JP4163699B2 - Control method and apparatus for self-supporting power supply system - Google Patents

Control method and apparatus for self-supporting power supply system Download PDF

Info

Publication number
JP4163699B2
JP4163699B2 JP2005111916A JP2005111916A JP4163699B2 JP 4163699 B2 JP4163699 B2 JP 4163699B2 JP 2005111916 A JP2005111916 A JP 2005111916A JP 2005111916 A JP2005111916 A JP 2005111916A JP 4163699 B2 JP4163699 B2 JP 4163699B2
Authority
JP
Japan
Prior art keywords
amount
power generation
power
predicted
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005111916A
Other languages
Japanese (ja)
Other versions
JP2006296063A (en
Inventor
満 工藤
章 竹内
靖史 平岡
朗 中澤
雅人 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005111916A priority Critical patent/JP4163699B2/en
Publication of JP2006296063A publication Critical patent/JP2006296063A/en
Application granted granted Critical
Publication of JP4163699B2 publication Critical patent/JP4163699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、自然エネルギーを利用した発電装置と、蓄電池を搭載した自立型電源システムの制御方法および装置に関する。   The present invention relates to a power generation apparatus using natural energy and a control method and apparatus for a self-supporting power supply system equipped with a storage battery.

太陽光発電装置や風力発電装置は、石油等の化石燃料に依存しない無限エネルギーであり、屋外設備用電源として商用電力からの給電が困難な場所における自立型電源として期待されている。しかし、自然エネルギーは気象条件により発電出力が変動する不安定な電源であるため、それを補完する蓄電池を併用したシステムが一般的に利用されている。   Solar power generators and wind power generators are infinite energy that does not depend on fossil fuels such as oil, and are expected as stand-alone power sources in places where it is difficult to supply power from commercial power as power sources for outdoor facilities. However, since natural energy is an unstable power source whose power generation output fluctuates depending on weather conditions, a system using a storage battery that complements it is generally used.

自立型電源システムは、発電電力を負荷装置に供給するとともに、負荷装置の消費電力に対して余剰電力がある場合には余剰電力を蓄電池に充電し、電力が不足する場合には蓄電池を放電し、不足電力を補う制御方法が利用されている。   The self-supporting power supply system supplies generated power to the load device, charges the storage battery with surplus power when there is surplus power with respect to the power consumption of the load device, and discharges the storage battery when power is insufficient. A control method that compensates for the insufficient power is used.

また、蓄電池の蓄電量(または充電状態)を監視しており、余剰電力発生時において蓄電池が満充電状態である場合には発電電力を抑制することにより、過充電による蓄電池の劣化・破壊を防止し、不足電力発生時において蓄電池が過放電状態である場合には放電を停止することにより、過放電による蓄電池の劣化を防止する制御方法が利用されている。   In addition, the storage amount (or charge state) of the storage battery is monitored, and if the storage battery is fully charged when surplus power is generated, the generated battery is suppressed to prevent deterioration or destruction of the storage battery due to overcharging. However, when the storage battery is in an overdischarged state when insufficient power is generated, a control method is used that prevents the battery from deteriorating due to overdischarge by stopping the discharge.

蓄電池の種類としては鉛蓄電池が主流であるが、エネルギー密度が高く、システム設置面積の低減および軽量化が可能な、ニッケル水素電池やニッケルカドニウム電池なども実用化されている。ここで、ニッケル水素電池やニッケルカドニウム電池は、メモリー効果を引き起こす特性がある。メモリー効果とは蓄電池を放電する際に、蓄電量をある程度残した状態で放電を中止し、再度充放電を行うことなどにより、蓄電容量が減少する現象である。この現象は深い放電(単セル1.0Vまで放電)を行えば解消可能である。   Lead-acid batteries are the main type of storage battery, but nickel-metal hydride batteries and nickel-cadmium batteries, which have a high energy density and can reduce the system installation area and weight, have also been put into practical use. Here, the nickel metal hydride battery and the nickel cadmium battery have characteristics that cause a memory effect. The memory effect is a phenomenon in which, when discharging a storage battery, the storage capacity is reduced by stopping the discharge with a certain amount of stored electricity and charging and discharging again. This phenomenon can be eliminated by performing a deep discharge (discharge to a single cell of 1.0 V).

外部との通信については、システム故障や蓄電池の残量など現在のシステム状態を通知する機能がある。   For communication with the outside, there is a function of notifying the current system state such as a system failure or a remaining battery level.

非特許文献1では、蓄電池としてニッケル水素電池を用いた小容量型太陽光発電システムのシステム効率についての評価結果が報告されている。また、非特許文献2にはメモリ効果の定義、発生メカニズム、メモリ効果現象などが記載されている。
秋山一也ら「小容量独立型太陽光発電システムの効率評価」2002年電子情報通信学会総合大会講演論文集432頁 http://www.sanyo.co.jp/energy/faq/faq2.html
Non-Patent Document 1 reports an evaluation result on the system efficiency of a small-capacity solar power generation system using a nickel-hydrogen battery as a storage battery. Non-Patent Document 2 describes the definition of memory effect, generation mechanism, memory effect phenomenon, and the like.
Kazuya Akiyama et al. “Evaluation of efficiency of small-capacity independent photovoltaic power generation system” 2002 Annual Conference of IEICE General Conference, 432 pages http: // www. sanyo. co. jp / energy / faq / faq2. html

上述した従来の方法では、蓄電池のメモリー効果を解除するためには、充放電装置を用いて深い放電を行う必要があるため、蓄電池の取り外しや、蓄電池の冗長搭載が必要である。さらに、蓄電池の残量を通知する機能はあるが、自然エネルギーにおける未来の発電量や負荷装置の消費電力量は考慮していないため、停電日時を事前に通知するまでに至っていない。   In the above-described conventional method, in order to cancel the memory effect of the storage battery, it is necessary to perform deep discharge using a charging / discharging device. Therefore, it is necessary to remove the storage battery or to redundantly mount the storage battery. Furthermore, although there is a function for notifying the remaining amount of the storage battery, the future power generation amount in the natural energy and the power consumption amount of the load device are not taken into consideration, so that the date and time of the power failure is not notified in advance.

本発明の目的は、蓄電池のメモリー効果を解消することができる、自立型電源システムの制御方法および装置を提供することにある。   The objective of this invention is providing the control method and apparatus of a self-supporting power supply system which can eliminate the memory effect of a storage battery.

本発明の自立型電源システムの制御方法は、
システム設置地域を対象とした気象実績と気象予報を受信し、データベースに蓄積するステップと、
前記発電装置の発電量、負荷装置の消費電力量、および前記蓄電池の蓄電量を検出し、データベースに蓄積するステップと、
蓄積されている気象実績と発電量を基に発電量の予測式を、また蓄積されている気象実績と消費電力量を基に消費電力量の予測式をそれぞれ導出するステップと、
前記発電量予測式、前記消費電力量予測式に受信した気象予報を入力することにより予測発電量、予測消費電力量を算出するステップと、
前記予測発電量と前記予測消費電力量を基に前記蓄電池の予測充放電量を算出し、前記蓄電量と該予測充放電量を基に前記蓄電池の予測蓄電量を算出するステップと、
前記予測発電量を段階的に抑制した場合の該蓄電量を予測し、抑制量の段階が予測期間内において該蓄電量が使用範囲内における最低領域から、要求される信頼性を確保可能な領域まで回復可能であるとともに、負荷装置の停電が発生しない段階である場合、前記発電量を抑制する処理と、前記蓄電量が該最低領域に存在する際、前記蓄電池の電圧が放電終止電圧まで到達した時点で抑制する処理を解除する処理を行なうステップと
を有する。
The control method of the self-supporting power supply system of the present invention is as follows.
Receiving weather results and weather forecasts for the system installation area and storing them in a database;
Detecting the power generation amount of the power generation device, the power consumption amount of the load device, and the power storage amount of the storage battery, and storing in a database;
Deriving a prediction formula for power generation based on accumulated weather results and power generation, and a prediction formula for power consumption based on accumulated weather results and power consumption;
Calculating the predicted power generation amount and the predicted power consumption amount by inputting the received weather forecast into the power generation amount prediction equation and the power consumption amount prediction equation;
Calculating a predicted charge / discharge amount of the storage battery based on the predicted power generation amount and the predicted power consumption amount, and calculating a predicted storage amount of the storage battery based on the storage amount and the predicted charge / discharge amount;
The amount of electricity stored when the predicted power generation amount is suppressed stepwise, and the amount of storage amount can be ensured from the lowest region within the usage range within the prediction period, and the required reliability can be ensured When the load device is in a stage where a power failure does not occur, the process of suppressing the power generation amount and the storage battery voltage reaches the end-of-discharge voltage when the storage amount is in the lowest region. And a step of performing a process of canceling the process to be suppressed at the time of being performed.

予測発電量を段階的に抑制した場合の蓄電量を予測し、抑制量の段階が予測期間内において該蓄電量が使用範囲内における最低領域から、要求される信頼性を確保可能な領域まで回復可能であるとともに、負荷装置の停電が発生しない段階である場合、前記発電量を抑制する処理と、該蓄電量が該最低領域に存在する際、前記蓄電池の電圧が放電終止電圧まで到達した時点で抑制する処理を解除する処理を、定期的に実施することにより、蓄電池におけるメモリー効果を解消することができる。   Predicts the amount of electricity stored when the predicted power generation is stepped down, and the step of the amount of restraint recovers from the lowest region within the usage range to the region where the required reliability can be ensured. When it is possible and when the power failure of the load device does not occur, the process of suppressing the power generation amount and the time when the voltage of the storage battery reaches the end-of-discharge voltage when the power storage amount exists in the lowest region The memory effect in the storage battery can be eliminated by periodically performing the process of canceling the process that is suppressed in step (b).

予測蓄電量が過放電領域にあるとともに、予測発電量が該予測消費量以下となる期間が存在する場合、停電する日または時間帯を外部に通知するようにしてもよい。これにより、自立型電源システムの信頼性とメンテナンス性が向上する。   When the predicted power storage amount is in the overdischarge region and there is a period in which the predicted power generation amount is equal to or less than the predicted consumption amount, the day or time zone during which a power failure occurs may be notified to the outside. This improves the reliability and maintainability of the self-supporting power supply system.

請求項1と3の発明によれば、自然エネルギーにおける未来の発電量、消費電力量および蓄電量の予測結果を基に、蓄電池におけるメモリー効果の解消が可能である。これにより、メモリー効果によって蓄電池容量が減少している場合においても蓄電池の容量を回復させることが可能であるため、本来の蓄電池容量の有効利用が可能である。   According to the first and third aspects of the invention, it is possible to eliminate the memory effect in the storage battery based on the prediction results of the future power generation amount, power consumption amount, and power storage amount in natural energy. Thereby, even when the storage battery capacity is decreased due to the memory effect, the capacity of the storage battery can be recovered, so that the original storage battery capacity can be effectively used.

また、請求項2の発明によれば、停電日時を通知することが可能であるため、停電を事前に防止することによる電源としての信頼性およびメンテナンス性の向上が可能である。   According to the invention of claim 2, since it is possible to notify the date and time of a power failure, it is possible to improve the reliability as a power source and maintainability by preventing the power failure in advance.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態の自立型電源システムの構成図である。   FIG. 1 is a configuration diagram of a self-supporting power supply system according to an embodiment of the present invention.

発電装置である太陽電池1の出力には、太陽電池1の出力が常時最大となるように制御を行う最大電力追従機能が付加された充電器2が接続されている。充電器2の出力は逆流防止ダイオード3を介して、負荷装置8に直流電力を供給するコンバータ4が接続されている。コンバータ4の入力にはさらにスイッチ6を介して、例えばニッケル水素電池である蓄電池5が接続されている。蓄電池5は太陽電池1の発電電力が不足した場合に負荷装置8に電力を供給できるように、逆流防止ダイオード7を介してコンバータ4の入力に接続されている。   Connected to the output of the solar cell 1 that is a power generation device is a charger 2 to which a maximum power follow-up function for performing control so that the output of the solar cell 1 is always maximized is added. The output of the charger 2 is connected to a converter 4 that supplies DC power to the load device 8 via a backflow prevention diode 3. A storage battery 5, which is a nickel metal hydride battery, for example, is connected to the input of the converter 4 via a switch 6. The storage battery 5 is connected to the input of the converter 4 via a backflow prevention diode 7 so that power can be supplied to the load device 8 when the power generated by the solar battery 1 is insufficient.

制御装置10は制御部11と予測部12と電池管理部13と履歴DB14と通信部15で構成されている。   The control device 10 includes a control unit 11, a prediction unit 12, a battery management unit 13, a history DB 14, and a communication unit 15.

制御部11は太陽電池1の発電電圧・電流、蓄電池5の充電電流・電圧・温度、コンバータ入力電流を検出するとともに、演算処理することにより、充電器2、コンバータ4、スイッチ6それぞれの駆動を行う。また、太陽電池1の発電電力、蓄電池5の充放電電力および蓄電量の算出を行う。さらに、後述する電池管理部13からの情報により充電器2の制御を行う。通信部15は、時系列の天気予報および気温予報が含まれる気象予報と、天気実績および気温実績が含まれる気象実績を、気象情報提供会社16からインターネットなどによる気象情報提供サービスを受けることにより受信する。また、故障などのシステム状態と停電警報を保守者装置17に発信する。履歴DB14は、太陽電池1の発電量、負荷装置8の消費電力量、および気象実績を蓄積するハードディスク等の記憶媒体である。   The control unit 11 detects the generated voltage / current of the solar battery 1, the charging current / voltage / temperature of the storage battery 5, and the converter input current, and performs arithmetic processing to drive each of the charger 2, the converter 4, and the switch 6. Do. In addition, the power generated by the solar battery 1, the charge / discharge power of the storage battery 5, and the amount of stored electricity are calculated. Furthermore, the charger 2 is controlled based on information from the battery management unit 13 described later. The communication unit 15 receives a weather forecast including a time series weather forecast and a temperature forecast and a weather forecast including a weather record and a temperature record by receiving a weather information provision service from the weather information provider 16 via the Internet or the like. To do. Further, a system state such as a failure and a power failure alarm are transmitted to the maintenance person device 17. The history DB 14 is a storage medium such as a hard disk that accumulates the power generation amount of the solar battery 1, the power consumption amount of the load device 8, and the weather results.

予測部12は、履歴DB14の情報を基に発電量および消費電力量の予測式を導出するとともに、気象予報を基に未来の発電量、消費電力量、および蓄電量を予測する。   The prediction unit 12 derives prediction formulas for the power generation amount and the power consumption amount based on the information in the history DB 14, and predicts the future power generation amount, the power consumption amount, and the power storage amount based on the weather forecast.

図2は本実施形態の自立型電源システムの処理の流れを示すフローチャートである。   FIG. 2 is a flowchart showing a processing flow of the self-supporting power supply system of the present embodiment.

通信部15は気象情報提供会社16より時系列天気予報に含まれるシステム設置地域を対象とした天気予報、天気実績、気温予報、および気温実績を受信し、天気は晴れ:1、曇り:2、雨:3、雪:4と数値化して履歴DB14に格納する(ステップ101)。一方、制御部11は太陽電池1の発電電圧、発電電流、蓄電池5の電池電圧、電池電流、電池温度、コンバータ4への入力電流を検出し(ステップ102)、発電電力、消費電力、充電電力、放電電力を計算し、履歴DB14に格納する(ステップ103)。予測部12は履歴DB14より発電量、消費電力量、天気実績、気温実績を読み込み(ステップ104)、通信部15が受信した天気実績、気温実績を受け取り、発電量予測式と消費電力量予測式を算出する(ステップ106)。   The communication unit 15 receives a weather forecast, a weather record, a temperature forecast, and a temperature record for the system installation area included in the time series weather forecast from the weather information provider 16, the weather is clear: 1, cloudy: 2, Numerical values of rain: 3 and snow: 4 are stored in the history DB 14 (step 101). On the other hand, the control unit 11 detects the generated voltage, generated current of the solar battery 1, the battery voltage of the storage battery 5, the battery current, the battery temperature, and the input current to the converter 4 (step 102), and the generated power, the consumed power, and the charged power. The discharge power is calculated and stored in the history DB 14 (step 103). The prediction unit 12 reads the power generation amount, power consumption amount, weather results, and temperature results from the history DB 14 (step 104), receives the weather results and temperature results received by the communication unit 15, and generates the power generation amount prediction formula and the power consumption amount prediction formula. Is calculated (step 106).

まず、一時間単位の発電量予測式を導出する例を説明する。予測計算実施の事前行程として、運用中に蓄積した時間帯別天気実績と時間帯別発電量を基に、目的変数をn時における発電量、説明変数をn時における天気とした回帰分析を実施する。なお、天気は晴れ:1、曇り:2、雨:3、雪:4と数値化する。回帰モデルを以下に示す。   First, an example in which an hourly power generation amount prediction formula is derived will be described. As a preliminary process for predictive calculation, regression analysis was performed with the objective variable as power generation amount at n hours and the explanatory variable as weather at n hours based on the weather results by time zone and the power generation amount by time zone accumulated during operation. To do. The weather is digitized as clear: 1, cloudy: 2, rain: 3, snow: 4. The regression model is shown below.

i=β0+β11i+ui (1)
ここで、Y:目的変数、X1:説明変数、β0:定数項、β1:回帰係数、u:誤差項、i:標本番号である。回帰係数β1および定数項β0を最小二乗法から求め、各時間帯における発電量予測式を導出する。なお、風力発電設備を利用する場合は、説明変数X1を風速とすることにより、発電量予測式を導出する。
Y i = β 0 + β 1 X 1i + u i (1)
Here, Y is an objective variable, X 1 is an explanatory variable, β 0 is a constant term, β 1 is a regression coefficient, u is an error term, and i is a sample number. The regression coefficient β 1 and the constant term β 0 are obtained from the least square method, and the power generation amount prediction formula in each time zone is derived. When using wind power generation facilities, the power generation amount prediction formula is derived by using the explanatory variable X 1 as the wind speed.

次に、一時間単位の消費電力量予測式を導出する例について説明する。予測計算実施の事前行程として、運用中に蓄積した時間帯別気温実績と時間帯別消費電力量を基に、目的変数をn時における消費電力量、説明変数をn時における気温実績とした回帰分析を実施する。発電量予測式の導出と同様に、式(1)に示す回帰モデルを用い、回帰係数および定数項を最小二乗法から求め、各時間帯における消費電力量予測式を導出する。   Next, an example in which an hourly power consumption prediction formula is derived will be described. As a preliminary process for predictive calculation, based on the temperature results by hour and accumulated power consumption during operation, the objective variable is power consumption at n hours and the explanatory variable is the temperature result at n hours. Perform analysis. Similar to the derivation of the power generation amount prediction formula, the regression model shown in Formula (1) is used, the regression coefficient and the constant term are obtained from the least square method, and the power consumption amount prediction formula in each time zone is derived.

次に、予測部12がステップ106で導出された発電量予測式と消費電力予測式を基に発電量および消費電力量を予測する例を説明する。時系列予報は1時間単位、48時間先までの予報を利用することとした。次に、各時間帯の天気予報を各時間帯の発電量予測式に入力することにより、各時間帯の予測発電量を計算し、また、各時間帯の気温予報を消費電力予測式に入力することにより、各時間帯の予測消費電力量を計算する(ステップ107)。以上から、各時間帯における発電量および消費電力量を予測する。発電量および消費電力量の予測例を図3に示す。   Next, an example in which the prediction unit 12 predicts the power generation amount and the power consumption amount based on the power generation amount prediction formula and the power consumption prediction formula derived in Step 106 will be described. The time-series forecast uses the forecast for 1 hour unit and 48 hours ahead. Next, calculate the predicted power generation for each time zone by inputting the weather forecast for each time zone into the power generation prediction formula for each time zone, and enter the temperature forecast for each time zone into the power consumption prediction formula. Thus, the predicted power consumption for each time zone is calculated (step 107). From the above, the power generation amount and the power consumption amount in each time zone are predicted. A prediction example of the power generation amount and the power consumption amount is shown in FIG.

蓄電量を予測する例を説明する。まず、予測発電量と予測消費電力量との差を求めることにより、各時間帯における予測充電量および予測放電量を算出する(ステップ108)。充放電量の予測例を図4に示す。図4について、発電電力や消費電力の一時的な変動による蓄電池の充放電量は表示していない。次に、予測充電量を蓄電量に加算し、蓄電量から予測放電量を減算することにより、蓄電量を予測する(ステップ109)。蓄電量の予測例を図5に示す。   An example of predicting the storage amount will be described. First, by calculating the difference between the predicted power generation amount and the predicted power consumption amount, the predicted charge amount and the predicted discharge amount in each time zone are calculated (step 108). A prediction example of the charge / discharge amount is shown in FIG. About FIG. 4, the amount of charging / discharging of the storage battery by the temporary fluctuation | variation of generated electric power or power consumption is not displayed. Next, the estimated charge amount is added to the charged amount, and the estimated discharged amount is subtracted from the charged amount, thereby predicting the charged amount (step 109). FIG. 5 shows a prediction example of the amount of stored electricity.

また、蓄電量が減少することにより、停電時間が発生する場合における発電量および消費電力量の予測例を図6に、充放電量の予測例を図7に、蓄電量の予測例を図8に示す。このように停電の発生を予測した場合には通信部15を介して保守者装置17に通知する(ステップ110、111)。   In addition, a prediction example of the power generation amount and the power consumption amount when a power failure time occurs due to a decrease in the storage amount is shown in FIG. 6, a prediction example of the charge / discharge amount is shown in FIG. 7, and a prediction example of the storage amount is shown in FIG. Shown in Thus, when the occurrence of a power failure is predicted, the maintenance person device 17 is notified via the communication unit 15 (steps 110 and 111).

電池管理部13は蓄電池5の深い放電と、放電後に蓄電状態の回復が可能な発電抑制量を算出する装置である。まず、予測部12の各予測結果を基に、予測開始時間から最も近い発電量を総電量の10%単位で段階的に抑制した場合の蓄電量を予測する(ステップ112)。ここで、蓄電量がメモリー効果の解消が可能な放電深度付近となる蓄電量まで放電した後、停電無く要求される信頼性の確保が可能な蓄電量まで充電可能である段階がある場合(ステップ113)、時間帯別発電抑制量を制御部11に送信する(ステップ114)。前述した条件を満たす段階における予測発電量および予測消費電力量の例を図9に、予測充放電量の例を図10に、予測蓄電量の例を図11に示す。   The battery management unit 13 is a device that calculates a power generation suppression amount capable of deep discharge of the storage battery 5 and recovery of the storage state after the discharge. First, based on each prediction result of the prediction unit 12, a power storage amount is predicted when the power generation closest to the prediction start time is stepwise suppressed in units of 10% of the total power generation (step 112). Here, there is a stage where it is possible to charge up to the storage amount that can ensure the required reliability without power failure after discharging the storage amount to near the depth of discharge at which the memory effect can be eliminated (step) 113), the power generation suppression amount according to time zone is transmitted to the control unit 11 (step 114). FIG. 9 shows an example of the predicted power generation amount and the predicted power consumption amount at the stage satisfying the aforementioned conditions, FIG. 10 shows an example of the predicted charge / discharge amount, and FIG. 11 shows an example of the predicted power storage amount.

制御部11は時間帯別発電抑制量に対応した発電抑制を実施するとともに(ステップ115)、蓄電池の電圧がメモリー効果の解消電圧(単セル1V)に達するとともに、発電抑制を解除する(ステップ116)。   The control unit 11 performs power generation suppression corresponding to the power generation suppression amount according to time zone (step 115), and releases the power generation suppression as the storage battery voltage reaches the cancel voltage of the memory effect (single cell 1V) (step 116). ).

なお、制御装置10の処理は専用のハードウェアにより実現されるもの以外に、その機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するものであってもよい。コンピュータ読み取り可能な記録媒体とは、フレキシブルディスク、光磁気ディスク、CD−ROM等の記録媒体、コンピュータシステムに内蔵されるハードディスク装置等の記憶装置を指す。さらに、コンピュータ読み取り可能な記録媒体は、インターネットを介してプログラムを送信する場合のように、短時間の間、動的にプログラムを保持するもの(伝送媒体もしくは伝送波)、その場合のサーバとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含む。   The processing of the control device 10 is not realized by dedicated hardware, but a program for realizing the function is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded. It may be read by a computer system and executed. The computer-readable recording medium refers to a recording medium such as a flexible disk, a magneto-optical disk, a CD-ROM, or a storage device such as a hard disk device built in a computer system. Furthermore, a computer-readable recording medium is a server that dynamically holds a program (transmission medium or transmission wave) for a short period of time, as in the case of transmitting a program via the Internet, and a server in that case. Some of them hold programs for a certain period of time, such as volatile memory inside computer systems.

本発明の一実施形態の自立型電源システムの構成図である。It is a block diagram of the self-supporting power supply system of one Embodiment of this invention. 本発明の実施フローImplementation flow of the present invention 発電量および消費電力量の予測例を示す図である。It is a figure which shows the example of prediction of electric power generation amount and electric power consumption. 充放電量の予測例を示す図である。It is a figure which shows the example of prediction of the amount of charging / discharging. 蓄電量の予測例を示す図である。It is a figure which shows the example of estimation of the electrical storage amount. 停電発生を含む発電量および消費電力量の予測例を示す図である。It is a figure which shows the example of prediction of the electric power generation amount and electric power consumption containing a power failure generation | occurrence | production. 停電発生を含む充放電量の予測例を示す図である。It is a figure which shows the example of prediction of the amount of charging / discharging including generation | occurrence | production of a power failure. 停電発生を含む蓄電量の予測例を示す図である。It is a figure which shows the example of prediction of the electrical storage amount containing a power failure generation | occurrence | production. 発電抑制による発電量および消費電力量の予測例を示す図である。It is a figure which shows the example of prediction of the electric power generation amount and power consumption amount by electric power generation suppression. 発電抑制による充放電量の予測例を示す図である。It is a figure which shows the example of prediction of the amount of charging / discharging by electric power generation suppression. 発電抑制による蓄電量の予測例を示す図である。It is a figure which shows the example of estimation of the electrical storage amount by power generation suppression.

符号の説明Explanation of symbols

1 太陽電池
2 充電器
3 逆流防止ダイオード
4 コンバータ
5 蓄電池
6 スイッチ
7 逆流防止ダイオード
8 負荷装置
10 制御装置
11 制御部
12 予測部
13 電池管理部
14 履歴DB
15 通信部
16 気象情報提供会社
17 保守者装置
101〜116 ステップ
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Charger 3 Backflow prevention diode 4 Converter 5 Storage battery 6 Switch 7 Backflow prevention diode 8 Load apparatus 10 Control apparatus 11 Control part 12 Prediction part 13 Battery management part 14 History DB
15 Communication Department 16 Weather Information Provider 17 Maintenance Equipment 101-116 Steps

Claims (4)

自然エネルギーを利用した発電装置と、蓄電池を搭載した自立型電源システムの制御方法であって、
システム設置地域を対象とした気象実績と気象予報を受信し、データベースに蓄積するステップと、
前記発電装置の発電量、負荷装置の消費電力量、および前記蓄電池の蓄電量を検出し、データベースに蓄積するステップと、
蓄積されている気象実績と発電量を基に発電量の予測式を、また蓄積されている気象実績と消費電力量を基に消費電力量の予測式をそれぞれ導出するステップと、
前記発電量予測式、前記消費電力量予測式に受信した気象予報を入力することにより予測発電量、予測消費電力量を算出するステップと、
前記予測発電量と前記予測消費電力量を基に前記蓄電池の予測充放電量を算出し、前記蓄電量と該予測充放電量を基に前記蓄電池の予測蓄電量を算出するステップと、
前記予測発電量を段階的に抑制した場合の該蓄電量を予測し、抑制量の段階が予測期間内において該蓄電量が使用範囲内における最低領域から、要求される信頼性を確保可能な領域まで回復可能であるとともに、負荷装置の停電が発生しない段階である場合、前記発電量を抑制する処理と、前記蓄電量が該最低領域に存在する際、前記蓄電池の電圧が放電終止電圧まで到達した時点で抑制する処理を解除する処理を行なうステップと
を有する自立型電源システムの制御方法。
A control method for a power generation device using natural energy and a self-supporting power supply system equipped with a storage battery,
Receiving weather results and weather forecasts for the system installation area and storing them in a database;
Detecting the power generation amount of the power generation device, the power consumption amount of the load device, and the power storage amount of the storage battery, and storing in a database;
Deriving a prediction formula for power generation based on accumulated weather results and power generation, and a prediction formula for power consumption based on accumulated weather results and power consumption;
Calculating the predicted power generation amount and the predicted power consumption amount by inputting the received weather forecast into the power generation amount prediction equation and the power consumption amount prediction equation;
Calculating a predicted charge / discharge amount of the storage battery based on the predicted power generation amount and the predicted power consumption amount, and calculating a predicted storage amount of the storage battery based on the storage amount and the predicted charge / discharge amount;
The amount of electricity stored when the predicted power generation amount is suppressed stepwise, and the amount of storage amount can be ensured from the lowest region within the usage range within the prediction period, and the required reliability can be ensured When the load device is in a stage where a power failure does not occur, the process of suppressing the power generation amount and the storage battery voltage reaches the end-of-discharge voltage when the storage amount is in the lowest region. A control method for a self-supporting power supply system, comprising: a step of canceling the processing to be suppressed at the time of failure.
前記予測蓄電量が過放電領域にあるとともに、前記予測発電量が前記予測消費量以下となる期間が存在する場合、停電する日または時間帯を外部に通知するステップをさらに有する、請求項1に記載の自立型電源システムの制御方法。   The method according to claim 1, further comprising a step of notifying the outside of a power outage date or time zone when the predicted power storage amount is in an overdischarge region and there is a period in which the predicted power generation amount is equal to or less than the predicted consumption amount. A control method of the self-contained power supply system described. 自然エネルギーを利用した発電装置、蓄電池を搭載した自立型電源システムの制御装置であって、
履歴データベースと、
システム設置地域を対象とした気象実績と気象予報を受信し、前記履歴データベースに蓄積する通信部と、
前記履歴データベースに蓄積されている気象実績と発電量を基に発電量の予測式を、また蓄積されている気象実績と消費電力量を基に消費電力量の予測式をそれぞれ算出し、前記発電量予測式、前記消費電力量予測式に受信した気象予報を入力することにより予測発電量、予測消費電力量を算出し、前記予測発電量と前記予測消費電力量を基に前記蓄電池の予測充放電量を算出し、前記蓄電量と該予測充放電量を基に前記蓄電池の予測蓄電量を算出する予測部と、
前記予測発電量を段階的に抑制した場合の該蓄電量を予測する電池管理部と、
前記発電装置の発電量、前記負荷装置の消費電力量、および前記蓄電池の蓄電量を検出し、前記履歴データベースに蓄積し、前記蓄電量の抑制量の段階が予測期間内において該蓄電量が使用範囲内における最低領域から、要求される信頼性を確保可能な領域まで回復可能であるとともに、負荷装置の停電が発生しない段階である場合、前記発電量を抑制し、前記蓄電量が該最低領域に存在する際、前記蓄電池の電圧が放電終止電圧まで到達した時点で抑制を解除する処理を行なう制御部と
を有する自立型電源システムの制御装置。
A control device for a power generation device using natural energy and a self-supporting power supply system equipped with a storage battery,
A history database;
A communication unit that receives weather results and weather forecasts for the system installation area and accumulates them in the history database;
The power generation amount prediction formula is calculated based on the weather results and power generation accumulated in the history database, and the power consumption prediction formula is calculated based on the stored weather results and power consumption, respectively. The predicted power generation amount and the predicted power consumption amount are calculated by inputting the received weather forecast into the amount prediction formula and the power consumption amount prediction formula, and the predicted charge of the storage battery is calculated based on the predicted power generation amount and the predicted power consumption amount. A prediction unit that calculates a discharge amount, and calculates a predicted storage amount of the storage battery based on the storage amount and the predicted charge / discharge amount;
A battery management unit that predicts the amount of electricity stored when the predicted power generation amount is suppressed in stages;
The power generation amount of the power generation device, the power consumption amount of the load device, and the storage amount of the storage battery are detected and stored in the history database. When it is possible to recover from the lowest region within the range to a region where the required reliability can be ensured and the power failure of the load device does not occur, the power generation amount is suppressed, and the power storage amount is the lowest region. And a control unit that performs a process of releasing the suppression when the voltage of the storage battery reaches the end-of-discharge voltage.
請求項1または2に記載の自立型電源システムの制御方法をコンピュータに実行させるためのプログラム。

The program for making a computer perform the control method of the self-supporting power supply system of Claim 1 or 2.

JP2005111916A 2005-04-08 2005-04-08 Control method and apparatus for self-supporting power supply system Expired - Fee Related JP4163699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111916A JP4163699B2 (en) 2005-04-08 2005-04-08 Control method and apparatus for self-supporting power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111916A JP4163699B2 (en) 2005-04-08 2005-04-08 Control method and apparatus for self-supporting power supply system

Publications (2)

Publication Number Publication Date
JP2006296063A JP2006296063A (en) 2006-10-26
JP4163699B2 true JP4163699B2 (en) 2008-10-08

Family

ID=37416026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111916A Expired - Fee Related JP4163699B2 (en) 2005-04-08 2005-04-08 Control method and apparatus for self-supporting power supply system

Country Status (1)

Country Link
JP (1) JP4163699B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916098B1 (en) * 2007-05-11 2009-07-03 Commissariat Energie Atomique METHOD FOR CHARGING A STORAGE ELEMENT OF AN AUTONOMOUS SYSTEM
JP2009261114A (en) * 2008-04-16 2009-11-05 Meidensha Corp Operation program creation device of distributed power supply system, and creation method
JP2010213507A (en) * 2009-03-11 2010-09-24 Chugoku Electric Power Co Inc:The Natural energy integrated power storage system and natural energy integrated power storage method
JP5541210B2 (en) * 2011-03-29 2014-07-09 株式会社デンソー Power distribution device
JP5854211B2 (en) * 2011-12-07 2016-02-09 横河電機株式会社 Secondary battery charger
JP5847599B2 (en) * 2012-01-19 2016-01-27 株式会社東芝 Power supply system, control device, and program
JP2022138885A (en) * 2021-03-11 2022-09-26 恒栄電設株式会社 Notification system

Also Published As

Publication number Publication date
JP2006296063A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4163699B2 (en) Control method and apparatus for self-supporting power supply system
US8571720B2 (en) Supply-demand balance controller
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
US7633265B2 (en) Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
US20160241031A1 (en) Dynamic probability-based power outage management system
KR101478791B1 (en) Method and System for Power Management
CN103178577B (en) Cooperative control system and cooperative control method of IT device and storage battery
JP2014131477A (en) Charge/discharge control device, rechargeable battery system and charge/discharge control method
JP6734756B2 (en) Storage battery control system and power supply system
JP2003032890A (en) Load power controller
JP2012120419A (en) Operation controller for storage battery, method for controlling operation of storage battery, and program thereof
JP2014033539A (en) Power controller, method, and program
KR102539326B1 (en) Energy storage system and method of operation thereof
JP2017163780A (en) Self consignment support apparatus and self consignment system
JP2017108560A (en) Control apparatus and control program for power accommodation system
JP4302614B2 (en) Lithium ion battery management device, capacity calculation method, and computer program
JP2012130106A (en) Power storage device managing device, power storage device managing method, and power supply system
JP2012060775A (en) Storage battery operation device
JP2016100956A (en) Controller for dc power supply, dc power supply system, and control method for controller for dc power supply
KR101646730B1 (en) System and method for estimating soc of sodium rechargeable battery
JP2013537027A (en) Method for charging the battery
JP2021083301A (en) Calculation device and calculation method
KR102539310B1 (en) Energy storage system and method of operation thereof
JP6413486B2 (en) Battery control device, battery control method, and battery control program
JP2003018763A (en) Energy prediction method in solar power generation

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees