JP4164896B2 - Landfill leachate treatment method - Google Patents

Landfill leachate treatment method Download PDF

Info

Publication number
JP4164896B2
JP4164896B2 JP12078998A JP12078998A JP4164896B2 JP 4164896 B2 JP4164896 B2 JP 4164896B2 JP 12078998 A JP12078998 A JP 12078998A JP 12078998 A JP12078998 A JP 12078998A JP 4164896 B2 JP4164896 B2 JP 4164896B2
Authority
JP
Japan
Prior art keywords
water
treatment
leachate
catalyst
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12078998A
Other languages
Japanese (ja)
Other versions
JPH11309484A (en
Inventor
亮一 山田
良弘 恵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP12078998A priority Critical patent/JP4164896B2/en
Publication of JPH11309484A publication Critical patent/JPH11309484A/en
Application granted granted Critical
Publication of JP4164896B2 publication Critical patent/JP4164896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ゴミ埋立地から発生する浸出水の処理方法に係り、特に、蒸発濃縮技術を利用して浸出水中の塩分を除去し、脱塩水として回収再利用又は河川放流可能とし、また、濃縮水については、有機物を除去し、排水規制物質を含まず、塩類のみを含む濃縮水とする方法に関する。
【0002】
【従来の技術】
従来、ゴミ埋立地から発生する浸出水は、有機物やアンモニアなどの生物処理で処理可能な成分を含むものであるため、生物処理された後、河川等に放流されている。
【0003】
しかし、近年、埋立物が、一般ゴミを焼却処理した際に発生する焼却灰が主体になるにつれて、ゴミ埋立地から発生する浸出水は、塩化ナトリウム、塩化カルシウム、塩化カリウム等の生物処理では処理し得ない塩類を高濃度に含むものとなってきている。このように塩類濃度の高い浸出水が河川等に放流されると、農業用水や地下水等の塩類濃度が高くなり、農作物や浄水処理に悪影響を及ぼす恐れがあることから、これを脱塩処理する必要がある。
【0004】
近年、ゴミ埋立地浸出水(以下、「浸出水」と記す。)の脱塩処理技術に関して「高塩類浸出水の処理技術」(「廃棄物学会誌」Vol.8,No.7,(1997)pp529−539)、「逆浸透法による浸出水の高度処理」(「廃棄物学会誌」Vol.8,No.7,(1997)pp540−546)、「膜ろ過技術による浸出水処理」(「廃棄物学会誌」Vol.8,No.7,(1997)pp553−562)等に報告がなされている。これらは、主に、従来のゴミ浸出水処理設備に逆浸透膜設備や電気透析設備を付設したものである。
【0005】
【発明が解決しようとする課題】
しかし、逆浸透膜法や電気透析法では、装置の安定運転のためには、多くの前処理設備を設ける必要があり、処理システムや制御操作が複雑になるという欠点がある。即ち、浸出水は、塩類濃度が多い場合には約30,000mg/Lにもなり、海水に近い状態であり、濃縮によりシリカやカルシウム塩が析出してスケール障害を引き起こす可能性があり、更に、生物処理、物理化学処理でも除去困難な難分解性有機物も含むため、有機物による汚染で障害が発生する恐れもある。このため、このような浸出水の処理に逆浸透膜法や電気透析法を適用するためには、予め、スケール成分や有機物を除去するための前処理設備が必要となり、処理システムや制御操作が複雑となる。
【0006】
また、従来においては、脱塩処理で発生する濃縮水についての有効な処理方法も提案されていない。
【0007】
本発明は上記従来の問題点を解決し、浸出水を比較的簡素な処理システムで効率的に浄化及び脱塩することができる埋立地浸出水の処理方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の埋立地浸出水の処理方法は、廃棄物埋立地の浸出水を蒸発させた後、蒸気を凝縮して得た凝縮水を、触媒の存在下に酸化処理又は還元処理することを特徴とする。
【0009】
浸出水中には様々な物質が存在しており、塩類、アンモニア性窒素、臭気成分、有機物などが含有されている。
【0010】
本発明の方法では、蒸発により、アンモニア性窒素、臭気成分、有機物の一部を凝縮水側に移行させ、これを触媒湿式酸化・還元処理することにより、凝縮水中に移行したアンモニア性窒素、臭気成分、有機物を酸化又は還元分解して除去する。
【0011】
このように蒸発濃縮を行って、装置運転の際の障害となる有機物やスケール成分を濃縮水側に残留させ凝縮水を触媒湿式酸化・還元処理するため、複雑な前処理設備を設けることなく、安定かつ効率的な処理を行える。
【0012】
ところで、触媒湿式酸化・還元法は、比較的低温において二次反応等の問題もなく効率的な酸化分解又は還元分解を行うことができる方法ではあるが、廃水を触媒湿式酸化・還元法により処理した場合、触媒性能の低下が著しく、触媒寿命が短いことが多い。
【0013】
この触媒活性の低下の原因は、廃水中に含まれる重金属類やF,Cl等の共存塩類、スケール成分等が、触媒表面に付着ないし沈着することで触媒の活性点が塞がれることによるが、本発明では、浸出水の蒸発処理で、触媒性能の低下要因となる重金属類や共存塩類、スケール成分等は濃縮水(蒸発残留物)側に残留し、触媒湿式酸化・還元処理する凝縮水中には、これらの触媒性能阻害物質が含まれていないため、触媒性能の低下を防止して、長期に亘り安定かつ効率的な処理を行える。
【0014】
本発明の方法によれば、浸出水の蒸発処理により、塩類を約200,000mg/L程度にまで濃縮した濃縮水を得ることができるが、この濃縮水中にはCODで示される有機物も含まれる。このため、この濃縮水を廃棄する場合も再利用する場合もCODの処理が必要となる。従って、本発明では、濃縮水を粉末活性炭で処理してCODを除去しておくのが好ましい。前述の如く、近年の埋立廃棄物には焼却灰を多く含む場合があり、このような場合には得られる濃縮水中に特に難生物分解性有機物が含まれる。このような難生物分解性のものであっても、有機物は活性炭で容易に吸着除去することができる。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
【0016】
本発明においては、このような浸出水をまず蒸発濃縮及び凝縮して凝縮水と濃縮水を得るが、この蒸発、凝縮に先立ち、後段の配管や熱交換器の詰まりを防止するために濾過器等で浸出水中のSSを除去する。この濾過器は、SSを除去するものであれば、砂濾過器などの任意の濾過器を採用することができ、また、濾過器に限らず、凝集剤を添加して固液分離(沈殿、濾過など)するものでもよい。また、濾過後は、必要に応じてpH調整を行う。
【0017】
即ち、浸出水中にはアンモニア態窒素が数十〜100mg/L程度含まれており、このアンモニア態窒素は後述の濃縮水の活性炭処理では除去し得ないため、蒸発に供する水(蒸発濃縮装置内の濃縮水)のpHが中性から弱アルカリ性となるようにpH調整し、アンモニア態窒素をアンモニアとして水蒸気と共に揮発させる。また、蒸発操作に当り、浸出水中にガス(例えば酸素、炭酸等)が含まれていると、熱効率が低下するため、予めこれらのガスを脱気しておくのが好ましい。
【0018】
蒸発濃縮装置の運転は、シリカ、カルシウム塩スケール防止のため石膏等を添加しスケール成分の伝熱面への付着を防止する種晶添加法を採用するのが好ましい。この伝熱面へのスケール付着の予防は、スケール防止剤の添加、酸添加などの方法でも良いが、種晶添加法は、原水水質などに影響されずに安定してスケール付着抑制効果を得ることができ、好ましい方法である。
【0019】
蒸発濃縮装置の運転動力源には、種々のものが利用できる。例えば、発生した水蒸気を再び熱源として使用する蒸気圧縮方式の場合は電気エネルギー、焼却設備がある場合は廃熱利用、またボイラーがある場合は水蒸気を利用できる。これらは施設により最適なものを採用する。
【0020】
蒸発により得られた凝縮水中にはアンモニアや臭気成分、若干の有機物が含まれ、一方、濃縮水(蒸発残留液)中には、無機塩類や有機物等が濃縮される。
【0021】
本発明において、この濃縮水の濃縮倍数は、2〜40倍、特に5〜30倍、とりわけ10〜20倍となるように、即ち濃縮水の容量が被処理排水の容量の1/2〜1/40、特に1/5〜1/30、とりわけ10〜20倍となるように蒸発操作を行うのが好ましい。
【0022】
凝縮水は、次いで、酸化剤又は還元剤を添加した後、触媒と接触させて、凝縮水中のアンモニア、臭気成分、有機物を分解除去する。
【0023】
本発明においては、この酸化剤又は還元剤として酸化又は還元分解反応によって水又はガスを生成し、特に無機イオンとして残留しない物質を用いるのが好ましい。具体的には、この酸化剤として、空気、酸素、過酸化水素、オゾン等を用いることができる。還元剤としては水素、ヒドラジン等を用いることができる。これらの添加量は、凝縮水中の分解対象物の種類及び濃度に応じて調整される。
【0024】
このような酸化剤又は還元剤を用いることにより、触媒湿式酸化・還元処理後に得られる処理水は、無機塩類を殆ど含まず、蒸留水と同程度の水質であり、これを回収して有効に再利用することができるようになる。
【0025】
触媒としては、例えば担体に金属を担持した不均一系触媒が使用され、その金属としては白金、パラジウム、ルテニウム、ロジウム、イリジウム、ニッケル、コバルトなどが挙げられる。また、担体としては、アルミナ、チタニア、活性炭、ジルコニア、ゼオライト、シリカ、ガラス、樹脂、プラスチックなどが挙げられる。
【0026】
接触方式は、触媒を充填した塔に該凝縮水を通液する方式が好適であるが、これ以外のものであっても良い。接触温度(酸化又は還元反応温度)は、一般的には常温〜250℃、多くの場合90〜200℃の範囲で、その反応に応じて好適な温度に設定する。前記の通り、この凝縮水中には触媒性能の低下要因となる重金属類や塩類、スケール成分等が含有されていないことから、触媒性能がこれらの物質で阻害されることはなく、長期に亘り安定な酸化・還元処理を行うことができる。
【0027】
一方、濃縮水は、粉末活性炭で処理してCOD成分を吸着除去する。この活性炭処理を、充填塔方式で行うと、スケール成分の生成、付着で目詰りを起こすため、活性炭処理は、濃縮水に粉末活性炭を添加して攪拌し、その後固液分離する方式で行うのが好ましい。この固液分離で得られる分離水は、無機塩類のみを含み、結晶化又は乾燥固化して再利用或いは処分するか、適宜希釈して放流する。
【0028】
なお、濃縮水に添加する粉末活性炭の添加濃度は、濃縮水中の有機物量に応じて適宜決定される。
【0029】
固液分離で分離された粉末活性炭は、回収、再生して再使用する。
【0030】
以下に、本発明の埋立地浸出水の処理方法の実施の形態の一例を示す図1を参照して、具体的な処理手順を説明する。
【0031】
図1の方法では原水貯槽1の原水(浸出水を図示しない濾過器でSS除去処理した水)をまずpH調整槽2で、必要に応じて酸又はアルカリを添加してpH調整する。pH調整水はポンプ3により熱交換器4を経て脱ガス塔5に送給し、蒸発の際の熱効率の低下を防止するために脱ガス処理した後、蒸発濃縮装置6で蒸発、凝縮処理する。
【0032】
凝縮水は、酸化剤(又は還元剤)添加槽7で酸化剤(又は還元剤)を添加し、ポンプ8により、熱交換器9及びヒータ10を経て触媒塔11に通液し、触媒湿式酸化(又は還元)処理する。
【0033】
触媒塔11からの処理水及び処理ガスは熱交換器9で熱交換して熱回収した後、気液分離塔13で気液分離され、処理ガスは系外へ排出される。また処理水は、蒸留水とほぼ同程度の良好な水質のものであり、熱交換器4で更に排熱の回収を行った後、再利用される。なお、気液分離塔13の入り口側には、触媒塔11の圧力を所定の圧力に調整するための調圧弁12が設けられており、この調圧弁12及びヒータ10により、触媒塔11内では、所定の温度及び圧力条件で分解反応が行われる。
【0034】
一方、濃縮水は、粉末活性炭反応槽14にて粉末活性炭が添加され、有機物が吸着除去される。この処理水は、固液分離槽15で固液分離され、分離液(処理濃縮水)は高濃度塩類溶液として再利用するか、適宜希釈して放流するか、或いは、結晶化又は乾燥固化するなどして処分する。分離汚泥は、活性炭の再生、再利用のために回収する。
【0035】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0036】
実施例1
表1に示す水質のA処理場埋立地浸出水(埋立物は焼却灰主体)を、下記条件で蒸発させた後凝縮し、表1に示す水質の濃縮水と凝縮水を得た。
【0037】
[蒸発条件]
圧力 :常圧
温度 :100〜105℃
濃縮倍数 :10倍
得られた凝縮水に酸化剤として過酸化水素(H2O2)を添加し、触媒の存在下、アンモニア態窒素の酸化処理を行った。過酸化水素とアンモニア態窒素の反応は下記式で示される。
【0038】
2NH4OH+3H22→N2+8H2
即ち、アンモニア態窒素1モルを理論的に酸化するために必要なH22量は3/2モルとなる。
【0039】
触媒酸化の処理条件は下記の通りとし、処理方式は、触媒充填塔通液方式とした。
【0040】
[触媒酸化処理条件]
触媒 :0.5重量%Pt担持/チタニア球
温度 :160℃
通液SV :3L/hr
22添加濃度:アンモニア態窒素モル濃度に対して、理論当量
得られた処理水の水質は表1に示す通りであった。
【0041】
この結果から明らかなように、アンモニア態窒素のみならずCOD成分も触媒酸化にて除去可能であり、触媒酸化処理で得られる処理水はほぼ蒸留水並みの水質を示しており、このまま再利用又は放流可能である。
【0042】
【表1】

Figure 0004164896
【0043】
一方、濃縮水については、粉末活性炭処理したところ、処理前CODMn濃度920mg/Lに対し処理後のCODMn濃度は10.2mg/Lとなり、色度も完全に除去された。
【0044】
【発明の効果】
以上詳述した通り、本発明の埋立地浸出水の処理方法によれば、浸出水を簡素な設備で安定かつ効率的に浄化、脱塩処理することができ、また、蒸留水とほぼ同程度の水質の処理水を得ることができ、この処理水は排水規制物質も現制値以下であるため、そのまま再利用又は放流することができる。
【0045】
特に、請求項2の方法によれば、濃縮水中の有機物を効率良く除去することができ、濃縮水の処分が容易となる。
【図面の簡単な説明】
【図1】本発明の埋立地浸出水の処理方法の実施の形態を示す系統図である。
【符号の説明】
1 原水貯槽
2 pH調整槽
3、8 ポンプ
4、9 熱交換器
5 脱ガス塔
6 蒸発濃縮装置
7 酸化剤(又は還元剤)添加槽
10 ヒーター
11 触媒塔
12 調圧弁
13 気液分離塔
14 粉末活性炭反応槽
15 固液分離槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating leachate generated from a landfill site, and in particular, removes salt from leachate using evaporative concentration technology, enables recovery and reuse as desalted water or river discharge, and concentration. About water, it is related with the method of removing organic substance and making it the concentrated water which does not contain a waste-water control substance and contains only salts.
[0002]
[Prior art]
Conventionally, leachate generated from a landfill site contains components that can be treated by biological treatment such as organic matter and ammonia, and thus has been discharged into rivers and the like after being biologically treated.
[0003]
However, in recent years, as landfills are mainly incinerated ash generated when incineration treatment of general garbage, leachate generated from garbage landfill is treated by biological treatment such as sodium chloride, calcium chloride, potassium chloride, etc. It has become a high concentration of salts that can not. If such leachate with high salt concentration is discharged into rivers, etc., salt concentration in agricultural water and groundwater will increase, which may adversely affect agricultural products and water purification treatment. There is a need.
[0004]
In recent years, with regard to the desalination treatment technology of landfill leachate (hereinafter referred to as “leaching water”), “high salt leachate treatment technology” (Journal of Waste Science, Vol. 8, No. 7, (1997). ) Pp 529-539), "Advanced treatment of leachate by reverse osmosis"("Journal of the Waste Society" Vol. 8, No. 7, (1997) pp 540-546), "Treatment of leachate by membrane filtration technology" ( A report is made in “Journal of the Waste Society” Vol.8, No.7, (1997) pp553-562). These are mainly a conventional waste leachate treatment facility equipped with a reverse osmosis membrane facility and an electrodialysis facility.
[0005]
[Problems to be solved by the invention]
However, the reverse osmosis membrane method and the electrodialysis method have a drawback that many pretreatment facilities need to be provided for stable operation of the apparatus, and the treatment system and the control operation are complicated. That is, the leachate is about 30,000 mg / L when the salt concentration is high, and it is in a state close to seawater, and there is a possibility that silica or calcium salt precipitates due to concentration, causing scale failure. In addition, since it contains difficult-to-decompose organic substances that are difficult to remove even by biological treatment or physicochemical treatment, there is a risk of damage caused by contamination with organic substances. For this reason, in order to apply the reverse osmosis membrane method and electrodialysis method to such leachate treatment, pretreatment equipment for removing scale components and organic substances is required in advance, and the treatment system and control operation are It becomes complicated.
[0006]
Conventionally, an effective treatment method for concentrated water generated by desalting has not been proposed.
[0007]
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for treating landfill leachate that can efficiently purify and desalinate the leachate with a relatively simple treatment system.
[0008]
[Means for Solving the Problems]
The landfill leachate treatment method of the present invention is characterized in that after the leachate in the waste landfill is evaporated, the condensed water obtained by condensing the steam is oxidized or reduced in the presence of a catalyst. And
[0009]
There are various substances in the leachate, including salts, ammoniacal nitrogen, odorous components, and organic matter.
[0010]
In the method of the present invention, ammonia nitrogen, odor components, and part of organic substances are transferred to the condensed water side by evaporation, and this is subjected to catalytic wet oxidation / reduction treatment, whereby ammonia nitrogen and odor transferred to the condensed water. Components and organic substances are removed by oxidation or reductive decomposition.
[0011]
By performing evaporation and concentration in this way, organic substances and scale components that become obstacles during operation of the apparatus remain on the concentrated water side and the condensed water is subjected to catalytic wet oxidation / reduction treatment, so without providing complicated pretreatment equipment, Stable and efficient processing can be performed.
[0012]
By the way, the catalytic wet oxidation / reduction method is a method capable of performing efficient oxidative decomposition or reductive decomposition at a relatively low temperature without problems such as secondary reaction, but the waste water is treated by the catalytic wet oxidation / reduction method. In this case, the catalyst performance is remarkably deteriorated and the catalyst life is often short.
[0013]
The cause of the decrease in the catalyst activity is that the active sites of the catalyst are blocked by heavy metals, coexisting salts such as F and Cl, scale components, etc. contained in the wastewater adhering to or depositing on the catalyst surface. In the present invention, heavy metals, coexisting salts, scale components, and the like, which cause reduction in catalyst performance in the leachate evaporation process, remain on the concentrated water (evaporation residue) side, and are subjected to catalytic wet oxidation / reduction treatment. Does not contain these catalytic performance-inhibiting substances, so that a decrease in the catalyst performance can be prevented and a stable and efficient treatment can be performed over a long period of time.
[0014]
According to the method of the present invention, concentrated water obtained by concentrating salts to about 200,000 mg / L can be obtained by evaporating the leachate, and this concentrated water also contains organic substances represented by COD. . For this reason, COD processing is required both when the concentrated water is discarded and reused. Therefore, in the present invention, it is preferable to remove COD by treating concentrated water with powdered activated carbon. As described above, landfill waste in recent years may contain a large amount of incinerated ash, and in such a case, the concentrated water obtained contains particularly biodegradable organic matter. Even if it is such a non-biodegradable material, the organic substance can be easily adsorbed and removed by activated carbon.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0016]
In the present invention, such leachate is first concentrated by evaporation and condensation to obtain condensed water and concentrated water. Prior to this evaporation and condensation, a filter is used to prevent clogging of the downstream piping and heat exchanger. Remove SS in leachate with etc. This filter can adopt any filter such as a sand filter as long as it can remove SS. Not only the filter but also a flocculant is added and solid-liquid separation (precipitation, precipitation, It may be filtered). Moreover, after filtration, pH adjustment is performed as needed.
[0017]
That is, the leached water contains ammonia nitrogen of about several tens to 100 mg / L, and this ammonia nitrogen cannot be removed by the activated carbon treatment of concentrated water described later. PH is adjusted so that the pH of the concentrated water becomes neutral to weakly alkaline, and ammonia nitrogen is volatilized with ammonia as ammonia. In addition, if gas (for example, oxygen, carbonic acid, etc.) is contained in the leachate during the evaporation operation, the thermal efficiency is lowered. Therefore, it is preferable to degas these gases in advance.
[0018]
The operation of the evaporating and concentrating apparatus preferably employs a seed crystal addition method in which gypsum or the like is added to prevent scales of silica and calcium salts to prevent adhesion of scale components to the heat transfer surface. The scale adhesion to the heat transfer surface may be prevented by adding a scale inhibitor or adding an acid, but the seed crystal addition method stably obtains a scale adhesion inhibiting effect without being affected by the quality of raw water. This is the preferred method.
[0019]
Various operating power sources for the evaporative concentration apparatus can be used. For example, in the case of a vapor compression method in which generated steam is used again as a heat source, electric energy can be used, waste heat can be used if there is an incineration facility, and steam can be used if there is a boiler. Use the most appropriate one for each facility.
[0020]
Condensed water obtained by evaporation contains ammonia, odor components, and some organic substances, while concentrated water (evaporation residual liquid) concentrates inorganic salts and organic substances.
[0021]
In the present invention, the concentration factor of the concentrated water is 2 to 40 times, particularly 5 to 30 times, particularly 10 to 20 times, that is, the concentrated water volume is 1/2 to 1 of the capacity of the wastewater to be treated. It is preferable to carry out the evaporation operation so that the ratio becomes / 40, particularly 1/5 to 1/30, particularly 10 to 20 times.
[0022]
Next, after adding an oxidizing agent or a reducing agent, the condensed water is brought into contact with the catalyst to decompose and remove ammonia, odor components, and organic substances in the condensed water.
[0023]
In the present invention, it is preferable to use a substance that generates water or gas by oxidation or reductive decomposition reaction and does not remain as inorganic ions, as the oxidizing agent or reducing agent. Specifically, air, oxygen, hydrogen peroxide, ozone, or the like can be used as the oxidizing agent. As the reducing agent, hydrogen, hydrazine or the like can be used. These addition amounts are adjusted according to the type and concentration of the decomposition target in the condensed water.
[0024]
By using such an oxidizing agent or reducing agent, the treated water obtained after the catalytic wet oxidation / reduction treatment contains almost no inorganic salts and has the same quality as distilled water. It can be reused.
[0025]
As the catalyst, for example, a heterogeneous catalyst in which a metal is supported on a carrier is used, and examples of the metal include platinum, palladium, ruthenium, rhodium, iridium, nickel, and cobalt. Examples of the carrier include alumina, titania, activated carbon, zirconia, zeolite, silica, glass, resin, and plastic.
[0026]
The contact system is preferably a system in which the condensed water is passed through a column packed with a catalyst, but other methods may be used. The contact temperature (oxidation or reduction reaction temperature) is generally in the range of room temperature to 250 ° C., and in many cases 90 to 200 ° C., and is set to a suitable temperature according to the reaction. As mentioned above, since this condensed water does not contain heavy metals, salts, scale components, etc. that cause a decrease in catalyst performance, the catalyst performance is not hindered by these substances and is stable for a long time. Oxidation / reduction treatment can be performed.
[0027]
On the other hand, the concentrated water is treated with powdered activated carbon to adsorb and remove COD components. When this activated carbon treatment is performed in a packed tower system, clogging occurs due to the generation and adhesion of scale components. Therefore, activated carbon treatment is performed by adding powdered activated carbon to concentrated water and stirring, followed by solid-liquid separation. Is preferred. The separated water obtained by this solid-liquid separation contains only inorganic salts and is crystallized or dried and solidified to be reused or disposed of, or appropriately diluted and discharged.
[0028]
In addition, the addition density | concentration of the powdered activated carbon added to concentrated water is suitably determined according to the organic substance amount in concentrated water.
[0029]
The powdered activated carbon separated by solid-liquid separation is recovered, regenerated and reused.
[0030]
Below, with reference to FIG. 1 which shows an example of embodiment of the processing method of the landfill leachate of this invention, a specific process sequence is demonstrated.
[0031]
In the method of FIG. 1, the raw water in the raw water storage tank 1 (water obtained by removing SS from the leachate with a filter (not shown)) is first adjusted in the pH adjustment tank 2 by adding acid or alkali as necessary. The pH-adjusted water is supplied to the degassing tower 5 via the heat exchanger 4 by the pump 3, degassed to prevent a decrease in thermal efficiency during evaporation, and then evaporated and condensed by the evaporation concentrator 6. .
[0032]
Condensed water is added with an oxidizing agent (or reducing agent) in an oxidizing agent (or reducing agent) addition tank 7, and is passed by a pump 8 through a heat exchanger 9 and a heater 10 to a catalyst tower 11 to be subjected to catalytic wet oxidation. (Or reduction) processing.
[0033]
The treated water and the treated gas from the catalyst tower 11 are heat-exchanged by the heat exchanger 9 to recover the heat, and then gas-liquid separated by the gas-liquid separation tower 13 and the treated gas is discharged out of the system. Further, the treated water has a good water quality almost the same as distilled water, and is further reused after the exhaust heat is further recovered by the heat exchanger 4. A pressure regulating valve 12 for adjusting the pressure of the catalyst tower 11 to a predetermined pressure is provided on the inlet side of the gas-liquid separation tower 13. The pressure regulating valve 12 and the heater 10 allow the pressure inside the catalyst tower 11 to be adjusted. The decomposition reaction is performed under predetermined temperature and pressure conditions.
[0034]
On the other hand, concentrated activated carbon is added with powdered activated carbon in the powdered activated carbon reaction tank 14 to adsorb and remove organic substances. This treated water is solid-liquid separated in the solid-liquid separation tank 15, and the separated liquid (processed concentrated water) is reused as a high-concentration salt solution, discharged as appropriate, or crystallized or dried and solidified. And then dispose of it. The separated sludge is collected for the regeneration and reuse of activated carbon.
[0035]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0036]
Example 1
The water quality A treatment site landfill leachate shown in Table 1 (the landfill is mainly composed of incineration ash) was evaporated under the following conditions and then condensed to obtain concentrated water and condensed water shown in Table 1.
[0037]
[Evaporation conditions]
Pressure: Normal pressure temperature: 100-105 ° C
Concentration multiple: Hydrogen peroxide (H 2 O 2) was added as an oxidant to the condensed water obtained 10 times, and ammonia nitrogen was oxidized in the presence of a catalyst. The reaction between hydrogen peroxide and ammonia nitrogen is represented by the following formula.
[0038]
2NH 4 OH + 3H 2 O 2 → N 2 + 8H 2 O
That is, the amount of H 2 O 2 required to theoretically oxidize 1 mol of ammonia nitrogen is 3/2 mol.
[0039]
The treatment conditions for the catalyst oxidation were as follows, and the treatment method was a catalyst packed tower liquid passage method.
[0040]
[Catalytic oxidation treatment conditions]
Catalyst: 0.5 wt% Pt supported / Titania sphere temperature: 160 ° C
Flowing SV: 3 L / hr
H 2 O 2 addition concentration: The water quality of the treated water obtained as a theoretical equivalent with respect to the ammonia nitrogen molar concentration was as shown in Table 1.
[0041]
As is apparent from this result, not only ammonia nitrogen but also COD components can be removed by catalytic oxidation, and the treated water obtained by the catalytic oxidation treatment shows almost the same quality as distilled water. It can be released.
[0042]
[Table 1]
Figure 0004164896
[0043]
On the other hand, when the concentrated water was treated with powdered activated carbon, the COD Mn concentration after treatment was 10.2 mg / L with respect to the pre-treatment COD Mn concentration of 920 mg / L, and the chromaticity was completely removed.
[0044]
【The invention's effect】
As described in detail above, according to the landfill leachate treatment method of the present invention, leachate can be purified and desalted stably and efficiently with simple equipment, and almost the same as distilled water. The treated water can be reused or discharged as it is because the wastewater control substances are less than the current regulation value.
[0045]
In particular, according to the method of claim 2, organic substances in the concentrated water can be efficiently removed, and disposal of the concentrated water becomes easy.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a method for treating landfill leachate according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water storage tank 2 pH adjustment tank 3, 8 Pump 4, 9 Heat exchanger 5 Degassing tower 6 Evaporation concentration apparatus 7 Oxidant (or reducing agent) addition tank 10 Heater 11 Catalyst tower 12 Pressure regulating valve 13 Gas-liquid separation tower 14 Powder Activated carbon reaction tank 15 Solid-liquid separation tank

Claims (2)

廃棄物埋立地の浸出水を蒸発させた後、蒸気を凝縮して得た凝縮水を、触媒の存在下に酸化処理又は還元処理することを特徴とする埋立地浸出水の処理方法。A method for treating landfill leachate, comprising condensing water obtained by evaporating leachate from a waste landfill and then condensing steam in the presence of a catalyst. 請求項1において、蒸発処理で生成する濃縮水を粉末活性炭と接触させることを特徴とする埋立地浸出水の処理方法。2. The landfill leachate treatment method according to claim 1, wherein the concentrated water produced by the evaporation treatment is brought into contact with the powdered activated carbon.
JP12078998A 1998-04-30 1998-04-30 Landfill leachate treatment method Expired - Fee Related JP4164896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12078998A JP4164896B2 (en) 1998-04-30 1998-04-30 Landfill leachate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12078998A JP4164896B2 (en) 1998-04-30 1998-04-30 Landfill leachate treatment method

Publications (2)

Publication Number Publication Date
JPH11309484A JPH11309484A (en) 1999-11-09
JP4164896B2 true JP4164896B2 (en) 2008-10-15

Family

ID=14795048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12078998A Expired - Fee Related JP4164896B2 (en) 1998-04-30 1998-04-30 Landfill leachate treatment method

Country Status (1)

Country Link
JP (1) JP4164896B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293160A (en) * 2018-11-07 2019-02-01 苏州工业园区承叶环境科技有限公司 A kind for the treatment of process of used water difficult to degradate with high salt
CN112079510A (en) * 2020-09-21 2020-12-15 衡阳百赛化工实业有限公司 Crystallization separation device in waste water for zinc sulfate safety production

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212605A (en) * 2005-02-07 2006-08-17 Nippon Sharyo Seizo Kaisha Ltd Organic waste liquid treatment apparatus and method
JP5976325B2 (en) * 2012-01-05 2016-08-23 ナノミストテクノロジーズ株式会社 Separation device and separation method
CN106277591B (en) * 2016-08-26 2019-02-15 江苏维尔利环保科技股份有限公司 Landfill leachate nanofiltration concentrate processing method
CN106277613B (en) * 2016-08-29 2019-07-05 江苏维尔利环保科技股份有限公司 Method for treating garbage percolation liquid
CN106348540B (en) * 2016-10-25 2022-11-22 天津市环境保护科学研究院 Treatment method and device for high-salt-content degradation-resistant dye wastewater pool
CN108503116B (en) * 2018-04-11 2021-03-26 中国科学院过程工程研究所 Resource utilization method of high-concentration organic wastewater
CN113023995B (en) * 2021-03-18 2023-08-25 河南绿水青山环保科技有限公司 Control system of chemical wastewater treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293160A (en) * 2018-11-07 2019-02-01 苏州工业园区承叶环境科技有限公司 A kind for the treatment of process of used water difficult to degradate with high salt
CN112079510A (en) * 2020-09-21 2020-12-15 衡阳百赛化工实业有限公司 Crystallization separation device in waste water for zinc sulfate safety production

Also Published As

Publication number Publication date
JPH11309484A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP3009535B2 (en) Method and apparatus for biologically purifying sewage
JP3883445B2 (en) Sewage treatment equipment
JP4428582B1 (en) Method and apparatus for producing acid and alkali from leachate
JP5636163B2 (en) Wastewater treatment method and wastewater treatment facility
WO2007052618A1 (en) Method for removing metals from waste water and apparatus for removing metals from waste water
JP2000117270A (en) Treatment of metal-containing waste water and method for recovering valuable metal
JP5874924B2 (en) Incineration plant wastewater treatment method and treatment equipment
JP2006239578A (en) Ammonia nitrogen and soluble salt-containing water treatment apparatus and method
JP2012024750A (en) Method for treating leachate of final disposal site
JPH10323664A (en) Wastewater-recovering apparatus
JP2017114705A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP4164896B2 (en) Landfill leachate treatment method
NZ229937A (en) Treating waste water by evaporation and catalytic oxidation of the vapour phase stream
JP4440323B1 (en) Leached water purification method and purification device
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
WO2014165998A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
JP2545946B2 (en) Waste liquid treatment method and treatment device
JP3529806B2 (en) Wastewater treatment method
JP3313549B2 (en) Decomposition and removal method of organic matter in chloride ion-containing wastewater
WO2013075240A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
JPH09294974A (en) Water treatment apparatus
JPH0975910A (en) Recovering and regenerating method of waste water
JP2008126158A (en) Method for concentrating and separating salt water
JP2007209919A (en) Salt recovery method and salt recovery apparatus
JP3485450B2 (en) Resource recovery landfill method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees