JP4165629B2 - Power measurement device for measuring received signal power and received interference power - Google Patents

Power measurement device for measuring received signal power and received interference power Download PDF

Info

Publication number
JP4165629B2
JP4165629B2 JP2000125312A JP2000125312A JP4165629B2 JP 4165629 B2 JP4165629 B2 JP 4165629B2 JP 2000125312 A JP2000125312 A JP 2000125312A JP 2000125312 A JP2000125312 A JP 2000125312A JP 4165629 B2 JP4165629 B2 JP 4165629B2
Authority
JP
Japan
Prior art keywords
power
signal
received
received signal
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000125312A
Other languages
Japanese (ja)
Other versions
JP2001313588A (en
Inventor
友直 湯沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to JP2000125312A priority Critical patent/JP4165629B2/en
Publication of JP2001313588A publication Critical patent/JP2001313588A/en
Application granted granted Critical
Publication of JP4165629B2 publication Critical patent/JP4165629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、符号分割多元接続(CDMA)通信装置に関し、さらに詳しくは受信電力中の信号電力および雑音干渉電力を求める電力測定装置に関する。
【0002】
【従来の技術】
近年CDMA通信を利用するデジタル無線電話システムが急速に普及している。CDMA通信では、信号送信時に特定の拡散符号と呼ばれる擬似乱数列、例えばPN符号を用いて、送信信号を1シンボル毎に乗算(拡散)し、受信時に送信時の拡散符号と同じ符号を用いて元の信号に変換する逆拡散処理を行う。送受信時にこのような変換処理を施すことにより、同一の符号で拡散/逆拡散を行う送受信間のみで通信が成立する。送信時に拡散処理を行うため、例えば、1シンボルを128チップ(ビット)で拡散すると、通信帯域幅は極めて広くなるが、拡散および逆拡散符号の一致した基地局と移動局のみに通信回線が設定されるので、その通信帯域に収容できる回線数は飛躍的に増大する。
【0003】
CDMA通信方式では、同一搬送波上に多数の回線が設定され、各回線は上述した拡散符号の相違のみで識別される。しかしながら、同一セル内では同じ搬送周波数が使用されるので、拡散符号が異なっていても回線同士では相互干渉として影響を及ぼす。各移動局からの送信電力が同一であるとすると、基地局近傍において、基地局に近い移動局からの送信電波の強度は遠くにある移動局のそれと比べると強い。この結果、基地局から遠い移動局は基地局から近い移動局の送信電波により干渉を受け正常に信号を受信することが困難になる。そこで、一般に移動局は、基地局との距離が近くなるに従い送信電力の強度を弱める制御を行う。
【0004】
図1は、上述した送信電力を制御する従来技術の一例を示す移動機10の概略ブロック図である。基地局と移動局との間の通信チャネルにはパイロット・チャネル、シンク・シャネル、トラフィック・チャネル等の様々なチャネルが用意され、これらのチャネルを介して両局間における制御信号、音声信号などの信号が伝送される。移動局の電力制御のために、基地局は基地局の送信電力の強度を移動局に送信し、移動局は受信した信号強度を観測し、送信電力と受信電力との差から送信信号が回線上でどの程度減衰したかを求める。一般に、送信信号の減衰は基地局と移動局との距離に比例していると推定され、その減衰の程度を求めることにより、移動局の送信信号の強度を制御することが可能となる。換言すれば、移動局は、受信端における受信信号の電力を測定することにより基地局と移動局との距離を推定する。その推定された距離に基づき、移動局の送信電力を決定する。本明細書では、基地局から送られる上記パイロット・チャネルが同じシンボル符号を繰り返し送信しているので、パイロット・チャネル上のシンボル符号の電力を測定する。
【0005】
図1は従来の信号電力の測定装置10を示す。基地局から伝送された送信信号は、アンテナ11を介して受信回路12に送られる。受信回路12は、周波数変換を行った後にベースバンドの受信信号を抽出し、自動利得制御回路13へ送る。自動利得制御回路13は、受信信号の強度を一定に保つため、回路13の入力信号の包絡線を抽出し、その包絡線の変化に応じて回路13の利得を制御する。即ち、回路13の出力信号14は、A/D変換器15に与えられるとともに、検波回路16に与えられ、そこで出力信号14の包絡線を検出する。検波回路16の出力17は、ループ利得を与える増幅回路18に送られるとともに、出力17をデジタルに変換するA/D変換器19に入力される。後述するように、出力17は、現在受信しているチャネルの全受信電力P1に相当する。増幅回路18に与えられた出力17は、増幅された後、制御信号として自動利得制御回路13の利得を与える。
【0006】
A/D変換器15は、出力信号14をデジタルに変換し、その信号列は基地局における拡散処理後の信号列に対応する。そこでその信号列は乗算回路20において基地局で用いられたのと同じ符号列である逆拡散符号21と乗算することにより、逆拡散処理が行われる。乗算回路20の出力は、復調回路22において、各シンボル毎に積分され、基地局から送信された信号P0が再現される。
【0007】
次に、受信信号の電力とその信号に含まれる雑音について検討する。図2は、受信回路12からの出力信号に含まれる信号電力Sc、雑音電力Ncおよび干渉電力Icの構成をそれぞれ表わす。受信回路12からの出力信号は、逆拡散処理前であるので、送信局での拡散処理におけるチップ・レートに相当する帯域幅fcを有している。信号電力Scは所望の信号が有する電力であり、雑音電力Ncは雑音電力で受信回路12において発生した雑音が支配的である。また、干渉電力Icは、CDMA通信特有の雑音で、異なる拡散符号によって生成された送信信号によって引き起こされる雑音である。これら信号電力Sc、雑音電力Ncおよび干渉電力Icからなる入力信号を逆拡散符号で逆拡散および積分処理した後の各電力の配分は、図3に示すとおりとなる。つまり、帯域幅はシンボル・レートに相当する幅fsに狭まり、信号電力Ss、雑音電力Nsおよび干渉電力Isからなる。干渉を別途キャンセルしなかぎり逆拡散符号との相関関係によって発生した干渉電力Isと雑音電力Nsを識別することができないので、干渉電力Isと雑音電力NsはまとめてNIsとして識別される。従って、逆拡散後の信号(Ss+NIs)から信号電力(Ss)と雑音電力(NIs)とを求め、その比をA/D変換器19の出力P1(アンテナ入力電力に相当する。)に乗じることにより、アンテナ11に入力される信号電力が求められる。
【0008】
【発明が解決しようとする課題】
図4は、アンテナ入力(dBm)と測定アンテナ入力電力との関係を示すグラフである。アンテナ11に入力される信号電力が増大するにつれ、出力P1はその入力に比例して大きくなる。逆に、アンテナ11への入力信号の電力を小さくすれば、同様に出力P1も減少する。しかしながら、アンテナ入力信号の電力がある値(例えば、‐110dBm:この数値は受信機およびその周辺回路の設計によって異なる。)以下になると、入力をいくら小さくしてもA/D変換器19の出力P1は小さくならず、ほぼ一定の値を与える。アンテナ入力が‐100 dBmを下回ると減少の変化が少なくなり、‐110 dBm以下ではほぼ一定となる。これは、受信回路12で発生する内部熱雑音が常時出力され、検波回路16および増幅回路18を介して自動利得制御回路13の利得を制御するからである。
【0009】
他方、受信した信号電力について検討すると、アンテナに入力された信号電力がある値(例えば‐100 dBm)を越える場合、内部熱雑音電力より十分大きいとみなせるので、逆拡散後の信号電力は一定の値を示す。図5は、干渉電力がないとした場合におけるアンテナ入力における信号電力(横軸)と、逆拡散後に得られる信号電力値(縦軸)との関係を示す。図から分かるように、‐100 dBmを越える領域では、信号電力が雑音電力より大きく支配的であるので、自動利得制御回路13の働きにより、信号電力はほぼ一定になる。これに対し、‐100 dBm以下では内部雑音電力と信号電力との相対比に応じて変化するため直線的には減少しない。
【0010】
以上のように、従来、受信信号電力を求めるためには、受信電力がある閾値を境にして異なる求め方をする必要があり、これは非常に煩雑であるとともに、アンテナ入力電力が‐110 dBmないし‐100 dBmの範囲である場合は、2つの求め方を組み合わせて算出する必要があり、受信信号電力を求める処理は単純ではない。また、自動利得回路はアナログ回路であり、自動利得回路の出力が一定(飽和)となるレベルが変動するおそれがある。さらに、図4に示されるように、内部雑音電力が支配的な領域(‐100 dBm以下の領域)で、干渉電力が存在すると受信電力を正しく計算できないという問題がある。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決するために成されたもので、アンテナ入力電力の大きさに影響されることなく、場合分けをすることなく受信信号電力および受信干渉電力を求めることのできる電力測定装置を提供する。
【0012】
本発明は、スペクトラム拡散された信号を受信し、所望の受信信号の受信信号電力を測定する電力測定装置において、スペクトラム拡散された信号を受信し、受信信号を抽出する受信手段と、受信信号の包絡線レベルに応じた制御信号に基づいて、受信信号の強度を一定に維持する利得制御手段と、利得制御手段の出力信号に基づいて、全受信電力値(PR)を算出する第1演算手段と、利得制御手段の出力信号に対し逆拡散処理を行う逆拡散処理手段と、逆拡散処理手段の出力信号に基づいて、受信信号の信号電力値(Ps)を算出する第2演算手段と、制御信号に基づいて受信手段の入力における全電力値(Rr)を算出する受信電力演算手段と、第1演算手段の出力である全受信電力値(PR)、第2演算手段の出力である信号電力値(Ps)および受信電力演算手段の出力である全電力値(Rr)に基づいて受信信号の受信信号電力値(Sr)を算出する信号電力演算手段と、から構成される電力測定装置である。さらに、本発明において、受信信号の受信電力(Sr)は、式Rr・(PS/PR)を演算することにより求められる。
【0013】
【実施例】
図6は、本発明を一実施例である符号分割多元接続(CDMA)通信方式の受信機における電力測定装置30の概略ブロック図である。CDMA通信方式の受信機は、前述したように基地局との間で送信電力を制御する必要がある。本発明は、CDMA通信方式の受信機に適用でき、W−CDMAにも応用が可能である。
【0014】
基地局から所定の拡散符号で拡散された信号が送信されるとする。移動局において、送信信号の電力の減衰を検出するためには、基地局からの送信信号パターンが移動局側で判明していることが望ましい。そこで、ここでは基地局から既知の同じ信号パターンが繰り返し送られるN個のパイロット・シンボル(P1,P2,・・・PN)の受信電力を求め、その受信電力に基づき移動局からの送信電力を制御する。
【0015】
次に、図6に示された電力測定装置30の動作を説明する。基地局から送られた送信信号は、アンテナ31によって受信され、高周波増幅回路32で増幅される。増幅された高周波増幅回路32の出力信号は、ミキサ33でローカル周波数信号と混合されて中間周波(IF)信号に変換される。このIF信号は、自動利得制御回路34に入力され、利得制御信号35に応答して利得制御が行われ、ミキサ36に与えられる。利得制御されたIF信号はミキサ36で再びローカル周波数信号と混合され、ベース・バンド信号37に変換される。なお、ベース・バンド信号は、一般に、複素記号で表現されるが、簡略化のため便宜上実数表現で記述する。ベース・バンド信号37は、当業者でよく知られたナイキスト・フィルタ38で波形整形された後、A/D変換器39でアナログ信号からデジタル信号に変換される。
【0016】
ベース・バンド信号37は、さらに検波回路40に与えられ、その包絡線を検出し出力する。検波回路40は、よく知られたダイオード検波回路を用いることができる。検波回路40からの出力は受信中のチャネルの全電力に相当し、この全電力値は、後述するように受信中の信号電力を算出する際に利用される。検波回路40の出力は、ローパス・フィルタ41で高域信号を濾波したの後、利得制御信号として自動利得制御回路34に与えられる。ローパス・フィルタ41の時定数は、例えば、100μSないし1mSの値が選ばれる。自動利得制御回路34は、利得制御信号35に応じて、IF信号の電力強度を一定に保持すべく制御する。
【0017】
A/D変換器39から出力されるデジタル信号は、乗算回路42で逆拡散符号43と掛け合わされ逆拡散演算が実行される。基地局で拡散処理に使用された拡散符号と同一である逆拡散符号を有する移動局のみが正しく復調処理が行われることになる。A/D変換器39からのデジタル信号のサンプル列をxnとし、逆拡散符号列をcnとすると、逆拡散処理を行った乗算器42の出力信号列ynは式(1)で表わされる。
【0018】
【数1】
n=cn・xn
次に、出力信号列ynは、積分回路44に与えられ、シンボル毎に積算される。すなわち、i番目のシンボル出力Piは、式(2)で表わされる。
【数2】

Figure 0004165629
ここで、Npはパイロット・シンボルの数、Nsはシンボルあたりのチップ数を表わし、iはパイロット・シンボルの番号(0≦i≦Np‐1)を示す。
【0019】
基地局から送信される各Piの各位相角と振幅は既知であるから、適当に回転およびスケーリングを行うことによりすべての送信パイロット・ベクトルPiは等価なベクトルと考えることができる。そこで、位相角の影響を無視すると、全パイロット・シンボルの平均ベクトルP(バー)は、式(3)となる。
【数3】
Figure 0004165629
雑音の性質により受信信号の平均ベクトルP(バー)に含まれる雑音は1/Npに減少する。従って、Npを適当な数(たとえば4ないし8)以上に設定すれば、平均ベクトルP(バー)は信号電力のみからなると考えられる。さらに、平均ベクトルP(バー)と各シンボル出力Piとの差分ベクトルは、雑音ベクトルと考えられる。
【0020】
そこで、積分回路44のシンボル出力Piを、平均ベクトル演算回路45に送り、式(3)に従って平均ベクトルP(バー)を算出する。この平均ベクトルP(バー)はさらに信号電力演算回路46に与えられ、式(4)に示す平均ベクトルP(バー)の絶対値を二乗することにより、信号電力PSが求められる。
【数4】
Figure 0004165629
また、雑音・干渉電力PNIは、受信したパイロット・シンボルPiの分散と考えられるので、雑音電力演算回路47は、雑音・干渉電力PNIを式(5)に従って算出する。
【数5】
Figure 0004165629
次に、A/D変換器39の出力信号列xnが電力演算器48に与えられ、この信号列から全電力PRが式(6)により求められる。
【数6】
Figure 0004165629
ここに、αはシンボルあたりのチップ数NSと逆拡散符号列の絶対値|cn|によって決まる定数で、式(7)で求められ、全電力PRを信号電力PSおよび雑音・干渉電力PNIと直接比較するために、これらのスケーリングを一致させるために使用される。
【数7】
Figure 0004165629
信号電力PS、雑音・干渉電力PNI、および全電力PRは、図7に示すように、帯域fsでシンボル当たりに換算した電力をそれぞれ与えるが、これらの間には式(8)の関係がある。
【数8】
Figure 0004165629
ここで、PIは干渉電力の中で拡散符号の直交性によって、雑音・干渉電力PNIに寄与しない分を示し、逆拡散処理を行うと無くなる。
【0021】
次に、検波回路40の出力信号をローパス・フィルタ49に与え、その出力をA/D変換器50に加える。ローパス・フィルタ49の時定数は通常10ms程度に選ばれ、その時定数程度の時間平均をとったからアンテナ受信端における入力電力Rrを求めることができる。この入力電力Rrは、信号/雑音電力演算回路51に送出され、以下述べるように、アンテナ入力端における信号、雑音電力がそれぞれ計算される。
【0022】
信号電力PS、雑音電力PNI、全電力PRは、ローパス・フィルタ49とほぼ同じ時定数を有するローパス・フィルタ52,53,54にそれぞれ与えられる。ローパス・フィルタ52,53,54は、どのような構成であってもよいが、例えば、式(9)ないし(11)で示す計算式を実行する演算回路でもよい。
【数9】
Figure 0004165629
【数10】
Figure 0004165629
【数11】
Figure 0004165629
ここで、Mは平均化するサンプル数(スロット数)で、ローパス・フィルタ61と同等の時定数となるように選ばれる。また、mはサンプルの番号である。ローパス・フィルタ52,53,54の出力PSd,PNId,PRdは、それぞれ信号/雑音電力演算回路51に送られる。
【0023】
信号/雑音電力演算回路51は、入力電力Rr、およびローパス・フィルタ52,53,54の出力である信号電力PSd、雑音電力PNId、全電力PRdからアンテナ端における信号電力Srおよび雑音電力Nrが、式(12)および式(13)から求められる。
【数12】
Figure 0004165629
【数13】
Figure 0004165629
以上のように、本実施例に従えば、入力レベルに応じて計算方法を切り換える必要がなく、また自動制御増幅回路の動作状態に影響されずに入力信号電力を求めることができる。また、自動制御増幅回路あるいはA/D変換器までの利得を予め求め記憶しておく必要がない。さらに、干渉電力や雑音電力に対していかなる条件を設ける必要がない。
【図面の簡単な説明】
【図1】送信電力を制御する従来技術の一例を示す移動機の概略ブロック図である。
【図2】受信回路からの出力信号に含まれる信号電力Sc、雑音電力Ncおよび干渉電力Icそれぞれの構成を表わす
【図3】逆拡散後の信号電力Sc、雑音電力Ncおよび干渉電力Icからなる入力信号の各電力配分を示す
【図4】アンテナ入力(dBm)と測定アンテナ入力電力との関係を示すグラフである。
【図5】干渉電力がないとした場合におけるアンテナ入力における信号電力(横軸)と、逆拡散後に得られる信号電力値(縦軸)との関係を示す。
【図6】本発明を一実施例である符号分割多元接続(CDMA)通信方式の受信機における電力測定装置の概略ブロック図である。
【図7】ベースバンド信号の電力配分を示す図である。
【符号の説明】
10:測定装置
11:アンテナ
12:受信回路
13:自動利得制御回路
14:出力信号
15,19:A/D変換器
16:検波回路
17:出力
18:増幅回路
20:乗算回路
21:逆拡散符号
22:復調回路
30:電力測定装置
31:アンテナ
32:高周波増幅回路
33:ミキサ
34:自動利得制御回路
35:利得制御信号
36:ミキサ
37:ベース・バンド信号
38:ナイキスト・フィルタ
39:A/D変換器
40:検波回路
41:ローパス・フィルタ
42:乗算回路
43:逆拡散符号
44:積分回路
45:平均ベクトル演算回路
46:信号電力演算回路
47:雑音電力演算回路
48:電力演算器
49:ローパス・フィルタ
50:A/D変換器
51:信号/雑音電力演算回路
52,53,54:ローパス・フィルタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a code division multiple access (CDMA) communication apparatus, and more particularly to a power measurement apparatus that obtains signal power and noise interference power in received power.
[0002]
[Prior art]
In recent years, digital radiotelephone systems using CDMA communication have rapidly spread. In CDMA communication, a transmission signal is multiplied (spread) for each symbol using a pseudo random number sequence called a specific spreading code at the time of signal transmission, for example, a PN code, and the same code as the spreading code at the time of transmission is used at the time of reception. Despreading processing to convert the original signal is performed. By performing such conversion processing at the time of transmission / reception, communication is established only between transmission / reception in which spreading / despreading is performed with the same code. Since spreading processing is performed at the time of transmission, for example, if one symbol is spread with 128 chips (bits), the communication bandwidth becomes extremely wide, but a communication line is set only for the base station and mobile station whose spreading and despreading codes match. As a result, the number of lines that can be accommodated in the communication band increases dramatically.
[0003]
In the CDMA communication system, a large number of lines are set on the same carrier wave, and each line is identified only by the difference in the spread code described above. However, since the same carrier frequency is used in the same cell, even if the spreading codes are different, the lines affect each other as mutual interference. Assuming that the transmission power from each mobile station is the same, the intensity of the transmission radio wave from the mobile station near the base station is stronger in the vicinity of the base station than that of the mobile station located far away. As a result, it becomes difficult for a mobile station far from the base station to receive signals normally due to interference by transmission radio waves from a mobile station close to the base station. Therefore, in general, the mobile station performs control to reduce the intensity of transmission power as the distance from the base station becomes shorter.
[0004]
FIG. 1 is a schematic block diagram of a mobile device 10 showing an example of a conventional technique for controlling the transmission power described above. Various channels such as pilot channels, sink channels, traffic channels, etc. are prepared as communication channels between the base station and the mobile station, and control signals, voice signals, etc. between both stations are prepared via these channels. A signal is transmitted. For power control of the mobile station, the base station transmits the strength of the transmission power of the base station to the mobile station, the mobile station observes the received signal strength, and the transmission signal is calculated from the difference between the transmission power and the reception power. Find out how much attenuation has occurred on the line. In general, the attenuation of the transmission signal is estimated to be proportional to the distance between the base station and the mobile station, and the intensity of the transmission signal of the mobile station can be controlled by obtaining the degree of attenuation. In other words, the mobile station estimates the distance between the base station and the mobile station by measuring the power of the received signal at the receiving end. Based on the estimated distance, the transmission power of the mobile station is determined. In the present specification, since the pilot channel transmitted from the base station repeatedly transmits the same symbol code, the power of the symbol code on the pilot channel is measured.
[0005]
FIG. 1 shows a conventional signal power measuring apparatus 10. A transmission signal transmitted from the base station is sent to the receiving circuit 12 via the antenna 11. The receiving circuit 12 extracts a baseband received signal after performing frequency conversion, and sends it to the automatic gain control circuit 13. The automatic gain control circuit 13 extracts the envelope of the input signal of the circuit 13 and controls the gain of the circuit 13 according to the change of the envelope in order to keep the strength of the received signal constant. That is, the output signal 14 of the circuit 13 is supplied to the A / D converter 15 and is also supplied to the detection circuit 16 where the envelope of the output signal 14 is detected. The output 17 of the detection circuit 16 is sent to an amplifier circuit 18 that provides a loop gain, and is also input to an A / D converter 19 that converts the output 17 into digital. As will be described later, the output 17 corresponds to the total received power P1 of the currently received channel. The output 17 given to the amplifier circuit 18 is amplified and then gives the gain of the automatic gain control circuit 13 as a control signal.
[0006]
The A / D converter 15 converts the output signal 14 into a digital signal, and the signal sequence corresponds to the signal sequence after spreading processing in the base station. Therefore, the signal sequence is multiplied by the despreading code 21 which is the same code sequence used in the base station in the multiplication circuit 20 to perform despreading processing. The output of the multiplier circuit 20, the demodulation circuit 22 is integrated for each symbol, it is reproduced signal P 0 transmitted from the base station.
[0007]
Next, the power of the received signal and the noise included in the signal will be examined. FIG. 2 shows the configurations of signal power Sc, noise power Nc, and interference power Ic included in the output signal from receiving circuit 12, respectively. Since the output signal from the receiving circuit 12 is before the despreading process, it has a bandwidth fc corresponding to the chip rate in the spreading process at the transmitting station. The signal power Sc is the power of the desired signal, and the noise power Nc is the noise power and the noise generated in the receiving circuit 12 is dominant. The interference power Ic is noise specific to CDMA communication and is caused by transmission signals generated by different spreading codes. The distribution of each power after despreading and integrating the input signal composed of the signal power Sc, noise power Nc, and interference power Ic with a despreading code is as shown in FIG. That is, the bandwidth is narrowed to the width fs corresponding to the symbol rate, and is composed of the signal power Ss, the noise power Ns, and the interference power Is. Unless the interference is separately canceled, the interference power Is and the noise power Ns generated due to the correlation with the despread code cannot be identified, so the interference power Is and the noise power Ns are collectively identified as NIs. Therefore, the signal power (Ss) and the noise power (NIs) are obtained from the despread signal (Ss + NIs), and the ratio is multiplied by the output P1 (corresponding to the antenna input power) of the A / D converter 19. Thus, the signal power input to the antenna 11 is obtained.
[0008]
[Problems to be solved by the invention]
FIG. 4 is a graph showing the relationship between antenna input (dBm) and measured antenna input power. As the signal power input to the antenna 11 increases, the output P1 increases in proportion to the input. Conversely, if the power of the input signal to the antenna 11 is reduced, the output P1 is similarly reduced. However, if the power of the antenna input signal is less than a certain value (for example, -110 dBm: this value depends on the design of the receiver and its peripheral circuits), the output of the A / D converter 19 can be reduced no matter how small the input is. P1 is not small and gives a substantially constant value. When the antenna input is less than -100 dBm, the change of decrease decreases, and it becomes almost constant below -110 dBm. This is because the internal thermal noise generated in the receiving circuit 12 is always output, and the gain of the automatic gain control circuit 13 is controlled via the detection circuit 16 and the amplification circuit 18.
[0009]
On the other hand, considering the received signal power, if the signal power input to the antenna exceeds a certain value (for example, -100 dBm), it can be considered to be sufficiently larger than the internal thermal noise power, so the signal power after despreading is constant. Indicates the value. FIG. 5 shows the relationship between the signal power at the antenna input (horizontal axis) and the signal power value (vertical axis) obtained after despreading when there is no interference power. As can be seen from the figure, since the signal power is more dominant than the noise power in the region exceeding −100 dBm, the signal power becomes almost constant by the action of the automatic gain control circuit 13. On the other hand, at -100 dBm or less, since it changes according to the relative ratio between the internal noise power and the signal power, it does not decrease linearly.
[0010]
As described above, conventionally, in order to obtain the received signal power, it is necessary to use different ways of obtaining the received power at a certain threshold, which is very complicated and the antenna input power is -110 dBm. If it is within the range of -100 dBm, it is necessary to calculate by combining the two methods, and the process for obtaining the received signal power is not simple. Further, the automatic gain circuit is an analog circuit, and the level at which the output of the automatic gain circuit is constant (saturated) may vary. Furthermore, as shown in FIG. 4, there is a problem that the received power cannot be calculated correctly if interference power exists in a region where the internal noise power is dominant (region of −100 dBm or less).
[0011]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and is a power measurement that can determine received signal power and received interference power without being affected by the magnitude of antenna input power and without dividing the case. Providing equipment.
[0012]
The present invention provides a power measuring apparatus that receives a spectrum spread signal and measures a received signal power of a desired received signal, a receiving unit that receives the spectrum spread signal and extracts the received signal; Based on a control signal corresponding to the envelope level, a gain control means for maintaining the intensity of the received signal constant, and a first calculation for calculating the total received power value (P R ) based on the output signal of the gain control means Means, despread processing means for performing despread processing on the output signal of the gain control means, and second calculation means for calculating the signal power value (P s ) of the received signal based on the output signal of the despread processing means A received power calculation means for calculating the total power value (R r ) at the input of the receiving means based on the control signal, a total received power value (P R ) as an output of the first calculation means, and a second calculation means signal power value as the output (P s A signal power calculating means for calculating and total power value which is the output of the receiving power calculating unit received signal power value of the received signal based on the (R r) and (S r), is a power measurement device comprising. Furthermore, in the present invention, the received power (S r ) of the received signal is obtained by calculating the equation R r · (P S / P R ).
[0013]
【Example】
FIG. 6 is a schematic block diagram of a power measuring apparatus 30 in a receiver of a code division multiple access (CDMA) communication system according to an embodiment of the present invention. As described above, the receiver of the CDMA communication system needs to control transmission power with the base station. The present invention can be applied to a CDMA communication system receiver, and can also be applied to W-CDMA.
[0014]
It is assumed that a signal spread with a predetermined spreading code is transmitted from the base station. In the mobile station, in order to detect the power attenuation of the transmission signal, it is desirable that the transmission signal pattern from the base station is known on the mobile station side. Therefore, here, the received power of N pilot symbols (P 1 , P 2 ,... P N ) in which the same known signal pattern is repeatedly transmitted from the base station is obtained, and the received power from the mobile station is determined based on the received power. Control transmission power.
[0015]
Next, the operation of the power measuring device 30 shown in FIG. 6 will be described. A transmission signal transmitted from the base station is received by the antenna 31 and amplified by the high frequency amplifier circuit 32. The amplified output signal of the high frequency amplifier circuit 32 is mixed with the local frequency signal by the mixer 33 and converted into an intermediate frequency (IF) signal. This IF signal is input to the automatic gain control circuit 34, gain control is performed in response to the gain control signal 35, and is supplied to the mixer 36. The gain-controlled IF signal is mixed with the local frequency signal again by the mixer 36 and converted into a baseband signal 37. Note that the baseband signal is generally expressed by a complex symbol, but for the sake of simplicity, the baseband signal is described by a real number expression. The baseband signal 37 is shaped by a Nyquist filter 38 well known to those skilled in the art, and then converted from an analog signal to a digital signal by an A / D converter 39.
[0016]
The base band signal 37 is further supplied to the detection circuit 40, and its envelope is detected and output. As the detection circuit 40, a well-known diode detection circuit can be used. The output from the detection circuit 40 corresponds to the total power of the channel being received, and this total power value is used when calculating the signal power being received as will be described later. The output of the detection circuit 40 is applied to the automatic gain control circuit 34 as a gain control signal after the high-frequency signal is filtered by the low-pass filter 41. As the time constant of the low-pass filter 41, for example, a value of 100 μS to 1 mS is selected. The automatic gain control circuit 34 controls to keep the power intensity of the IF signal constant according to the gain control signal 35.
[0017]
The digital signal output from the A / D converter 39 is multiplied by the despreading code 43 by the multiplication circuit 42 and the despreading operation is executed. Only the mobile station having the despread code that is the same as the spread code used for the spreading process in the base station is correctly demodulated. The sample sequence of digital signals from the A / D converter 39 and x n, when the despreading code sequence and c n, the output signal sequence y n of the multiplier 42 performs inverse diffusion processing represented by the formula (1) It is.
[0018]
[Expression 1]
y n = c n · x n
Then, the output signal train y n is given to the integrating circuit 44 is accumulated for each symbol. That is, the i-th symbol output P i is expressed by Expression (2).
[Expression 2]
Figure 0004165629
Here, N p represents the number of pilot symbols, N s represents the number of chips per symbol, and i represents a pilot symbol number (0 ≦ i ≦ N p −1).
[0019]
Since each phase angle and amplitude of each P i transmitted from the base station is known, all transmission pilot vectors P i can be considered as equivalent vectors by appropriate rotation and scaling. Therefore, if the influence of the phase angle is ignored, the average vector P (bar) of all pilot symbols is expressed by Equation (3).
[Equation 3]
Figure 0004165629
Due to the nature of the noise, the noise contained in the average vector P (bar) of the received signal is reduced to 1 / N p . Therefore, if N p is set to an appropriate number (for example, 4 to 8) or more, it is considered that the average vector P (bar) consists only of signal power. Further, a difference vector between the average vector P (bar) and each symbol output P i is considered as a noise vector.
[0020]
Therefore, the symbol output P i of the integration circuit 44 is sent to the average vector calculation circuit 45, and the average vector P (bar) is calculated according to the equation (3). The average vector P (bar) is supplied further to the signal power calculation circuit 46, by squaring the absolute value of the average vector P shown in Equation (4) (bar), the signal power P S is determined.
[Expression 4]
Figure 0004165629
Further, since the noise / interference power P NI is considered to be the variance of the received pilot symbols P i , the noise power calculation circuit 47 calculates the noise / interference power P NI according to the equation (5).
[Equation 5]
Figure 0004165629
Then, the output signal train x n of the A / D converter 39 is supplied to the power calculator 48, the total power P R from the signal sequence is obtained by the equation (6).
[Formula 6]
Figure 0004165629
Here, alpha is the absolute value of the number of chips N S despreading code sequence per symbol | c n | at the determined constant, given by Equation (7), the signal power P S and the noise and interference total power P R Used to match these scalings for direct comparison with the power PNI .
[Expression 7]
Figure 0004165629
As shown in FIG. 7, the signal power P S , noise / interference power P NI , and total power P R give power converted per symbol in the band f s , respectively. There is a relationship.
[Equation 8]
Figure 0004165629
Here, P I is the orthogonality of the spreading codes in the interference power, it shows the amount that does not contribute to the noise and interference power P NI, no The reverse spreading processing.
[0021]
Next, the output signal of the detection circuit 40 is given to the low-pass filter 49, and the output is applied to the A / D converter 50. The time constant of the low-pass filter 49 is normally selected to be about 10 ms, and since the time average of the time constant is taken, the input power R r at the antenna receiving end can be obtained. This input power R r is sent to the signal / noise power calculation circuit 51, and the signal and noise power at the antenna input end are respectively calculated as described below.
[0022]
Signal power P S, the noise power P NI, the total power P R is applied respectively to the low-pass filter 52, 53 and 54 having substantially the same time constant as the low pass filter 49. The low-pass filters 52, 53, and 54 may have any configuration. For example, the low-pass filters 52, 53, and 54 may be arithmetic circuits that execute the calculation formulas represented by the equations (9) to (11).
[Equation 9]
Figure 0004165629
[Expression 10]
Figure 0004165629
## EQU11 ##
Figure 0004165629
Here, M is the number of samples (number of slots) to be averaged, and is selected so as to have a time constant equivalent to that of the low-pass filter 61. M is a sample number. The outputs P Sd , P NId , P Rd of the low-pass filters 52, 53, 54 are sent to the signal / noise power calculation circuit 51, respectively.
[0023]
The signal / noise power calculation circuit 51 includes the input power R r , the signal power P Sd , the noise power P NId , and the total power P Rd output from the low-pass filters 52, 53, 54, and the signal power S r at the antenna end. The noise power N r is obtained from the equations (12) and (13).
[Expression 12]
Figure 0004165629
[Formula 13]
Figure 0004165629
As described above, according to the present embodiment, it is not necessary to switch the calculation method according to the input level, and the input signal power can be obtained without being affected by the operation state of the automatic control amplifier circuit. Further, it is not necessary to previously obtain and store the gain up to the automatic control amplification circuit or the A / D converter. Furthermore, it is not necessary to provide any conditions for interference power and noise power.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a mobile device showing an example of a conventional technique for controlling transmission power.
FIG. 2 represents configurations of signal power Sc, noise power Nc, and interference power Ic included in an output signal from the receiving circuit. FIG. 3 includes signal power Sc, noise power Nc, and interference power Ic after despreading. FIG. 4 is a graph showing the relationship between antenna input (dBm) and measured antenna input power.
FIG. 5 shows the relationship between the signal power at the antenna input (horizontal axis) and the signal power value (vertical axis) obtained after despreading when there is no interference power.
FIG. 6 is a schematic block diagram of a power measurement apparatus in a receiver of a code division multiple access (CDMA) communication system according to an embodiment of the present invention.
FIG. 7 is a diagram showing power distribution of baseband signals.
[Explanation of symbols]
10: measuring device 11: antenna 12: receiving circuit 13: automatic gain control circuit 14: output signal 15, 19: A / D converter 16: detector circuit 17: output 18: amplifier circuit 20: multiplier circuit 21: despread code 22: Demodulator 30: Power measuring device 31: Antenna 32: High frequency amplifier 33: Mixer 34: Automatic gain control circuit 35: Gain control signal 36: Mixer 37: Base band signal 38: Nyquist filter 39: A / D Converter 40: Detection circuit 41: Low-pass filter 42: Multiplication circuit 43: Despread code 44: Integration circuit 45: Average vector calculation circuit 46: Signal power calculation circuit 47: Noise power calculation circuit 48: Power calculator 49: Low-pass Filter 50: A / D converter 51: Signal / noise power calculation circuit 52, 53, 54: Low-pass filter

Claims (12)

スペクトラム拡散された信号を受信し、所望の受信信号の受信信号電力を測定する電力測定装置において、
スペクトラム拡散された信号を受信し、前記受信信号を抽出する受信手段と、
前記受信信号の包絡線レベルに応じた制御信号に基づいて、前記受信信号の強度を一定に維持する利得制御手段と、
前記利得制御手段の出力信号に基づいて、全受信電力値(PR)を算出する第1演算手段と、
前記利得制御手段の出力信号に対し逆拡散処理を行う逆拡散処理手段と、
前記逆拡散処理手段の出力信号に基づいて、前記受信信号の信号電力値(Ps)を算出する第2演算手段と、
前記制御信号に基づいて前記受信手段の入力における全電力値(Rr)を算出する受信電力演算手段と、
前記第1演算手段の出力である全受信電力値(PR)、前記第2演算手段の出力である信号電力値(Ps)および前記受信電力演算手段の出力である全電力値(Rr)に基づいて前記受信信号の受信信号電力値(Sr)を算出する信号電力演算手段と、
から構成されることを特徴とする電力測定装置。
In a power measurement device that receives a spread spectrum signal and measures the received signal power of a desired received signal,
Receiving means for receiving a spread spectrum signal and extracting the received signal;
Based on a control signal corresponding to the envelope level of the received signal, gain control means for maintaining the strength of the received signal constant;
First computing means for calculating a total received power value (P R ) based on an output signal of the gain control means;
Despreading processing means for performing despreading processing on the output signal of the gain control means;
Second computing means for calculating a signal power value (P s ) of the received signal based on the output signal of the despreading processing means;
Received power calculation means for calculating a total power value (R r ) at the input of the receiving means based on the control signal;
The total received power value (P R ) that is the output of the first calculating means, the signal power value (P s ) that is the output of the second calculating means, and the total power value (R r ) that is the output of the received power calculating means ) Based on the received signal power value (S r ) of the received signal,
A power measuring device comprising:
前記受信信号の受信電力(Sr)は、式Rr・(PS/PR)を演算することにより求められることを特徴とする請求項1記載の受信信号電力測定装置。The received signal power measuring apparatus according to claim 1, wherein the received power (S r ) of the received signal is obtained by calculating an expression R r · (P S / P R ). 前記利得制御手段の出力信号をデジタルに変換するA/D変換器をさらに含むことを特徴とする請求項1記載の電力測定装置。2. The power measuring apparatus according to claim 1, further comprising an A / D converter for converting an output signal of the gain control means into digital. 前記制御信号は、ナイキスト・フィルタで信号波形が整形されてから前記逆拡散処理手段に加えられることを特徴とする請求項1記載の電力測定装置。2. The power measuring apparatus according to claim 1, wherein the control signal is applied to the despreading means after a signal waveform is shaped by a Nyquist filter. 前記第2演算手段は、前記受信信号に含まれるパイロット・シンボルを1シンボル毎に積分する積分回路を含むことを特徴とする請求項1記載の電力測定装置。2. The power measuring apparatus according to claim 1, wherein the second calculation means includes an integration circuit that integrates a pilot symbol included in the received signal for each symbol. 前記第2演算手段は、前記積分回路から出力される積分された全シンボルの平均を演算して、平均ベクトルを算出する平均ベクトル演算手段を含むことを特徴とする請求項5記載の電力測定装置。6. The power measuring apparatus according to claim 5, wherein the second calculation means includes average vector calculation means for calculating an average vector by calculating an average of all the integrated symbols output from the integration circuit. . 前記第2演算手段は、前記平均ベクトルの絶対値を二乗して前記信号電力値を算出する信号電力演算回路を含むことを特徴とする請求項6記載の電力測定装置。The power measuring apparatus according to claim 6, wherein the second calculation means includes a signal power calculation circuit that calculates the signal power value by squaring the absolute value of the average vector. 1シンボル毎に積分された前記パイロット・シンボルの分散を演算することにより雑音干渉電力(PNI)を求める第3演算手段をさらに含むことを特徴とする請求項6記載の電力測定装置。7. The power measuring apparatus according to claim 6, further comprising third computing means for obtaining a noise interference power ( PNI ) by computing a variance of the pilot symbols integrated for each symbol. 前記受信信号に含まれる雑音干渉電力(NIr)は、式Rr・(PNI/PR)を演算することにより求められることを特徴とする請求項8記載の受信信号電力測定装置。The noise interference power included in the received signal (NI r) the formula R r · (P NI / P R) received signal power measurement apparatus according to claim 8, wherein a obtained by calculating. スペクトラム拡散された受信信号を受信し、前受信信号中に含まれるパイロット・シンボルから受信信号電力を測定する電力測定装置において、
前記受信信号を抽出する受信手段と、
前記受信信号を検波して前記受信信号の包絡線レベルに応じた制御信号を検出し、前記受信信号の振幅を一定に維持する利得制御手段と、
前記利得制御手段の出力信号をデジタルに変換してデジタル受信信号を出力するA/D変換器と、
前記デジタル受信信号に含まれる前記パイロット・シンボルから、全受信電力値(PR)を算出する第1演算手段と、
前記デジタル受信信号に対し逆拡散処理を行う逆拡散処理手段と、
前記逆拡散処理手段の出力信号にに含まれる前記パイロット・シンボルを1シンボル毎に積分し、さらに積分された全ての前記シンボルを平均して求められた平均ベクトルの絶対値を二乗し、前記受信信号の信号電力値(Ps)を算出する第2演算手段と、
前記制御信号をデジタル信号に変換するA/D変換器を含み、前記制御信号に基づいて前記受信手段の入力における全電力値(Rr)を算出する受信電力演算手段と、
前記第1演算手段の出力である全受信電力値(PR)、前記第2演算手段の出力である信号電力値(Ps)および前記受信電力演算手段の出力である全電力値(Rr)に基づいて前記受信信号の受信信号電力値(Sr)を算出する信号電力演算手段と、
から構成されることを特徴とする電力測定装置。
In a power measurement device that receives a spread spectrum received signal and measures received signal power from a pilot symbol included in the previous received signal,
Receiving means for extracting the received signal;
Gain control means for detecting the received signal to detect a control signal according to an envelope level of the received signal, and maintaining the amplitude of the received signal constant;
An A / D converter for converting the output signal of the gain control means into a digital signal and outputting a digital reception signal;
First computing means for calculating a total received power value (P R ) from the pilot symbols included in the digital received signal;
Despreading processing means for performing despreading processing on the digital received signal;
The pilot symbols included in the output signal of the despreading means are integrated for each symbol, and the absolute value of an average vector obtained by averaging all the integrated symbols is squared, and the reception Second calculating means for calculating a signal power value (P s ) of the signal;
An A / D converter that converts the control signal into a digital signal, and a received power calculation unit that calculates a total power value (R r ) at the input of the receiving unit based on the control signal;
The total received power value (P R ) that is the output of the first calculating means, the signal power value (P s ) that is the output of the second calculating means, and the total power value (R r ) that is the output of the received power calculating means ) Based on the received signal power value (S r ) of the received signal,
A power measuring device comprising:
前記受信信号の受信電力(Sr)は、式Rr・(PS/PR)を演算することにより求められることを特徴とする請求項10記載の電力測定装置。The power measuring apparatus according to claim 10, wherein the received power (S r ) of the received signal is obtained by calculating an expression R r · (P S / P R ). 前記全受信電力値(PR)は、前記デジタル受信信号に含まれる前記パイロット・シンボルのサンプル列の二乗和をシンボル数で除することにより求められることを特徴とする請求項10記載の電力測定装置。The power measurement according to claim 10, wherein the total received power value (P R ) is obtained by dividing the sum of squares of the sample sequence of the pilot symbols included in the digital received signal by the number of symbols. apparatus.
JP2000125312A 2000-04-26 2000-04-26 Power measurement device for measuring received signal power and received interference power Expired - Lifetime JP4165629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125312A JP4165629B2 (en) 2000-04-26 2000-04-26 Power measurement device for measuring received signal power and received interference power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125312A JP4165629B2 (en) 2000-04-26 2000-04-26 Power measurement device for measuring received signal power and received interference power

Publications (2)

Publication Number Publication Date
JP2001313588A JP2001313588A (en) 2001-11-09
JP4165629B2 true JP4165629B2 (en) 2008-10-15

Family

ID=18635290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125312A Expired - Lifetime JP4165629B2 (en) 2000-04-26 2000-04-26 Power measurement device for measuring received signal power and received interference power

Country Status (1)

Country Link
JP (1) JP4165629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776712B2 (en) 1998-12-03 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816470B2 (en) 2001-09-18 2004-11-09 Interdigital Technology Corporation Method and apparatus for interference signal code power and noise variance estimation
US6836647B2 (en) * 2002-04-10 2004-12-28 Nokia Corporation Device and method for CDMA-signal power estimation
US6928104B2 (en) 2002-07-18 2005-08-09 Interdigital Technology Corporation Scaling using gain factors for use in data detection for wireless code division multiple access communication systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776712B2 (en) 1998-12-03 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device

Also Published As

Publication number Publication date
JP2001313588A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
US6529850B2 (en) Apparatus and method of velocity estimation
JP4574924B2 (en) Method and apparatus for determining a closed loop power control set point in a wireless packet data communication system
US6201954B1 (en) Method and system for providing an estimate of the signal strength of a received signal
KR100254751B1 (en) Reception timing detection circuit of cdma receiver and detection method
EP0976206A1 (en) Forward link power control in a cellular system using n t/i 0 values
JP2009065312A (en) Radio receiver
KR100348191B1 (en) Apparatus and method for measuring non-orthogonal noise in cdma communication system
KR101009304B1 (en) Velocity responsive time tracking
JPH10336072A (en) Rake receiver for direct diffusion cdma transmission system
JP4165629B2 (en) Power measurement device for measuring received signal power and received interference power
JP2000078110A (en) Rake receiver, radio receiver and path detection method in rake receiver
US6724808B1 (en) Transmission power control method of measuring Eb/N0 after weighted signals are combined
JP3391675B2 (en) Mobile radio terminal using code division multiple access system
KR0162978B1 (en) Apparatus and method of measuring sir of received signal in cdma system
JPH09284205A (en) Reception sir measurement device and transmission power controller
JP2002290344A (en) Sir measurement device and measurement method
KR100321975B1 (en) Signal to interference ratio measurement apparatus for power control in multi carrier mobile telecommunication system and method thereof
Yousef et al. Robust time-delay and amplitude estimation for CDMA location finding
KR100454933B1 (en) Signal interference ratio measuring apparatus for controlling power of forward link, and signal interference ratio measuring method in code division multiple access system
KR0183001B1 (en) Method of estimating eb/no in ds/cdma with a pilot signal
KR100421413B1 (en) Method and Apparatus for Measurement of SIR(Signal to Interference Ratio) using Partitioned Despreading of Pilot Symbol in CDMA System
US20030076876A1 (en) Method of performing code synchronization, and receiver
JP2003502901A (en) Method and apparatus for performing interference estimation
CN101309239A (en) Estimation method of signal interference ratio of forward fundamental service channel in CDMA system of FDD mode
CN2927513Y (en) Forward basic-service channel signal interfere-ratio system with FDD mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

R150 Certificate of patent or registration of utility model

Ref document number: 4165629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term