003342645A publication Critical patent/JP2003342645A/en
Application granted granted Critical
Publication of JP4168667B2 publication Critical patent/JP4168667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鋼帯をインライン方式により加熱・焼鈍した後、連続溶融亜鉛めっきを施す溶融亜鉛めっき設備に係り、特にSi、Mn等のめっき阻害成分を多く含む高張力鋼板に連続溶融亜鉛めっきするのに好適な連続溶融亜鉛めっき用インライン焼鈍炉に関する。
【0002】
【従来の技術】
鋼板(鋼帯)に連続亜鉛めっきを施すに当たっては、一般に、インライン焼鈍方式が採られ、冷間圧延された鋼板の組織を再結晶させて軟化させるとともに、鋼板表面に溶融亜鉛めっきをするのに必要な状態が付与される。この焼鈍を行う加熱炉として、近年では間接加熱方式による、いわゆるオールラジアント方式の加熱炉が広く採用されている。
【0003】
このオールラジアント方式の間接加熱炉では、冷間圧延された鋼板は、たとえば、電解脱脂方式などにより十分脱脂・清浄化された後、鉄(Fe)にとって無酸化ないし還元領域の雰囲気、たとえば容量比で3〜10%の水素を含み残部窒素のHNガスにより焼鈍される。したがって、鋼板の表面は原則として酸化されず、かつ還元もされない。
【0004】
通常の軟鋼板の場合は、このような方式で焼鈍し、めっき浴を通しても特に問題なく良好なめっき層を得ることができる。しかるに、たとえば、自動車の外板に使用される高張力鋼板をこの方式により溶融亜鉛めっきすると、高張力鋼板に含有されるSi、MnあるいはPなどの合金成分のため、めっきが完全に行われない不めっきが発生することがある。この不めっきは焼鈍の際、上記合金成分が鋼板表面に濃化、酸化し、そのため鋼板表面とめっき浴の溶融亜鉛との濡れ性が低下するため生ずるものであることが解明されており、その対策として、焼鈍の前半において鋼板表面を僅かに酸化させ、その後酸化層を還元してフレッシュな鉄(Fe)層を表面に形成させてめっきする手段が行われている(たとえば特開平-34210号公報参照)。
【0005】
【発明が解決しようとする課題】
しかしながら、オールラジアント方式の間接加熱炉は、炉の入り側から出側までほぼ同一の組成を有するHNガス雰囲気に維持されるものであり、先に挙げた特開平7-34210号公報記載のように焼鈍炉内(予熱帯)で鋼板表面の鉄(Fe)を酸化させ、その後還元焼鈍を行うことは、雰囲気調整の問題もあり、設備上相当の困難を伴う。また、鋼板の材質に応じた酸化度の調整も困難であり、高張力鋼板の不めっきを完全には解決できないという問題があった。
【0006】
本発明は、上記従来の間接加熱によるインライン焼鈍方式を採用する場合において、鋼板の酸化−還元の制御を確実かつ容易に行い得るようにし、高張力鋼板に溶融亜鉛めっきを不めっき部の発生することなく行い得る連続溶融亜鉛めっき用インライン焼鈍炉を提案することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、めっき用鋼板を焼鈍する際に鋼板表面を酸化した後、還元してめっきするに当たりフレッシュな鉄(Fe)層を現出させる手段を間接加熱方式、いわゆるオールラジアント方式の加熱炉に適用する手段について検討し、加熱帯に空気を吸引して酸化に必要な雰囲気を作る酸化雰囲気帯を設け、それに続いて還元帯を設け、かつ両帯域の雰囲気が混合することのないようにすれば、確実に所期の目的を達成し得ることを知見して本発明をなすに至った。
【0008】
本発明は、加熱帯に酸化雰囲気帯次いで還元帯が設けられた間接加熱方式による連続溶融亜鉛めっき用インライン焼鈍炉において、前記加熱帯に該加熱帯を通過する鋼帯を取り囲み、外気吸引ブロワー及び排気ブロワーが接続されたチャンバーを配置して酸化雰囲気帯を構成するとともに、該チャンバー内の雰囲気を前後の帯域及び大気に対して負圧に維持としてなるものである。
【0009】
上記酸化雰囲気帯は、鋼板温度が300〜850℃となる帯域に設けるのがよい。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を具体的に説明する。図1は、本発明を適用した連続溶融亜鉛めっき用インライン焼鈍炉11の全体構成を示す概念図であり、図2は、そのA-A断面図である。鋼帯(素材)Sは、加熱帯12によって所定焼鈍温度まで加熱され、冷却帯13で溶融亜鉛めっき温度まで冷却され、溶融亜鉛めっき槽14によって所定の厚さのめっきが施されて溶融亜鉛めっき鋼板(製品)Gとなる。なお、加熱帯12は、いわゆる昇温帯、加熱帯及び均熱帯を包含する広義の加熱帯を意味する。
【0011】
本焼鈍炉11では、加熱はラジアントチューブが壁面に取り付けられ、そこから発生する輻射熱により鋼板を加熱するようになっている。また、焼鈍雰囲気は、特に断らない限りHNガスが用いられ、また、炉内ガスの露点は-20〜-40℃とされる。したがって全体としては還元領域の雰囲気で焼鈍が行われるようになっている。
【0012】
本発明の連続溶融亜鉛めっき用インライン焼鈍炉11では、焼鈍過程において鋼板表面を必要に応じて酸化し、次いで還元するためその加熱帯12に酸化雰囲気帯21が設けられ、次いで還元帯15が設けられる。なお、先に述べたように、加熱帯12は、いわゆる昇温帯、加熱帯及び均熱帯を包含する広義の加熱帯をいい、還元帯15はこれらのいずれの帯域に設けることもできる。
【0013】
この酸化雰囲気帯21には、図2に示すように外気吸引ブロワー22及び排気ブロワー23が設けられており、これらの出力及び制御弁24の開度を調節することにより酸化雰囲気帯21内の圧力をその前後の帯域及び大気圧に対して負圧に調整できるようになっている。これにより酸化雰囲気帯21の前後の帯域に酸化ガスを漏洩させることなく外気(空気)を導入させることが可能になっている。
【0014】
その具体的構造は、図3に示すように鋼帯を取り囲む形に耐火れんが製チャンバー25が配置され、その鋼帯の入・出口には酸化雰囲気帯21の気密性を向上させる手段として、例えばシールロール26A、26Bが配置されている。このチャンバー25には外気取り入れ口および排気口(図示しない)が設けられ、それに外気吸引ブロワー22及び排気ブロワー23が接続されている。なお、チャンバー25は鋼製とすることもできる。
【0015】
一方、還元帯15は、図1に示すように、酸化雰囲気帯の後段に位置し、鋼帯表面の還元および焼鈍工程における加熱・均熱を担う。
【0016】
上記連続溶融亜鉛めっき用インライン焼鈍炉11を用いて鋼板を焼鈍するには次のようにする。まず、SiやMnなどの合金含有量の高い高張力冷延鋼板がラインに投入されたときには、その信号を鋼板成分、命令ライン速度(通板速度)、焼鈍温度とともにプロセスコンピュータにインプットする。該プロセスコンピュータでは鋼板の酸化、還元条件を予め決定しておいたテーブルから選択し、併せて酸化雰囲気帯21に付設されている外気吸引ブロワー22及び排気ブロワー23の出力並びに制御弁24の開度を決定し、制御信号を発する。該制御信号を受けてこれら外気吸引ブロワー22及び排気ブロワー23並びに制御弁24が作動する。
【0017】
これらの条件は、上記鋼板組成、操業条件、ならびに製品性状の相互関係の解析によって予め得ることができる。たとえば、図4は、鋼板成分Mn:2mass%を含む高張力冷延鋼板を、酸化雰囲気帯の温度を700℃として通板したとき、酸化雰囲気帯で生成される酸化膜厚みと不めっき評点との関係を示すグラフである。これから、この組成を有する鋼板では厚さ1μm以上の酸化膜を生成させたとき、不めっき評点が1以下となることが分かる。なお、不めっき評点の基準は表2に示したものである。
【0018】
また、図5は、同様の鋼板を700℃までの速度25℃/sで昇温し、酸化雰囲気帯に2s滞留させたときの酸化雰囲気帯で生成される酸化膜厚みと酸化雰囲気帯の酸素濃度との関係を示すグラフであり、この場合酸化雰囲気帯の酸素濃度が1.0vol.%以上とすれば必要な1μm以上の厚さの酸化膜が得られることが分かる。
【0019】
適正な酸化膜の厚さ、それを得るための酸化雰囲気帯中の酸素濃度は鋼板組成及び焼鈍炉の操業条件(通板速度、昇温速度等)により異なる。しかしながら、これらの条件は積み上げた操業結果の解析により明確にすることができる。例えば、鋼成分(特にMn及びSi含有量)、板厚、通板速度、炉温等から酸化雰囲気帯中の板温、滞留時間が適切になるように操業条件をプロセスコンピュータによって求め、これにしたがい操業をコントロールするのがよい。いうまでもなく、形成させる酸化膜の厚さは、続く還元帯で還元反応により完了する厚さとしながら、最終的に不めっき防止に足るフレッシュな鉄層を十分形成できる厚さとする。
【0020】
なお、酸化雰囲気帯を通過するときの鋼帯温度は、300〜850℃とするのがよい。温度が低すぎると適正な厚さの酸化膜を形成させるのに時間がかかりすぎ、通板速度を遅くせざるを得ないので経済的でない。、一方、850℃を超えると製品が過度に軟化する傾向があること、また余分のエネルギー投入をするためにコスト的に不利である。
【0021】
このようにして、適正厚さの酸化膜が表面に生成した鋼板は、次いで還元帯に移行され、酸化膜の還元が行われる。還元条件は、水素濃度、露点等により決定されるが、これらは酸化膜の厚さ、鋼板の温度、通板速度等を考慮して予め決定しておく。なお、水素濃度は加熱帯および冷却帯との間で差が小さいほど操業が容易である。
【0022】
なお、還元帯の圧力は酸化雰囲気帯に対し正圧に維持するのがよい。これにより酸化雰囲気帯から空気などの酸化性ガスが侵入することが完全に防止され、フレッシュな鉄層を表面に有するめっき付着性の優れた焼鈍板を得ることができる。
【0023】
このようにして表面層の酸化、ついで還元が行われた鋼板(鋼帯)は次いで冷却帯を通過して、めっきに必要な温度に冷却され、通常の操業条件にしたがいめっき槽に浸漬して製品とされる。上記冷却帯の雰囲気は、還元帯の雰囲気をそのまま持ちきたしてもよいが、通常のHNガス雰囲気としてもよい。なお、この際、冷却帯において高張力鋼板を得るために必要な急冷過程をとることやめっき後合金化処理を行うことを必要に応じて行うことができる。
【0024】
以上、合金成分の高い高張力鋼板に対して本発明の連続溶融亜鉛めっき用インライン焼鈍炉を利用してめっきする場合について説明したが、本発明を通常の軟鋼板(C:0.03mass%程度のほか、Si、Mn、Pなどの元素を僅かに含むもの)にも適用することができ、めっき付着性をより向上させることができる。しかしながら通常の軟鋼板は単純なHNガスで焼鈍しても十分なめっき性を有しているものであるから、その通板時にはインライン焼鈍炉の使用ガスをすべてHNガスに切り替えて操業を単純化するのが経済的である。
【0025】
【実施例】
表1に示す仕様の連続溶融亜鉛めっき用インライン焼鈍炉を用い、これにMnを0.01mass%含有する軟鋼帯(厚さ:1.0mm、幅:1000mm)を速度60m/minで通板した後、Mnを1.0mass%含有する高張力鋼鋼帯(厚さ:1.0mm、幅:1000mm)を速度60m/minで通板した。これら軟鋼帯及び高張力鋼鋼帯通板時には、通板される鋼帯の組成をプロセスコンピュータに入力し、予め決定しておいた条件テーブルから還元条件を選択して酸化雰囲気帯の酸素濃度を算出して制御した。
【0026】
【表1】

Figure 0004168667
【0027】
図6に操業結果を示す。本発明を適用した結果、鋼張力鋼板通板時には酸化雰囲気帯のO2濃度が1vol.%となり、適正な酸化膜の形成とその還元帯での還元が行われた結果、不めっき評点が実質的に0となった。これに対し、本発明を適用せず、単にHNガスで焼鈍した場合には、フレッシュな鉄層の形成が行われなかったため不めっき評点が4ないし5となった。なお、不めっき評点とは先に述べた場合を含め表2に示すものである。
【0028】
【表2】
Figure 0004168667
【0029】
【発明の効果】
本発明は、間接加熱によるインライン焼鈍方式を採用しながら、鋼板の酸化−還元の制御を確実に行い得るようにし、高張力鋼板に溶融亜鉛めっきを不めっき部の発生することなく行うことができる。
【図面の簡単な説明】
【図1】 本発明を適用した連続溶融亜鉛めっき用インライン焼鈍炉の全体構成を示す概念図である。
【図2】 図1のA−A断面図である。
【図3】 酸化雰囲気帯の構造を示す概念図である。
【図4】 酸化雰囲気帯で生成される酸化膜厚みと不めっき評点との関係を示すグラフである。
【図5】 酸化雰囲気帯で生成される酸化膜厚みと酸化雰囲気帯の酸素濃度との関係を示すグラフである。
【図6】 本発明を実施したときの不めっき発生防止効果を示すグラフである。
【符号の説明】
11:インライン焼鈍炉
12:加熱帯
13:冷却帯
14:溶融亜鉛めっき槽
15:還元帯
16:ラジアントチューブ
21:酸化雰囲気帯
22:外気吸引弁
23:ブロワー
24:弁
25:チャンバー
26A、26B:シールロール
S:冷延鋼板(素材)
G:溶融亜鉛めっき鋼帯(製品)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot dip galvanizing facility in which a steel strip is heated and annealed by an in-line method and then subjected to continuous hot dip galvanizing. The present invention relates to an in-line annealing furnace for continuous hot dip galvanizing.
[0002]
[Prior art]
When applying continuous galvanizing to steel sheets (steel strips), generally, an in-line annealing method is used to recrystallize and soften the structure of the cold-rolled steel sheet and to hot-dip galvanize the steel sheet surface. Necessary state is given. In recent years, a so-called all-radiant heating furnace using an indirect heating method has been widely adopted as a heating furnace for performing this annealing.
[0003]
In this all-radiant indirect heating furnace, the cold-rolled steel sheet is thoroughly degreased and cleaned by, for example, electrolytic degreasing, and then the atmosphere of non-oxidation or reduction region for iron (Fe), eg capacity ratio And is annealed with HN gas containing 3 to 10% hydrogen and the balance nitrogen. Therefore, in principle, the surface of the steel plate is not oxidized and is not reduced.
[0004]
In the case of a normal mild steel sheet, a good plating layer can be obtained without any particular problem even if it is annealed by such a method and passed through a plating bath. However, for example, when hot-dip galvanized high-strength steel plates used in automobile outer plates by this method, plating is not performed completely because of alloy components such as Si, Mn or P contained in the high-tensile steel plates. Non-plating may occur. It has been elucidated that this non-plating is caused by the above-mentioned alloy components concentrating and oxidizing on the surface of the steel sheet during annealing, thereby reducing the wettability between the steel sheet surface and the molten zinc in the plating bath. As a countermeasure, there is a means of slightly oxidizing the steel plate surface in the first half of annealing, and then reducing the oxide layer to form a fresh iron (Fe) layer on the surface and plating (for example, JP-A-34210). See the official gazette).
[0005]
[Problems to be solved by the invention]
However, the all-radiant indirect heating furnace is maintained in an HN gas atmosphere having substantially the same composition from the entrance side to the exit side of the furnace, as described in JP-A-7-34210 mentioned above. In addition, oxidizing iron (Fe) on the surface of a steel sheet in an annealing furnace (pre-tropical) and then performing reductive annealing is accompanied by considerable problems in terms of equipment due to atmospheric adjustment problems. In addition, it is difficult to adjust the degree of oxidation according to the material of the steel sheet, and there is a problem that the non-plating of the high-tensile steel sheet cannot be solved completely.
[0006]
In the case of adopting the conventional in-line annealing method by indirect heating, the present invention makes it possible to reliably and easily control the oxidation-reduction of the steel sheet, and generates hot galvanized non-plated portions on the high-tensile steel sheet. It aims at proposing the in-line annealing furnace for continuous hot dip galvanization which can be performed without any.
[0007]
[Means for Solving the Problems]
The present inventor uses an indirect heating method, a so-called all-radiant type heating furnace, to oxidize the steel plate surface when annealing the plating steel plate, and then to reduce and plate a fresh iron (Fe) layer. In order to prevent the atmosphere in both zones from mixing, provide an oxidizing atmosphere zone that draws air into the heating zone to create the atmosphere necessary for oxidation, and then provide a reduction zone. As a result, the inventors have found that the intended purpose can be surely achieved, and have made the present invention.
[0008]
The present invention provides an inline annealing method for continuous hot dip galvanization by an indirect heating method in which a heating zone is provided with an oxidizing atmosphere zone and then a reduction zone, the steel zone passing through the heating zone is surrounded by the heating zone, and an outside air suction blower and A chamber to which an exhaust blower is connected is arranged to form an oxidizing atmosphere zone, and the atmosphere in the chamber is maintained at a negative pressure with respect to the front and rear zones and the atmosphere .
[0009]
The oxidizing atmosphere zone, not good to dispose the band steel plate temperature is 300~850 ℃.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a conceptual diagram showing the overall configuration of an in-line annealing furnace 11 for continuous hot dip galvanization to which the present invention is applied, and FIG. The steel strip (material) S is heated to a predetermined annealing temperature by the heating zone 12, cooled to the hot dip galvanizing temperature by the cooling zone 13, and plated by a predetermined thickness by the hot dip galvanizing tank 14, and hot dip galvanized. Steel sheet (product) G. The heating zone 12 means a heating zone in a broad sense including a so-called temperature rising zone, heating zone, and soaking zone.
[0011]
In the present annealing furnace 11, a radiant tube is attached to the wall surface, and the steel sheet is heated by radiant heat generated therefrom. As the annealing atmosphere, HN gas is used unless otherwise specified, and the dew point of the in-furnace gas is -20 to -40 ° C. Therefore, as a whole, annealing is performed in the atmosphere of the reduction region.
[0012]
In the in-line annealing furnace 11 for continuous hot dip galvanizing according to the present invention, an oxidizing atmosphere zone 21 is provided in the heating zone 12 and then a reduction zone 15 is provided in order to oxidize and then reduce the surface of the steel sheet as necessary during the annealing process. It is done. As described above, the heating zone 12 refers to a heating zone in a broad sense including a so-called heating zone, heating zone, and soaking zone, and the reduction zone 15 can be provided in any of these zones.
[0013]
As shown in FIG. 2, an outside air suction blower 22 and an exhaust blower 23 are provided in the oxidizing atmosphere zone 21, and the pressure in the oxidizing atmosphere zone 21 is adjusted by adjusting the output and the opening degree of the control valve 24. Can be adjusted to a negative pressure with respect to the front and rear bands and the atmospheric pressure. As a result, outside air (air) can be introduced into the zones before and after the oxidizing atmosphere zone 21 without leaking the oxidizing gas.
[0014]
Specifically, as shown in FIG. 3, a refractory brick chamber 25 is disposed so as to surround the steel strip, and as means for improving the airtightness of the oxidizing atmosphere zone 21 at the entrance and exit of the steel strip, for example, Seal rolls 26A and 26B are arranged. The chamber 25 is provided with an outside air intake port and an exhaust port (not shown), to which an outside air suction blower 22 and an exhaust blower 23 are connected. The chamber 25 may be made of steel.
[0015]
On the other hand, as shown in FIG. 1, the reduction zone 15 is positioned after the oxidizing atmosphere zone, and is responsible for heating and soaking in the reduction and annealing steps of the steel strip surface.
[0016]
In order to anneal a steel sheet using the in-line annealing furnace 11 for continuous hot dip galvanizing, the following is performed. First, when a high-tensile cold-rolled steel sheet having a high alloy content such as Si or Mn is introduced into the line, the signal is input to the process computer together with the steel sheet component, command line speed (sheet feeding speed), and annealing temperature. In the process computer, the oxidation and reduction conditions of the steel plate are selected from a predetermined table, and the outputs of the outside air suction blower 22 and the exhaust blower 23 attached to the oxidation atmosphere zone 21 and the opening degree of the control valve 24 are also selected. And issue a control signal. In response to the control signal, the outside air suction blower 22, the exhaust blower 23 and the control valve 24 are operated.
[0017]
These conditions can be obtained in advance by analyzing the correlation between the steel sheet composition, the operating conditions, and the product properties. For example, FIG. 4 shows that when a high-tensile cold-rolled steel sheet containing a steel plate component Mn: 2 mass% is passed through at a temperature of 700 ° C. in the oxidizing atmosphere zone, the oxide film thickness generated in the oxidizing atmosphere zone and the unplated score It is a graph which shows the relationship. From this, it can be seen that the steel sheet having this composition has a non-plating score of 1 or less when an oxide film having a thickness of 1 μm or more is formed. The standard of the non-plating score is shown in Table 2.
[0018]
FIG. 5 shows the thickness of the oxide film formed in the oxidizing atmosphere zone and the oxygen in the oxidizing atmosphere zone when a similar steel plate is heated at a rate of 25 ° C./s up to 700 ° C. and retained in the oxidizing atmosphere zone for 2 s. It is a graph showing the relationship with the concentration, and in this case, it can be seen that if the oxygen concentration in the oxidizing atmosphere zone is 1.0 vol.
[0019]
The appropriate thickness of the oxide film and the oxygen concentration in the oxidizing atmosphere zone for obtaining it vary depending on the steel plate composition and the operating conditions of the annealing furnace (such as the plate feed rate and the temperature rise rate). However, these conditions can be clarified by analyzing the accumulated operation results. For example, the operating conditions are determined by a process computer so that the steel temperature (particularly Mn and Si contents), plate thickness, plate speed, furnace temperature, etc., the plate temperature in the oxidizing atmosphere zone and the residence time are appropriate. Therefore, it is better to control the operation. Needless to say, the thickness of the oxide film to be formed is set to a thickness that can finally form a fresh iron layer sufficient to prevent non-plating while maintaining a thickness that is completed by a reduction reaction in the subsequent reduction zone.
[0020]
The steel strip temperature when passing through the oxidizing atmosphere zone is preferably 300 to 850 ° C. If the temperature is too low, it takes too much time to form an oxide film with an appropriate thickness, and it is uneconomical because the plate passing speed must be slowed down. On the other hand, if the temperature exceeds 850 ° C., the product tends to soften excessively, and it is disadvantageous in terms of cost because extra energy is input.
[0021]
In this way, the steel sheet having an appropriate thickness of oxide film formed thereon is then transferred to the reduction zone, and the oxide film is reduced. The reduction conditions are determined by the hydrogen concentration, the dew point, etc., which are determined in advance in consideration of the thickness of the oxide film, the temperature of the steel plate, the plate passing speed, and the like. The smaller the difference between the heating zone and the cooling zone, the easier the operation.
[0022]
The pressure in the reduction zone is preferably maintained at a positive pressure relative to the oxidizing atmosphere zone. This completely prevents the intrusion of an oxidizing gas such as air from the oxidizing atmosphere zone, and an annealed plate having a fresh iron layer on the surface and excellent in plating adhesion can be obtained.
[0023]
The steel plate (steel strip) subjected to the oxidation of the surface layer in this way and then reduced is then passed through the cooling zone, cooled to a temperature required for plating, and immersed in a plating tank according to normal operating conditions. It is regarded as a product. The atmosphere of the cooling zone may be the same as that of the reduction zone, but may be a normal HN gas atmosphere. At this time, it is possible to perform a rapid cooling process necessary for obtaining a high-strength steel sheet in the cooling zone or to perform an alloying treatment after plating as necessary.
[0024]
As mentioned above, although the case where it plated using the in-line annealing furnace for continuous hot-dip galvanizing of this invention with respect to a high-tensile steel plate with a high alloy component was explained, the present invention is a normal mild steel plate (C: about 0.03 mass%) In addition, it can also be applied to those that contain a slight amount of elements such as Si, Mn, P, etc., and the plating adhesion can be further improved. However, since ordinary mild steel sheets have sufficient plating properties even when annealed with simple HN gas, the operating gas is simplified by switching all the gas used in the in-line annealing furnace to HN gas. It is economical to do.
[0025]
【Example】
After using an in-line annealing furnace for continuous hot-dip galvanizing with the specifications shown in Table 1, a mild steel strip containing 0.01 mass% of Mn (thickness: 1.0 mm, width: 1000 mm) was passed at a speed of 60 m / min. A high-strength steel strip containing 1.0 mass% Mn (thickness: 1.0 mm, width: 1000 mm) was passed at a speed of 60 m / min. When passing through these mild steel strips and high-strength steel strips, the composition of the strips to be passed is input to the process computer and the reduction conditions are selected from a pre-determined condition table to set the oxygen concentration in the oxidizing atmosphere zone. Calculated and controlled.
[0026]
[Table 1]
Figure 0004168667
[0027]
FIG. 6 shows the operation results. As a result of applying the present invention, the O 2 concentration in the oxidizing atmosphere zone becomes 1 vol.% When the steel tension steel plate is passed, and as a result of forming an appropriate oxide film and reducing in the reducing zone, the non-plating score is substantially It became 0. On the other hand, when the present invention was not applied and the film was simply annealed with HN gas, the non-plating score was 4 to 5 because a fresh iron layer was not formed. In addition, a non-plating grade is shown in Table 2 including the case mentioned previously.
[0028]
[Table 2]
Figure 0004168667
[0029]
【The invention's effect】
The present invention makes it possible to reliably control oxidation-reduction of a steel sheet while adopting an in-line annealing method by indirect heating, and can perform hot dip galvanizing on a high-strength steel sheet without generation of an unplated portion. .
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an overall configuration of an in-line annealing furnace for continuous hot dip galvanization to which the present invention is applied.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 is a conceptual diagram showing the structure of an oxidizing atmosphere zone.
FIG. 4 is a graph showing the relationship between the thickness of an oxide film generated in an oxidizing atmosphere zone and the non-plating score.
FIG. 5 is a graph showing the relationship between the thickness of an oxide film generated in an oxidizing atmosphere zone and the oxygen concentration in the oxidizing atmosphere zone.
FIG. 6 is a graph showing the effect of preventing the occurrence of non-plating when the present invention is carried out.
[Explanation of symbols]
11: In-line annealing furnace
12: Heating zone
13: Cooling zone
14: Hot dip galvanizing tank
15: Reduction zone
16: Radiant tube
21: Oxidizing atmosphere zone
22: Outside air suction valve
23: Blower
24: Valve
25: Chamber
26A, 26B: Seal roll
S: Cold rolled steel sheet (material)
G: Hot-dip galvanized steel strip (product)

Claims (2)

加熱帯に酸化雰囲気帯次いで還元帯が設けられた間接加熱方式による連続溶融亜鉛めっき用インライン焼鈍炉において、前記加熱帯に該加熱帯を通過する鋼帯を取り囲み、外気吸引ブロワー及び排気ブロワーが接続されたチャンバーを配置して酸化雰囲気帯を構成するとともに、該チャンバー内の雰囲気を前後の帯域及び大気に対して負圧に維持してなることを特徴とする連続溶融亜鉛めっき用インライン焼鈍炉。 In an in-line annealing furnace for continuous hot dip galvanization by an indirect heating method in which an oxidizing atmosphere zone and then a reduction zone are provided in the heating zone, the steel zone passing through the heating zone is surrounded by the heating zone, and an outside air suction blower and an exhaust blower are connected An in- line annealing furnace for continuous hot dip galvanizing , wherein the chamber is arranged to constitute an oxidizing atmosphere zone and the atmosphere in the chamber is maintained at a negative pressure relative to the front and rear zones and the atmosphere . 酸化雰囲気帯は、鋼板温度が300〜850℃となる帯域に設けられていることを特徴とする請求項1記載の連続溶融亜鉛めっき用インライン焼鈍炉。  The in-line annealing furnace for continuous hot-dip galvanizing according to claim 1, wherein the oxidizing atmosphere zone is provided in a zone where the steel plate temperature is 300 to 850 ° C.
JP2002157263A 2002-05-30 2002-05-30 In-line annealing furnace for continuous hot dip galvanizing Expired - Fee Related JP4168667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157263A JP4168667B2 (en) 2002-05-30 2002-05-30 In-line annealing furnace for continuous hot dip galvanizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157263A JP4168667B2 (en) 2002-05-30 2002-05-30 In-line annealing furnace for continuous hot dip galvanizing

Publications (2)

Publication Number Publication Date
JP2003342645A JP2003342645A (en) 2003-12-03
JP4168667B2 true JP4168667B2 (en) 2008-10-22

Family

ID=29773200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157263A Expired - Fee Related JP4168667B2 (en) 2002-05-30 2002-05-30 In-line annealing furnace for continuous hot dip galvanizing

Country Status (1)

Country Link
JP (1) JP4168667B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068169A1 (en) * 2004-12-21 2006-06-29 Kabushiki Kaisha Kobe Seiko Sho Method and facility for hot dip zinc plating
KR100627478B1 (en) * 2004-12-27 2006-09-25 주식회사 포스코 Hot dipping apparatus and method
BRPI0617390B1 (en) * 2005-10-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation METHOD OF CONTINUOUS CUTTING AND COATING BY HOT IMMERSION AND CONTINUOUS CUTTING AND COATING SYSTEM BY HOT IMMERSION OF STEEL PLATES CONTAINING Si
JP4797601B2 (en) * 2005-11-29 2011-10-19 Jfeスチール株式会社 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
BE1017086A3 (en) 2006-03-29 2008-02-05 Ct Rech Metallurgiques Asbl PROCESS FOR THE RECLAIMING AND CONTINUOUS PREPARATION OF A HIGH STRENGTH STEEL BAND FOR ITS GALVANIZATION AT TEMPERATURE.
JP4718381B2 (en) * 2006-06-21 2011-07-06 株式会社神戸製鋼所 Hot dip galvanizing equipment
FR2920439B1 (en) 2007-09-03 2009-11-13 Siemens Vai Metals Tech Sas METHOD AND DEVICE FOR THE CONTROLLED OXIDATION / REDUCTION OF THE SURFACE OF A CONTINUOUSLY STRAY STEEL BAND IN A RADIANT TUBE OVEN FOR ITS GALVANIZATION
DE102011050243A1 (en) 2011-05-10 2012-11-15 Thyssenkrupp Steel Europe Ag Apparatus and method for the continuous treatment of a flat steel product
KR101568547B1 (en) * 2013-12-25 2015-11-11 주식회사 포스코 Equipment for continuous annealing strip and method of continuous annealing same
FR3046423B1 (en) 2015-12-30 2018-04-13 Fives Stein DEVICE AND METHOD FOR REALIZING CONTROLLED OXIDATION OF METAL BANDS IN A CONTINUOUS PROCESSING FURNACE

Also Published As

Publication number Publication date
JP2003342645A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
WO2021166350A1 (en) Method for producing high-strength hot dipped galvanized steel sheet
JP2016084543A (en) Hot-dip plating steel sheet excellent in plating adhesion and method for manufacturing the same
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP5513216B2 (en) Method for producing galvannealed steel sheet
JP5564784B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4912684B2 (en) High-strength hot-dip galvanized steel sheet, production apparatus therefor, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP4168667B2 (en) In-line annealing furnace for continuous hot dip galvanizing
JP5444752B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
EP3502300B1 (en) Method for producing high strength hot-dip galvanized steel sheet
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JP5555992B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JP2019167576A (en) Method for manufacturing hot-dip galvanized steel sheet
JP2007169752A (en) Method for manufacturing galvanized steel sheet superior in adhesiveness of plating film
JPH08291379A (en) Method for galvannealing p-added high tensile strength steel
WO2017154494A1 (en) Production method for high-strength hot-dip galvanized steel sheet
JP2007277627A (en) Method for producing high strength steel sheet and high strength plated steel sheet, and annealing furnace and production equipment used for producing them
JPH0748662A (en) Production of galvanized steel sheet excellent in plating adhesion and appearance
JP3257301B2 (en) Manufacturing method of hot-dip galvanized steel sheet from hot-rolled steel sheet
JP2001262303A (en) Method for producing alloyed galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property
JP2936963B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent blister resistance
JP3872718B2 (en) Method for improving plating properties of galvannealed steel sheets
JPH05195084A (en) Heat treatment method of continuous galvanized steel sheet
JP2001026852A (en) Production of galvanized steel sheet and galvannealed steel sheet
JPH0741923A (en) Production of hot dip galvanized steel sheet excellent in adhension of zinc layer and appearance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4168667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees