JP4165111B2 - Edge light panel - Google Patents

Edge light panel Download PDF

Info

Publication number
JP4165111B2
JP4165111B2 JP2002120010A JP2002120010A JP4165111B2 JP 4165111 B2 JP4165111 B2 JP 4165111B2 JP 2002120010 A JP2002120010 A JP 2002120010A JP 2002120010 A JP2002120010 A JP 2002120010A JP 4165111 B2 JP4165111 B2 JP 4165111B2
Authority
JP
Japan
Prior art keywords
light
shaped groove
light source
guide plate
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120010A
Other languages
Japanese (ja)
Other versions
JP2003249110A (en
Inventor
雄一 内田
博司 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002120010A priority Critical patent/JP4165111B2/en
Publication of JP2003249110A publication Critical patent/JP2003249110A/en
Application granted granted Critical
Publication of JP4165111B2 publication Critical patent/JP4165111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は導光板の側端面から入射させた光を導光板の表面から出射させるエッジライトパネルに関するものである。
【0002】
【従来の技術】
誘導灯などの各種面光源装置や液晶ディスプレーのバックライトとして用いられるエッジライトパネルは、導光板の側端面から導光板内に入射させた光を導光板の裏面側に設けた拡散反射面で導光板の表面側に向けて導光板表面から出射させるものが一般的であるが、拡散反射を利用することから、表面輝度を高くすることができない。
【0003】
これに対して特開平10−68947号公報に示されたエッジライトパネルは、導光板の裏面に壁面を鏡面で仕上げたV字形溝を設けて、V字形溝の鏡面である上記壁面での全反射光を表面側に出射させるために、光の指向性を高くして表面輝度を高くすることができる。この場合、表面輝度を均一にするために、図13に示すように、導光板1の裏面に形成するV字形溝2を導光板1の側端面に対向配置させた光源3から遠くなるほどV字形溝2の配置ピッチを小さくしたりV字形溝2の深さを大きくする。
【0004】
【発明が解決しようとする課題】
ところで、上記V字形溝2の光源側の壁面に至る光には、図14(b) に示すように、導光板1の端面から入射して表裏面とほぼ平行に進む光と、導光板1の表面側で全反射して壁面に到達する光と、導光板1の裏面側で全反射して壁面に到達する光とが存在するが、この時、表裏面とほぼ平行に進む光がV字形溝2の壁面で全反射して導光板1の表面に対して直角に射出するように、V字形溝2の壁面の立ち上がり角度を図に示すようにほぼ45°に設定していた。
【0005】
しかし、V字形溝2の深さは実際には数μm〜数十μmで導光板1の厚みを考えれば、図14(a)に示すような状態であり、V字形溝2の壁面に至る光はその殆どが導光板1の表裏面での全反射を繰り返して到達したものとなっている。そして上記の角度設定では、表面側で全反射してV字形溝2の壁面に至った光は、入射角が大きいために全反射せずにV字形溝を抜けてしまうことになる。
【0006】
また、表面側で全反射してV字形溝2の壁面に至った光がV字形溝2の壁面で全反射するようにV字形溝2の壁面の立ち上がり角度を45°より小さくすると、図14(c)に示すように、その出射配光分布は非光源側へ傾いた分布となってしまい、前方への指向性を高めることができない。
【0007】
本発明はこのような点に鑑みなされたものであって、その目的とするところは輝度が高く且つ出射配光分布も均一で輝度ムラが生じることがないエッジライトパネルを提供するにある。
【0008】
【課題を解決するための手段】
しかして本発明は、光源からの光が側端面から入射する導光板の裏面側に壁面を鏡面で仕上げたV字形溝を設けて、V字形溝の鏡面である上記壁面での反射光を表面側に出射させるエッジライトパネルにおいて、光源からの距離が遠くなるほど間隔が密になるように設けられている上記V字形溝は、その光源側の壁面の立ち上がり角度φが導光板の裏面で全反射した後に該壁面で全反射する光が表面側にほぼ垂直に出射する角度となっているとともに、隣接する2つのV字形溝のうち、光源寄りのV字形溝の深さをh 1 、他方のV字形溝の深さをh 2 、両V字形溝の間隔をLとする時、
L≧h 1 tan (180°−2φ)+h 2 tan (180°−2φ)
としていることに特徴を有している。
【0009】
すなわち、図1に示すように、導光板1の裏面側で全反射した後にV字形溝2の壁面に到達した光が壁面での全反射によって前方に出射するように、V字形溝2の壁面の立ち上がり角度φを設定するのである。このように、導光板1の裏面側で全反射した後にV字形溝2の壁面に到達する光を主体とする場合、導光板1の表裏面と平行な光を主体とする図14(b)に示した場合に比して、多くの光を前方に配光することができるとともに、導光板1の表面で全反射してV字形溝2の壁面に至った光はV字形溝2を突き抜けて導光板1に再入射し、他のV字形溝2の壁面での全反射により前方へ出て行くことになるために、出射配光分布も前方を向いたものを得ることができる。
【0010】
ここで、導光板1内の輝度均一性を考えた場合、V字形溝2は導光板1の表面から見た場合、輝線となって見えるために、V字形溝2を深くしすぎることは好ましくない場合が多く、好適な深さは100μm以下、さらに好ましくは20μm以下である。
【0011】
また、導光板1の裏面で全反射した後、V字形溝2の壁面で全反射した光を表面側に出射させるように導光板1の裏面からのV字形溝2の壁面の立ち上がり角度φを設定したものにおいて、輝度の均一性の確保の点からV字形溝2の配置ピッチを小さくしたりV字形溝2の深さを大きくしていくと、図15に示すように、光源3寄りのV字形溝2が邪魔して裏面で全反射した光がV字形溝2の壁面に当たるという前提が崩れてしまい、この結果、導光板1表面での配光が図13に示すように場所によって異なることになる。これは見る方向によって輝度ムラが生じることになる。この点は、V字形溝の壁面の立ち上がり角度をφ、隣接する2つのV字形溝のうち、光源寄りのV字形溝の深さをh1、他方のV字形溝の深さをh2、両V字形溝の間隔をLとする時、
L≧h1tan(180°−2φ)+h2 tan(180°−2φ)
として、導光板の裏面で反射した光がV字形溝の壁面で反射して表面側に出射することができるピッチで配置しているために解決することができる。
【0012】
また、広げたい視野角をγとする時、
L≧h1tan(180°−2φ+γ)+h2 tan(180°−2φ+γ)
としてもよい。広い視野角を確保することができる。
【0013】
光源が側端面と略平行に配される線状光源である場合、V字形溝は光源と平行な直線状に形成されていることが好ましく、光源が点光源である場合、V字形溝は点光源を中心とする円弧状に形成されていることが好ましい。
【0014】
また、V字形溝の長手方向において複数領域に分割して隣合う領域において光源から異なる距離のところにV字形溝を形成するようにしてもよい。
【0015】
角度φは45°以上60°以内であることが望ましい。
【0016】
光源側の側端の厚みよりも光源から遠い側の側端の厚みが薄くなるテーパ状に導光板をしておくのも好ましい。
【0017】
V字形溝はその断面形状を対称に、且つ両壁面を共に鏡面としておくとよい。
【0018】
また、光源が点光源である場合は、導光板の光源から遠い側の側端を光源を中心とする円弧状にしておくとよい。
【0019】
V字形溝の頂部は両側の壁面を滑らかにつなぐ曲面で形成しておくことも好ましい。
【0020】
導光板裏面で且つ隣接する2つのV字形溝の間の部分のうち、光源寄りの部分に光反射角制御面を設けておくのも好ましく、この場合の光反射角制御面は、鏡面に仕上げた微細な凹凸や、拡散反射させる粗面を用いることができる。
【0021】
【発明の実施の形態】
以下本発明を実施の形態の一例に基づいて詳述すると、基本的構成は図13に示した前記従来例と同じであり、光源3からの光を側端面から入射させる導光板1の裏面側に多数のV字形溝2を形成するとともに、各V字形溝2の壁面を鏡面反射面としている。なお、光源3からの光をすべて導光板1に向けるための反射板や、導光板1の他の側端面から外部に光が漏れ出てしまうことを防ぐための反射板等については図示していない。導光板1としては、アクリル樹脂(PMMA、全反射角は±42°)を好適に用いることができる。
【0022】
そして、導光板1の裏面にV字形溝2を設けるにあたり、光源3寄りではV字形溝2を粗に配置し、光源3から離れたところではV字形溝2を密に配置している。そして、導光板1を正面から見た時に最も高い表面輝度が得られるようにするために、導光板1の裏面で反射してV字形溝2の壁面に向かう図1に示す光線を代表として、これらの光線の傾き±何度かの幅を持った光線群が導光板1の前面から垂直に出射するようにV字形溝2の壁面の角度φを設定しているが、このうち、導光板1の裏面側で全反射した後にV字形溝2の壁面に到達する光が主体となるように上記角度φを定めている。
【0023】
また、V字形溝2の壁面全体を使えるのは図2に示すように光源3寄りの他のV字形溝2に当たらずに進行してきて導光板1の裏面で全反射した後、V字形溝2の頂点部分に当たる場合となる。つまり、隣接する2つのV字形溝2,2の深さh1,h2及び間隔Lが図2に示す状態である場合であり、これより間隔Lが狭かったり、他のV字形溝2の深さ(高さ)h1が大きいと、光源寄りのV字形溝2に干渉して屈折するために、V字形溝2の頂点付近にあたって前方へ出射する光線が減少したり、なくなることになる。
【0024】
このために、ここでは隣接する2つのV字形溝2,2の間隔をL、V字形溝2の壁面の立ち上がり角度をφ、光源寄りのV字形溝2の深さをh1、他方のV字形溝2の深さをh2とする時、
L≧h1tan(180°−2φ)+h2 tan(180°−2φ)
に設定している。
【0025】
すなわち、図3に示すように、光源寄りのV字形溝2の頂点A付近を通過して導光板1の裏面で反射した後、V字形溝2の頂点Oに当たる光線を考えた時、この光線が導光板1の裏面での反射位置をBとすると、図2において、
∠BOD=∠COD=α=φ(∵ ∠FOG=90°−φ=∠COE=90°−α)
∠BOF=∠COE=90°−φ
よって△BOGにおいて、
tan∠BOG=tan(∠FOG+∠BOF)
=tan(90°−φ+90°−φ)
y/h2=tan(180°−2φ)
∴y=h2tan(180°−2φ)
同様に
x=h1tan(180°−2φ)
よって
L=x+y=h1tan(180°−2φ)+h2 tan(180°−2φ)
上記間隔L以上の間隔でV字形溝2が並んでおれば、V字形溝2の壁面全面に当たる光が存在するために、導光板1の出射面(前面)内のどの位置においても出射配光は同一に保たれるものであり、指向性を一定に保つことができる。
【0026】
また、指向性があまり強すぎては視野角がかなり狭くなることから、ピーク輝度が少々下がっても視野角をγだけ広げたければ、図4に示すように、V字形溝2の壁面への入射角度がγだけ小さいものを想定し、この光線が光源3寄りのV字形溝2に遮られないようにしておけばよいものであり、この場合、
L≧h1tan(180°−2φ+γ)+h2 tan(180°−2φ+γ)
という条件を満たす間隔LでV字形溝2を配置すればよい。
【0027】
なお、導光板1の裏面からのV字形溝2の壁面の立ち上がり角度φは、屈折率1.49であるPMMAで導光板1を形成している場合、45°以上60°以内であることが望ましい。図2において、前述の前提を満たすには
∠BOD=∠COD=α
∠ABI=∠OBI=β
α>42°、β>42°
であり、
α=φ、β=∠BOG=180°−2φ
であることから、
φ>42°,180°−2φ>42°
となり、よって42°<φ<69°とすることが必要である。
ただし、製造上の公差などを考慮してマージンを持たせれば、
45°≦φ≦60°
としておくのが好ましい。
【0028】
また、立ち上がり角度φを変化させた時の出射光線の分布は、V字形溝2の壁面に入射する光が持っている角度に対する分布と、全反射を起こす条件によって決まるが、シミュレーションや実験結果から出射光が前方に向く角度を求めた結果からすれば、φ=50〜55°の場合がさらに望ましい。このような角度にすることで、出射される光の配光を非常に指向性の高い分布として実現することができる。下記に示す表1〜表4は夫々立ち上がり角度φを45°,50°,55°,60°とした場合のシミュレーション結果を示している。表中のω,θは図1(b)に示す角度ω,θに対応しており、表中の数値の単位はすべてdegreeである。
【0029】
【表1】

Figure 0004165111
【0030】
【表2】
Figure 0004165111
【0031】
【表3】
Figure 0004165111
【0032】
【表4】
Figure 0004165111
【0033】
なお、このような立ち上がり角度φに設定した場合、導光板1の表面側で全反射してV字形溝2の壁面に到達した光は殆どがV字形溝2を抜けてゆくが、大部分の光はV字形溝2の反対側の面から再入射して導光板1内を全反射して導光する成分となるために、他のV字形溝2の壁面における全反射で前方へ出射する光として有効に使われる。
【0034】
ところで、光源3には通常、冷陰極管の蛍光灯のような線状光源を用いて、この線状の光源3を図5に示すように、導光板1の入射面となる側端面と略平行に配置するが、導光版1内を導光してくる光の等強度線を考えた場合、V字形溝2は光源3と平行な直線状としておくことで、導光板1のどの位置においても同じ配光分布を持った光を取り出すことができる。
【0035】
光源3が点光源である場合には、図6に示すように、光源3を中心とする円弧状にV字形溝3を形成すればよい。
【0036】
また、導光板1を正面から見た時、V字形溝2のところが光って見えるわけであり、このためにV字形溝2の間隔が大きいところ(光源3に近いところ)では光るところと光らないところの筋が目立つことになる。この点に関しては、図7(a)または図7(b)に示すように、V字形溝2の長手方向において複数領域1a,1b,1c,1dに分割して隣合う領域においてV字形溝2の配置パターンをずらして光源3から異なる距離のところにV字形溝2を形成することで、輝度ムラである筋を目立たなくすることができる。
【0037】
また、V字形溝2について、図では誇張しているが、実際に導光板1の裏面に施すV字形溝2の深さは前述のように数μmから数十μmのレベルで、導光板1の板厚(1mmから数mm程度)と比較すると非常に微細な溝であり、このために導光板1の端面から入射するとともに導光板1の表裏面で全反射を繰り返しても、V字形溝2に全くあたることなく導光板1の他方の側端面に至る光が存在しており、このような光は他方の側端面を通過してロスとなり、光の利用効率を落とすことになる。
【0038】
この点に関しては、V字形溝2の本数を増やすことで対処することができるが、この場合はV字形溝2の間隔Lが狭くなりすぎてしまうことになるために、間隔Lについて前述の設定を保ちつつ、図8に示すように、導光板1を光源3側の側端の厚みよりも光源3から遠い側の側端の厚みが薄くなるテーパ状としておくことで対処するのが好ましい。このようなテーパ状とすることで、V字形溝2に光が当たる確率を増やすことができるとともに、他方の側端面から抜けてしまう光を少なくすることができる。また、図8に示すように、導光板1全体をテーパ状とするのではなく、途中からテーパ状として板厚が変化しない部分を設けておくことにより、組立の際の位置決めの容易さを確保することができる。
【0039】
このほか、V字形溝2はその断面形状を対称にするとともに両壁面を共に鏡面としておくことで、図9に示すように上記他方の側端面から抜けた光を反射板(反射シート)で再度導光板1内に入射させた光を導光板1の前面側に出射させることができる。なお、再入射光の配光分布は光源1から直接入射した光の配光分布と同じとなるために、全体の配光分布に影響を与えることはなく、また再入射光の利用により効率が向上する。
【0040】
この点からすれば、光源3が点光源である場合、導光板1が矩形状であると、再入射光は図10(a)に示すように、V字形溝2に直交せずに横方向にずれてしまうことになるために、図10(b)に示すように、導光板1の光源から遠い側の側端を光源3を中心とする円弧状にしておくのが好ましい。再入射光がV字形溝2と直交する状態で戻るからである。図10(c)に示すように疑似円弧となるようにしたものであってもよい。
【0041】
また、導光板1の裏面で且つ隣接する2つのV字形溝の間の部分のうち、光源寄りの部分(図3中のBK間の部分)は、指向性を持たせて配光制御するための反射面として機能していない。このために、この部分に光反射角制御面、たとえば図11(a)に示す鏡面に仕上げた微細な凹凸5や、図11(b)に示す拡散反射させる粗面6を設けて、この部分に当たる光の有効利用を図るようにしてもよい。なお、凹凸5の高さは基本的に配光制御される光の経路に干渉しない程度のものとしておく。
【0042】
また、図12に示すように、V字形溝2の頂部は両側の壁面を滑らかにつなぐ曲面Rとしておくのも好ましい。立ち上がり角度φの壁面に当たる大部分の光は同じ方向に指向性をもって出射されるが、曲面Rの部分に当たる光は傾斜角度が徐々に変化しているために反射時の方向も徐々に異なる方向に変化する。一部の光を意図的に散乱させることができるものであり、視野角を広げることができることになる。散乱させる光の割合は曲面Rの半径の大きさに影響され、半径を大きくすればそれに応じて壁面に対する曲面Rの長さが増えるために散乱光量も増えることになる。従って、曲面Rの半径によって散乱量を自由に制御することができる。なお、視野角を広げるとピーク輝度は現象するが、ピークとなる方向は変化しないために、輝度に余裕のある場合に有効な視野拡大手法である。
【0043】
【発明の効果】
以上のように本発明においては、光源からの光が側端面から入射する導光板の裏面側に壁面を鏡面で仕上げたV字形溝を設けて、V字形溝の鏡面である上記壁面での反射光を表面側に出射させるエッジライトパネルにおいて、光源からの距離が遠くなるほど間隔が密になるように設けられている上記V字形溝は、その光源側の壁面の立ち上がり角度φを、裏面で全反射した後に該壁面で全反射する光が表面側にほぼ垂直に出射する角度としているために、配光分布も前方に向けた状態を保ちつつ導光板の前方に向けて出射させることができる光量を増加させることができる。
【0044】
しかも、V字形溝の壁面の立ち上がり角度をφ、隣接する2つのV字形溝のうち、光源寄りのV字形溝の深さをh1、他方のV字形溝の深さをh2、両V字形溝の間隔をLとする時、
L≧h1tan(180°−2φ)+h2(180° −2φ)
としているために、導光板の裏面で反射した光がV字形溝の壁面で反射して表面側に出射することがV字形溝のピッチや深さにかかわらず常になされるものであり、従って光源に近い部分から遠い部分まで特定の方向にピークを持った指向性の高い且つ一様な配光分布を持ったものとすることができる。
【0045】
また、広げたい視野角をγとする時、
L≧h1tan(180°−2φ+γ)+h2 tan(180°−2φ+γ)
とすることで、ピーク輝度は低下するものの、視野角を広げることができる。
【0046】
光源が側端面と略平行に配される線状光源である場合、V字形溝は光源と平行な直線状に形成し、光源が点光源である場合、V字形溝は点光源を中心とする円弧状に形成することで、より高い指向性を持たせることができる。
【0047】
また、V字形溝の長手方向において複数領域に分割して隣合う領域において光源から異なる距離のところにV字形溝を形成することにより、面内の輝度均一性を向上させることができる。
【0048】
そして角度φは45°以上60°以内としておくことで、出射面に垂直な方向に指向性を持たせることができ、正面方向の輝度を高くすることができる。
【0049】
また、光源側の側端の厚みよりも光源から遠い側の側端の厚みが薄くなるテーパ状に導光板を形成しておけば、V字形溝にあたって出射する光の量が増えるために出射効率が向上する。
【0050】
さらにV字形溝はその断面形状を対称に且つ両壁面を共に鏡面としておくことで、導光板への再入射光を同様に配光制御して導光板表面から出射させることができるものであり、配光分布に影響を与えることなく出射効率の向上を図ることができる。
【0051】
また、光源が点光源である場合は、導光板の光源から遠い側の側端を光源を中心とする円弧状にしておくと、再入射光の利用効率を高めることができる。
【0052】
また、 V字形溝の頂部は両側の壁面を滑らかにつなぐ曲面で形成しておくと輝度ピーク位置を変えることなく視野角を広げることができる。
【0053】
そして、導光板裏面で且つ隣接する2つのV字形溝の間の部分のうち、光源寄りの部分に光反射角制御面、たとえば鏡面に仕上げた微細な凹凸や、拡散反射させる粗面を設けることで、配光制御により得ることができる前方指向性を簡単に更に高めることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示すもので、(a)(b)は要部断面図である。
【図2】同上の他例の要部断面図である。
【図3】同上の説明図である。
【図4】他例の要部断面図である。
【図5】光源が線状である場合を示すもので、(a)は縦断面図、(b)は正面図、(c)は斜視図である。
【図6】光源が点光源である場合を示すもので、(a)は縦断面図、(b)は正面図、(c)は斜視図である。
【図7】 (a)(b)は夫々別の例の正面図である。
【図8】他の例の断面図である。
【図9】別の例の断面図である。
【図10】 (a)(b)(c)は点光源である場合の側端面形状例を示す正面図である。
【図11】 (a)(b)は夫々別の例の断面図である。
【図12】更に他例の断面図である。
【図13】従来例の断面図である。
【図14】 (a)は同上の断面図、(b)(c)は部分拡大断面図である。
【図15】参考例の部分拡大断面図である。
【符号の説明】
1 導光板
2 V字形溝
3 光源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an edge light panel that emits light incident from a side end surface of a light guide plate from the surface of the light guide plate.
[0002]
[Prior art]
Edge light panels used as backlights for various surface light source devices such as guide lights and liquid crystal displays guide light that has entered the light guide plate from the side edge of the light guide plate with a diffuse reflection surface provided on the back side of the light guide plate. In general, the light is emitted from the surface of the light guide plate toward the surface side of the light plate. However, since the diffuse reflection is used, the surface luminance cannot be increased.
[0003]
On the other hand, the edge light panel disclosed in Japanese Patent Laid-Open No. 10-68947 has a V-shaped groove having a mirror-finished wall surface on the back surface of the light guide plate, and the entire wall surface is a mirror surface of the V-shaped groove. Since the reflected light is emitted to the surface side, the directivity of the light can be increased and the surface luminance can be increased. In this case, in order to make the surface luminance uniform, as shown in FIG. 13, the V-shaped groove 2 formed on the back surface of the light guide plate 1 is V-shaped as the distance from the light source 3 arranged opposite to the side end surface of the light guide plate 1 increases. The arrangement pitch of the grooves 2 is reduced or the depth of the V-shaped grooves 2 is increased.
[0004]
[Problems to be solved by the invention]
By the way, as shown in FIG. 14B, the light reaching the wall surface on the light source side of the V-shaped groove 2 is incident from the end face of the light guide plate 1 and travels substantially parallel to the front and back surfaces. There are light that is totally reflected on the front surface side and reaches the wall surface, and light that is totally reflected on the back surface side of the light guide plate 1 and reaches the wall surface. At this time, the light that travels substantially parallel to the front and back surfaces is V The rising angle of the wall surface of the V-shaped groove 2 was set to approximately 45 ° as shown in the figure so that it was totally reflected by the wall surface of the V-shaped groove 2 and emitted at a right angle to the surface of the light guide plate 1.
[0005]
However, the depth of the V-shaped groove 2 is actually several μm to several tens of μm, and considering the thickness of the light guide plate 1, the state is as shown in FIG. 14 (a) and reaches the wall surface of the V-shaped groove 2. Most of the light arrives by repeating total reflection on the front and back surfaces of the light guide plate 1. In the above angle setting, light that is totally reflected on the surface side and reaches the wall surface of the V-shaped groove 2 passes through the V-shaped groove without being totally reflected because the incident angle is large.
[0006]
Further, when the rising angle of the wall surface of the V-shaped groove 2 is made smaller than 45 ° so that the light that is totally reflected on the surface side and reaches the wall surface of the V-shaped groove 2 is totally reflected by the wall surface of the V-shaped groove 2, FIG. As shown in (c), the emitted light distribution is a distribution inclined toward the non-light source side, and the forward directivity cannot be improved.
[0007]
The present invention has been made in view of these points, and an object of the present invention is to provide an edge light panel having high luminance, uniform emission light distribution, and no uneven luminance.
[0008]
[Means for Solving the Problems]
Accordingly, the present invention provides a V-shaped groove having a mirror-finished wall surface on the back surface side of the light guide plate on which light from the light source enters from the side end surface, and reflects the reflected light from the wall surface, which is the mirror surface of the V-shaped groove, on the surface. In the edge light panel that emits light to the side, the V-shaped groove, which is provided so that the distance from the light source increases, the closer the distance is, the rising angle φ of the wall surface on the light source side is totally reflected on the back surface of the light guide plate After that, the angle is such that the light totally reflected by the wall surface is emitted almost perpendicularly to the surface side, and the depth of the V-shaped groove closer to the light source of two adjacent V-shaped grooves is h 1 , When the depth of the V-shaped groove is h 2 and the distance between both V-shaped grooves is L,
L ≧ h 1 tan (180 ° −2φ) + h 2 tan (180 ° −2φ)
Especially it has a feature that a.
[0009]
That is, as shown in FIG. 1, the wall surface of the V-shaped groove 2 is such that light that reaches the wall surface of the V-shaped groove 2 after being totally reflected on the back surface side of the light guide plate 1 is emitted forward by total reflection on the wall surface. The rising angle φ is set. Thus, in the case where light mainly reaching the wall surface of the V-shaped groove 2 after being totally reflected on the back surface side of the light guide plate 1 is mainly used, the light parallel to the front and back surfaces of the light guide plate 1 is mainly used. Compared to the case shown in FIG. 5, the light can be distributed forward, and the light that is totally reflected by the surface of the light guide plate 1 and reaches the wall surface of the V-shaped groove 2 penetrates the V-shaped groove 2. Then, the light re-enters the light guide plate 1 and exits forward due to total reflection on the wall surface of the other V-shaped groove 2, so that the outgoing light distribution can also be directed forward.
[0010]
Here, considering the luminance uniformity in the light guide plate 1, the V-shaped groove 2 appears as a bright line when viewed from the surface of the light guide plate 1, so it is preferable to make the V-shaped groove 2 too deep. In many cases, the depth is preferably 100 μm or less, more preferably 20 μm or less.
[0011]
Further, after the total reflection at the back surface of the light guide plate 1, the rising angle φ of the wall surface of the V-shaped groove 2 from the back surface of the light guide plate 1 is emitted so that the light totally reflected by the wall surface of the V-shaped groove 2 is emitted to the front surface side. In the set one, when the arrangement pitch of the V-shaped grooves 2 is reduced or the depth of the V-shaped grooves 2 is increased from the viewpoint of ensuring the uniformity of luminance, as shown in FIG. The assumption that the light reflected from the back surface by the V-shaped groove 2 impinges on the wall surface of the V-shaped groove 2 is disrupted. As a result, the light distribution on the surface of the light guide plate 1 varies depending on the location as shown in FIG. It will be. This results in uneven brightness depending on the viewing direction. In this respect, the rising angle of the wall surface of the V-shaped groove is φ, of the two adjacent V-shaped grooves, the depth of the V-shaped groove closer to the light source is h 1 , the depth of the other V-shaped groove is h 2 , When the distance between both V-shaped grooves is L,
L ≧ h 1 tan (180 ° −2φ) + h 2 tan (180 ° −2φ)
This can be solved because the light reflected from the back surface of the light guide plate is arranged at a pitch that can be reflected by the wall surface of the V-shaped groove and emitted to the front surface side.
[0012]
When the viewing angle you want to expand is γ,
L ≧ h 1 tan (180 ° −2φ + γ) + h 2 tan (180 ° −2φ + γ)
It is good. A wide viewing angle can be secured.
[0013]
When the light source is a linear light source arranged substantially parallel to the side end face, the V-shaped groove is preferably formed in a straight line parallel to the light source. When the light source is a point light source, the V-shaped groove is a point light source. It is preferably formed in an arc shape centered on the light source.
[0014]
Alternatively, the V-shaped groove may be divided into a plurality of regions in the longitudinal direction of the V-shaped groove, and the V-shaped groove may be formed at a different distance from the light source in the adjacent region.
[0015]
The angle φ is preferably 45 ° or more and 60 ° or less.
[0016]
It is also preferable that the light guide plate is tapered so that the thickness of the side end farther from the light source is thinner than the thickness of the side end on the light source side.
[0017]
The V-shaped groove should have a symmetrical cross-sectional shape and have both wall surfaces as mirror surfaces.
[0018]
When the light source is a point light source, the side edge of the light guide plate on the side far from the light source may be formed in an arc shape with the light source as the center.
[0019]
The top of the V-shaped groove is preferably formed by a curved surface that smoothly connects the wall surfaces on both sides.
[0020]
It is also preferable to provide a light reflection angle control surface on the back surface of the light guide plate and between the two adjacent V-shaped grooves, near the light source. In this case, the light reflection angle control surface is mirror-finished. It is possible to use fine unevenness or a rough surface to be diffusely reflected.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on an example of the embodiment. The basic configuration is the same as that of the conventional example shown in FIG. 13, and the back surface side of the light guide plate 1 on which light from the light source 3 enters from the side end surface. In addition, a large number of V-shaped grooves 2 are formed, and the wall surface of each V-shaped groove 2 is used as a specular reflection surface. Note that a reflecting plate for directing all the light from the light source 3 to the light guide plate 1, a reflecting plate for preventing light from leaking outside from the other side end surface of the light guide plate 1, and the like are illustrated. Absent. As the light guide plate 1, an acrylic resin (PMMA, total reflection angle is ± 42 °) can be suitably used.
[0022]
When the V-shaped groove 2 is provided on the back surface of the light guide plate 1, the V-shaped groove 2 is coarsely arranged near the light source 3, and the V-shaped groove 2 is densely arranged away from the light source 3. And, in order to obtain the highest surface brightness when the light guide plate 1 is viewed from the front, the light beam shown in FIG. 1 that is reflected on the back surface of the light guide plate 1 and faces the wall surface of the V-shaped groove 2 is representative. The angle φ of the wall surface of the V-shaped groove 2 is set so that a group of light beams having inclinations of these light rays ± several widths are emitted vertically from the front surface of the light guide plate 1. The angle φ is determined so that light that reaches the wall surface of the V-shaped groove 2 after being totally reflected on the back surface side of 1 is mainly used.
[0023]
Further, the entire wall surface of the V-shaped groove 2 can be used as shown in FIG. 2 after proceeding without hitting the other V-shaped groove 2 near the light source 3 and being totally reflected by the back surface of the light guide plate 1. It becomes a case where it hits the vertex part of 2. In other words, the depths h 1 and h 2 and the distance L between the two adjacent V-shaped grooves 2 and 2 are in the state shown in FIG. 2 , and the distance L is narrower than this, or the other V-shaped grooves 2 If the depth (height) h 1 is large, it interferes with the V-shaped groove 2 near the light source and refracts, so that light rays emitted forward near the apex of the V-shaped groove 2 are reduced or eliminated. .
[0024]
Therefore, here, the interval between two adjacent V-shaped grooves 2 and 2 is L , the rising angle of the wall surface of the V-shaped groove 2 is φ, the depth of the V-shaped groove 2 near the light source is h 1 , and the other V-shaped groove 2 is V when you and h 2 the depth of the shaped groove 2,
L ≧ h 1 tan (180 ° −2φ) + h 2 tan (180 ° −2φ)
Is set.
[0025]
That is, as shown in FIG. 3, when a light beam that passes through the vicinity of the vertex A of the V-shaped groove 2 near the light source and is reflected by the back surface of the light guide plate 1 and then hits the vertex O of the V-shaped groove 2 is considered. If the reflection position on the back surface of the light guide plate 1 is B, in FIG.
∠BOD = ∠COD = α = φ (∵ ∠FOG = 90 ° −φ = ∠COE = 90 ° −α)
∠BOF = ∠COE = 90 ° -φ
So in △ BOG,
tan ∠ BOG = tan (∠ FOG + ∠ BOF)
= Tan (90 ° -φ + 90 ° -φ)
y / h 2 = tan (180 ° -2φ)
∴y = h 2 tan (180 ° -2φ)
Similarly x = h 1 tan (180 ° -2φ)
Therefore, L = x + y = h 1 tan (180 ° −2φ) + h 2 tan (180 ° −2φ)
If the V-shaped grooves 2 are arranged at intervals equal to or greater than the above-mentioned distance L, there is light that strikes the entire wall surface of the V-shaped grooves 2, so that the outgoing light distribution is at any position within the outgoing surface (front surface) of the light guide plate 1. Are kept the same, and the directivity can be kept constant.
[0026]
In addition, if the directivity is too strong, the viewing angle is considerably narrowed. Therefore, if the viewing angle is to be increased by γ even if the peak luminance is slightly lowered, as shown in FIG. Assuming that the incident angle is small by γ, it is sufficient that this light beam is not blocked by the V-shaped groove 2 near the light source 3. In this case,
L ≧ h 1 tan (180 ° −2φ + γ) + h 2 tan (180 ° −2φ + γ)
What is necessary is just to arrange | position the V-shaped groove | channel 2 with the space | interval L which satisfy | fills the condition.
[0027]
The rising angle φ of the wall surface of the V-shaped groove 2 from the back surface of the light guide plate 1 is 45 ° or more and 60 ° or less when the light guide plate 1 is formed of PMMA having a refractive index of 1.49. desirable. In FIG. 2, ∠BOD = ∠COD = α to satisfy the above assumption
∠ABI = ∠OBI = β
α> 42 °, β> 42 °
And
α = φ, β = ∠BOG = 180 ° -2φ
Because
φ> 42 °, 180 ° -2φ> 42 °
Therefore, it is necessary to satisfy 42 ° <φ <69 °.
However, if a margin is given in consideration of manufacturing tolerances,
45 ° ≦ φ ≦ 60 °
It is preferable that
[0028]
The distribution of the emitted light when the rising angle φ is changed is determined by the distribution with respect to the angle of the light incident on the wall surface of the V-shaped groove 2 and the conditions that cause total reflection. From the result of obtaining the angle at which the emitted light is directed forward, it is more desirable that φ = 50 to 55 °. By using such an angle, the light distribution of the emitted light can be realized as a distribution with very high directivity. Tables 1 to 4 below show simulation results when the rising angle φ is 45 °, 50 °, 55 °, and 60 °, respectively. Ω and θ in the table correspond to the angles ω and θ shown in FIG. 1 (b), and the units of the numerical values in the table are all degrees.
[0029]
[Table 1]
Figure 0004165111
[0030]
[Table 2]
Figure 0004165111
[0031]
[Table 3]
Figure 0004165111
[0032]
[Table 4]
Figure 0004165111
[0033]
Note that when such a rising angle φ is set, most of the light that has been totally reflected on the surface side of the light guide plate 1 and reached the wall surface of the V-shaped groove 2 passes through the V-shaped groove 2, but most of the light passes through the V-shaped groove 2. Since light is incident again from the opposite surface of the V-shaped groove 2 and is totally reflected in the light guide plate 1 to be guided, it is emitted forward by total reflection on the wall surface of the other V-shaped groove 2. It is used effectively as light.
[0034]
By the way, a linear light source such as a cold-cathode fluorescent lamp is usually used as the light source 3, and the linear light source 3 is substantially the same as the side end surface that becomes the incident surface of the light guide plate 1 as shown in FIG. 5. Although arranged in parallel but considering the isointensity lines of light guided through the light guide plate 1, the V-shaped groove 2 is a straight line parallel to the light source 3, so that any position of the light guide plate 1 It is possible to extract light having the same light distribution.
[0035]
When the light source 3 is a point light source, the V-shaped groove 3 may be formed in an arc shape centered on the light source 3 as shown in FIG.
[0036]
Further, when the light guide plate 1 is viewed from the front, the V-shaped groove 2 appears to shine, and for this reason, the place where the distance between the V-shaped grooves 2 is large (close to the light source 3) and the light shine. However, the line will stand out. In this regard, as shown in FIG. 7 (a) or FIG. 7 (b), the V-shaped groove 2 is divided into a plurality of regions 1a, 1b, 1c, and 1d in the longitudinal direction of the V-shaped groove 2 and adjacent regions. By shifting the arrangement pattern and forming the V-shaped groove 2 at different distances from the light source 3, the stripes that are uneven in luminance can be made inconspicuous.
[0037]
Further, although the V-shaped groove 2 is exaggerated in the drawing, the depth of the V-shaped groove 2 actually applied to the back surface of the light guide plate 1 is at a level of several μm to several tens μm as described above. Compared with the plate thickness (about 1 mm to several mm), the V-shaped groove is formed even if it is incident from the end face of the light guide plate 1 and undergoes total reflection on the front and back surfaces of the light guide plate 1. There is light reaching the other side end face of the light guide plate 1 without hitting 2 at all, and such light passes through the other side end face and becomes a loss, thereby reducing the light utilization efficiency.
[0038]
This point can be dealt with by increasing the number of the V-shaped grooves 2, but in this case, the interval L between the V-shaped grooves 2 becomes too narrow. As shown in FIG. 8, the light guide plate 1 is preferably tapered so that the thickness of the side edge farther from the light source 3 is thinner than the thickness of the side edge on the light source 3 side. With such a tapered shape, it is possible to increase the probability that light hits the V-shaped groove 2 and to reduce light that escapes from the other side end face. In addition, as shown in FIG. 8, the entire light guide plate 1 is not tapered, but a taper is formed in the middle so that the plate thickness does not change, thereby ensuring easy positioning during assembly. can do.
[0039]
In addition, the V-shaped groove 2 has a symmetrical cross-sectional shape and has both wall surfaces as mirror surfaces, so that the light that has passed through the other side end surface is again reflected by the reflector (reflective sheet) as shown in FIG. Light that has entered the light guide plate 1 can be emitted to the front side of the light guide plate 1. Since the light distribution distribution of the re-incident light is the same as the light distribution distribution of the light directly incident from the light source 1, there is no influence on the overall light distribution, and the use of the re-incident light increases the efficiency. improves.
[0040]
From this point, when the light source 3 is a point light source and the light guide plate 1 has a rectangular shape, the re-incident light is not perpendicular to the V-shaped groove 2 as shown in FIG. Therefore, it is preferable that the side edge of the light guide plate 1 on the side far from the light source is formed in an arc shape with the light source 3 as the center, as shown in FIG. This is because the re-incident light returns in a state orthogonal to the V-shaped groove 2. As shown in FIG. 10 (c), a pseudo arc may be used.
[0041]
In addition, among the portions between the two V-shaped grooves adjacent to each other on the back surface of the light guide plate 1, the portion near the light source (the portion between BK in FIG. 3) is provided with directivity to control light distribution. Does not function as a reflective surface. For this purpose, this portion is provided with a light reflection angle control surface, for example, fine irregularities 5 finished on the mirror surface shown in FIG. 11 (a) and a rough surface 6 for diffuse reflection shown in FIG. 11 (b). You may make it aim at the effective use of the light which hits. It should be noted that the height of the unevenness 5 is basically set so as not to interfere with the light path whose light distribution is controlled.
[0042]
Moreover, as shown in FIG. 12, it is also preferable that the top of the V-shaped groove 2 is a curved surface R that smoothly connects the wall surfaces on both sides. Most of the light that hits the wall surface with the rising angle φ is emitted in the same direction with directivity, but the light that hits the curved surface R has its inclination angle changed gradually so that the direction of reflection is gradually different. Change. Part of the light can be intentionally scattered, and the viewing angle can be widened. The ratio of light to be scattered is influenced by the radius of the curved surface R. If the radius is increased, the length of the curved surface R with respect to the wall surface increases accordingly, and the amount of scattered light also increases. Therefore, the amount of scattering can be freely controlled by the radius of the curved surface R. It should be noted that, when the viewing angle is widened, the peak luminance occurs, but the peak direction does not change. Therefore, this is an effective visual field expansion method when there is a margin in luminance.
[0043]
【The invention's effect】
As described above, in the present invention, a V-shaped groove having a wall surface finished with a mirror surface is provided on the back surface side of the light guide plate on which light from the light source enters from the side end surface, and reflection on the wall surface, which is the mirror surface of the V-shaped groove. In the edge light panel that emits light to the front surface side, the V-shaped groove, which is provided so that the distance from the light source increases, the closer the interval is, the rising angle φ of the wall surface on the light source side The amount of light that can be emitted toward the front of the light guide plate while keeping the light distribution distribution in the forward direction because the angle is such that the light totally reflected on the wall after being reflected is emitted perpendicularly to the surface side. Can be increased.
[0044]
Moreover , the rising angle of the wall surface of the V-shaped groove is φ, the depth of the V-shaped groove near the light source is h 1 , and the depth of the other V-shaped groove is h 2 . When the interval between the letter-shaped grooves is L,
L ≧ h 1 tan (180 ° −2φ) + h 2 (180 ° −2φ)
And then to have, which light reflected by the back surface of the light guide plate to be emitted to the front side is reflected by the wall surface of the V-shaped grooves are made constantly regardless of the pitch and depth of the V-shaped groove, thus the light source It is possible to have a highly directional and uniform light distribution with a peak in a specific direction from a portion near to a portion far from.
[0045]
When the viewing angle you want to expand is γ,
L ≧ h 1 tan (180 ° −2φ + γ) + h 2 tan (180 ° −2φ + γ)
Thus, although the peak luminance is lowered, the viewing angle can be widened.
[0046]
When the light source is a linear light source arranged substantially parallel to the side end surface, the V-shaped groove is formed in a straight line parallel to the light source, and when the light source is a point light source, the V-shaped groove is centered on the point light source. By forming it in an arc shape, higher directivity can be provided.
[0047]
In addition, in-plane luminance uniformity can be improved by dividing the longitudinal direction of the V-shaped groove into a plurality of regions and forming V-shaped grooves at different distances from the light source in adjacent regions.
[0048]
Further, by setting the angle φ to 45 ° or more and 60 ° or less, directivity can be given in the direction perpendicular to the emission surface, and the luminance in the front direction can be increased.
[0049]
Further, if the light guide plate is formed in a tapered shape in which the thickness of the side edge farther from the light source is smaller than the thickness of the side edge on the light source side, the amount of light emitted in the V-shaped groove increases, so that the emission efficiency is increased. Will improve.
[0050]
Furthermore, the V-shaped groove is configured so that the cross-sectional shape is symmetrical and both wall surfaces are mirror surfaces, so that the re-incident light to the light guide plate can be similarly emitted and emitted from the light guide plate surface. The emission efficiency can be improved without affecting the light distribution.
[0051]
Further, when the light source is a point light source, the utilization efficiency of re-incident light can be improved by making the side edge of the light guide plate far from the light source into an arc shape centering on the light source.
[0052]
Further, if the top of the V-shaped groove is formed by a curved surface that smoothly connects the wall surfaces on both sides, the viewing angle can be widened without changing the luminance peak position.
[0053]
A light reflection angle control surface, for example, a fine irregularity finished on a mirror surface or a rough surface for diffuse reflection is provided on the back surface of the light guide plate and between the two adjacent V-shaped grooves. Thus, the forward directivity that can be obtained by the light distribution control can be easily further increased.
[Brief description of the drawings]
FIGS. 1A and 1B show an example of an embodiment of the present invention, and FIGS.
FIG. 2 is a sectional view of an essential part of another example of the above.
FIG. 3 is an explanatory diagram of the above.
FIG. 4 is a cross-sectional view of a main part of another example.
5A and 5B show a case where the light source is linear, in which FIG. 5A is a longitudinal sectional view, FIG. 5B is a front view, and FIG. 5C is a perspective view.
6A and 6B show a case where the light source is a point light source, where FIG. 6A is a longitudinal sectional view, FIG. 6B is a front view, and FIG. 6C is a perspective view.
FIGS. 7A and 7B are front views of different examples. FIG.
FIG. 8 is a cross-sectional view of another example.
FIG. 9 is a cross-sectional view of another example.
FIGS. 10A, 10B, and 10C are front views showing examples of side end face shapes in the case of a point light source.
11A and 11B are cross-sectional views of different examples.
FIG. 12 is a cross-sectional view of still another example.
FIG. 13 is a cross-sectional view of a conventional example.
14A is a cross-sectional view of the above, and FIGS. 14B and 14C are partially enlarged cross-sectional views.
FIG. 15 is a partially enlarged cross-sectional view of a reference example.
[Explanation of symbols]
1 Light guide plate 2 V-shaped groove 3 Light source

Claims (13)

光源からの光が側端面から入射する導光板の裏面側に壁面を鏡面で仕上げたV字形溝を設けて、V字形溝の鏡面である上記壁面での反射光を表面側に出射させるエッジライトパネルにおいて、光源からの距離が遠くなるほど間隔が密になるように設けられている上記V字形溝は、その光源側の壁面の立ち上がり角度φが導光板の裏面で全反射した後に該壁面で全反射する光が表面側にほぼ垂直に出射する角度となっているとともに、隣接する2つのV字形溝のうち、光源寄りのV字形溝の深さをh 1 、他方のV字形溝の深さをh 2 、両V字形溝の間隔をLとする時、
L≧h 1 tan (180°−2φ)+h 2 tan (180°−2φ)
としていることを特徴とするエッジライトパネル。
An edge light that provides a V-shaped groove having a mirror-finished wall surface on the back surface side of the light guide plate on which light from the light source enters from the side end surface, and emits reflected light from the wall surface, which is the mirror surface of the V-shaped groove, to the surface side In the panel, the V-shaped groove provided so that the distance from the light source increases as the distance from the light source increases. The rising angle φ of the wall surface on the light source side is totally reflected on the back surface of the light guide plate. The angle is such that the reflected light is emitted almost perpendicularly to the surface side. Of the two adjacent V-shaped grooves, the depth of the V-shaped groove near the light source is h 1 , and the depth of the other V-shaped groove is Is h 2 and the distance between both V-shaped grooves is L,
L ≧ h 1 tan (180 ° −2φ) + h 2 tan (180 ° −2φ)
Edge light panel, characterized in that it is a.
光源からの光が側端面から入射する導光板の裏面側に壁面を鏡面で仕上げたV字形溝を設けて、V字形溝の鏡面である上記壁面での反射光を表面側に出射させるエッジライトパネルにおいて、光源からの距離が遠くなるほど間隔が密になるように設けられている上記V字形溝は、その光源側の壁面の立ち上がり角度φが導光板の裏面で全反射した後に該壁面で全反射する光が表面側にほぼ垂直に出射する角度となっているとともに、隣接する2つのV字形溝のうち、光源寄りのV字形溝の深さをh 1 、他方のV字形溝の深さをh 2 、両V字形溝の間隔をL、広げたい視野角をγとする時、
L≧h 1 tan (180°−2φ+γ)+h 2 tan (180°−2φ+γ)
としていることを特徴とするエッジライトパネル。
An edge light that provides a V-shaped groove having a mirror-finished wall surface on the back surface side of the light guide plate on which light from the light source enters from the side end surface, and emits reflected light from the wall surface, which is the mirror surface of the V-shaped groove, to the surface side In the panel, the V-shaped groove provided so that the distance from the light source increases as the distance from the light source increases. The rising angle φ of the wall surface on the light source side is totally reflected on the back surface of the light guide plate. The angle is such that the reflected light is emitted almost perpendicularly to the surface side. Of the two adjacent V-shaped grooves, the depth of the V-shaped groove near the light source is h 1 , and the depth of the other V-shaped groove is H 2 , the distance between both V-shaped grooves is L, and the viewing angle to be widened is γ.
L ≧ h 1 tan (180 ° −2φ + γ) + h 2 tan (180 ° −2φ + γ)
Edge light panel, characterized in that it is a.
光源が側端面と略平行に配される線状光源であり、V字形溝が光源と平行な直線状に形成されていることを特徴とする請求項1または2記載のエッジライトパネル。The edge light panel according to claim 1 or 2, wherein the light source is a linear light source arranged substantially parallel to the side end face, and the V-shaped groove is formed in a straight line parallel to the light source . 光源が点光源であり、V字形溝が点光源を中心とする円弧状に形成されていることを特徴とする請求項1または2記載のエッジライトパネル。 3. The edge light panel according to claim 1, wherein the light source is a point light source, and the V-shaped groove is formed in an arc shape centering on the point light source . V字形溝の長手方向において複数領域に分割されているとともに隣合う領域において光源から異なる距離のところにV字形溝が形成されていることを特徴とする請求項1〜4のいずれか1項に記載のエッジライトパネル。 5. The V-shaped groove is divided into a plurality of regions in the longitudinal direction of the V-shaped groove, and the V-shaped groove is formed at a different distance from the light source in an adjacent region. The described edge light panel. 角度φが45°以上60°以内であることを特徴とする請求項1〜5のいずれか1項に記載のエッジライトパネル。The edge light panel according to claim 1, wherein the angle φ is not less than 45 ° and not more than 60 ° . 導光板は光源側の側端の厚みよりも光源から遠い側の側端の厚みが薄くなるテーパ状となっていることを特徴とする請求項1〜6のいずれか1項に記載のエッジライトパネル。The edge light according to any one of claims 1 to 6, wherein the light guide plate has a tapered shape in which the thickness of the side edge farther from the light source is thinner than the thickness of the side edge on the light source side. panel. V字形溝はその断面形状が対称であり、且つ両壁面が共に鏡面であることを特徴とする請求項1〜7のいずれか1項に記載のエッジライトパネル。The edge light panel according to any one of claims 1 to 7, wherein the V-shaped groove has a symmetrical cross-sectional shape and both wall surfaces are mirror surfaces . 導光板の光源から遠い側の側端が光源を中心とする円弧状であることを特徴とする請求項4記載のエッジライトパネル。 5. The edge light panel according to claim 4, wherein the side edge of the light guide plate on the side far from the light source has an arc shape centered on the light source . V字形溝はその頂部が両側の壁面を滑らかにつなぐ曲面で形成されていることを特徴とする請求項1〜9のいずれか1項に記載のエッジライトパネル。The edge light panel according to any one of claims 1 to 9, wherein the V-shaped groove is formed with a curved surface whose top portion smoothly connects the wall surfaces on both sides . 導光板裏面で且つ隣接する2つのV字形溝の間の部分のうち、光源寄りの部分に光反射角制御面を設けていることを特徴とする請求項1〜9のいずれか1項に記載のエッジライトパネル。 10. The light reflection angle control surface is provided in a portion near the light source among the portions between the two adjacent V-shaped grooves on the rear surface of the light guide plate. 10. Edge light panel. 光反射角制御面は、鏡面に仕上げた微細な凹凸であることを特徴とする請求項11記載のエッジライトパネル。 12. The edge light panel according to claim 11, wherein the light reflection angle control surface is a fine uneven surface finished to a mirror surface . 光反射角制御面は、拡散反射させる粗面であることを特徴とする請求項11記載のエッジライトパネル。The edge light panel according to claim 11, wherein the light reflection angle control surface is a rough surface to be diffusely reflected .
JP2002120010A 2001-12-21 2002-04-23 Edge light panel Expired - Fee Related JP4165111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120010A JP4165111B2 (en) 2001-12-21 2002-04-23 Edge light panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-390515 2001-12-21
JP2001390515 2001-12-21
JP2002120010A JP4165111B2 (en) 2001-12-21 2002-04-23 Edge light panel

Publications (2)

Publication Number Publication Date
JP2003249110A JP2003249110A (en) 2003-09-05
JP4165111B2 true JP4165111B2 (en) 2008-10-15

Family

ID=28677028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120010A Expired - Fee Related JP4165111B2 (en) 2001-12-21 2002-04-23 Edge light panel

Country Status (1)

Country Link
JP (1) JP4165111B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5215759B2 (en) * 2008-07-16 2013-06-19 パナソニック株式会社 Edge light panel and lighting device
JP5547900B2 (en) * 2009-03-16 2014-07-16 パナソニック株式会社 Display device
KR101060679B1 (en) 2010-11-30 2011-08-31 (주)아이에스티 코리아 Back light unit with high-luminance intaglio light guiding plate
JP5677863B2 (en) * 2011-01-13 2015-02-25 シャープ株式会社 Lighting device
JP6598022B2 (en) * 2016-02-17 2019-10-30 パナソニックIpマネジメント株式会社 lighting equipment
JP6737613B2 (en) 2016-03-25 2020-08-12 デクセリアルズ株式会社 Optical body and light emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187406U (en) * 1984-05-23 1985-12-12 第一精工株式会社 surface light source device
JP3644787B2 (en) * 1996-05-09 2005-05-11 松下電器産業株式会社 Planar illumination system
JP3427636B2 (en) * 1996-09-06 2003-07-22 オムロン株式会社 Surface light source device and liquid crystal display device
JPH11231143A (en) * 1998-02-12 1999-08-27 Casio Comput Co Ltd Light guide plate and pattern for manufacturing the light guide plate
JP3918281B2 (en) * 1998-02-18 2007-05-23 オムロン株式会社 Surface light source device
JP2000268616A (en) * 1999-03-15 2000-09-29 Seiko Epson Corp Flat emitter, front light, liquid crystal device and electronic apparatus
JP2001124929A (en) * 1999-10-29 2001-05-11 Nippon Leiz Co Ltd Light transmission plate and planar lighting system
JP3931245B2 (en) * 2001-03-26 2007-06-13 株式会社ケンウッド Light guide plate, display member including light guide plate, and audio device

Also Published As

Publication number Publication date
JP2003249110A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
US6986599B2 (en) Light source device
JP4145473B2 (en) Surface light source device and liquid crystal display device
US9778405B2 (en) Light guide plate and light source module
JP4511504B2 (en) Light guide plate and flat illumination device
JP5927536B2 (en) Light guide plate and surface light source device
JP6142293B2 (en) Light source device
JP2002196151A (en) Light guide plate
JP3823289B2 (en) Surface lighting device
JP2006185852A (en) Surface light source device and display device
US6607279B2 (en) Light guiding plate
JPH08262234A (en) Illumination device
JP4172008B2 (en) Surface light source device
US7766532B2 (en) Light guide for surface light source device and surface light source device
US8870434B2 (en) Asymmetric serrated edge light guide film having circular base segments
JP2005085671A (en) Light guide plate and plane light source device
JP4165111B2 (en) Edge light panel
US7295261B2 (en) Light guide plate with W-shaped structures and backlight module using the same
JP2008257900A (en) Surface light emitting device
JP2007128748A (en) Point light source backlight
JP2000098382A (en) Transparent light guiding plate
JP2004265646A (en) Backlight for optical element
JP2006351286A (en) Light guide plate and flat lighting system
US6969187B2 (en) Light guiding plate for front light
JP2003107247A (en) Light guide plate and surface lighting device
JP4960327B2 (en) Light deflection element and light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees