JP4163032B2 - Ion conductive material - Google Patents

Ion conductive material Download PDF

Info

Publication number
JP4163032B2
JP4163032B2 JP2003093475A JP2003093475A JP4163032B2 JP 4163032 B2 JP4163032 B2 JP 4163032B2 JP 2003093475 A JP2003093475 A JP 2003093475A JP 2003093475 A JP2003093475 A JP 2003093475A JP 4163032 B2 JP4163032 B2 JP 4163032B2
Authority
JP
Japan
Prior art keywords
ion
conductive material
compound
silane
ion exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003093475A
Other languages
Japanese (ja)
Other versions
JP2004303514A (en
Inventor
和広 川部
孝治 蔵岡
哲夫 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nihon Yamamura Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2003093475A priority Critical patent/JP4163032B2/en
Publication of JP2004303514A publication Critical patent/JP2004303514A/en
Application granted granted Critical
Publication of JP4163032B2 publication Critical patent/JP4163032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Silicon Polymers (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオン伝導性材料に関する。更に詳しくは、本発明は、メタノール又は水素をエネルギー源とする燃料電池用の電解質、水素ガスセンサー用の素子、及び、Liイオンを伝導源とするリチウム−ポリマー二次電池材料に用いられる電解質に好適に用いられるイオン伝導性材料に関する。
【0002】
【従来の技術】
水素又はメタノールをエネルギー源とする燃料電池に用いられるプロトン伝導膜として、結晶性全フッ素型ポリエチレンを骨格とし、末端にスルホ基を有するフルオロエーテルを側鎖に持つ高分子膜が使用されている。骨格に結合した側鎖は、−SO3 -基と対イオンであるプロトン又はナトリウムイオン及び対イオンに水和する水分子から形成されるイオンクラスター領域を形成すると共に、それらクラスターは、互いに接続された親水チャネルを形成するとされている。その親水チャネルにおいては、側鎖の末端の柔軟性を有するスルホ基が内側を向いて配置し、中心部分は水分子で満たされており、プロトン伝導パスとなっている。
【0003】
結晶性全フッ素型ポリエチレンを骨格とし末端にスルホ基を有するフルオロエーテルを側鎖に持つ高分子膜では、プロトン伝導パスが途中で細く縊れたものである連結管が随所に自然発生するほか、元来プロトン伝導パスがジグザグであるため、内部抵抗が高くなり、燃料電池の効率を低いものとしている。
【0004】
また、メタノールをエネルギー源とする場合、上記問題点に加え、メタノールによって結晶性全フッ素型ポリエチレン骨格が膨潤し、それによりメタノールが膜中を移動する現象(クロスオーバー現象)が生じて、燃料電池の効率低下が引き起こされるという問題がある。
【0005】
このため、内部抵抗が低く、かつメタノールをエネルギー源とする場合にも、材料の膨潤が起こらない、高効率の燃料電池を構築することのできるイオン伝導性材料が求められていた。
【0006】
一方、ガスセンサーは、ガスを検知するデバイスであり、被検ガスをその化学的性質によって識別する。ガスセンサーとして、選択透過を利用する固体電解質センサー、ガス吸着による電気伝導度の変化からガス濃度を測定する半導体ガスセンサーがある。
【0007】
固体電解質センサーとしては、安定化ジルコニアによる酸素センサーが作製されているが、作動温度が500℃以上と高い。半導体ガスセンサーも、ガス濃度の検出温度は300℃台である。
【0008】
このため、より低い温度で作動し得るガスセンサーが求められている。
【0009】
更に、高分子固体電解質には、高極性高分子に、無機塩を溶解させた極性高沸点溶媒を含浸させたもの、ポリエーテル系高分子を無機塩とブレンドしたもの等がある。これらのうち、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子によるものが主に用いられている。これらのイオン伝導機構は、アルカリ金属塩を溶解、解離した高分子マトリックスのセグメント運動及び高分子、イオン間の静電的相互作用に基づくとされている。
【0010】
高分子固体電解質は、リチウム二次電池に適用されているが、漏洩の危険性の低減、保存安定性の向上、加熱下における膨潤や揮発を回避すること、固体化による電池作製時における加工性の向上、及び形状フレキシビリティーの向上が求められている。また、高分子のセグメント運動は、ガラス転移点以上の温度で活発となるものであるが、低温でも高い伝導性を示す材料が求められている。
【0011】
【発明が解決しようとする課題】
本発明は、高効率の燃料電池を構築するための、内部抵抗が低く、且つメタノールをエネルギー源とする場合にも材料の膨潤が起こらないイオン伝導性材料を提供すること、低温で検知できるガスセンサーを構築するためのセンサー素子材料を提供すること、及び漏洩等の問題の改善された二次電池を構築するためのイオン伝導性材料を提供すること等を目的とする。
【0012】
【課題を解決するための手段】
本発明者等は、上記の課題の解決に向けた研究の結果、無機又は無機−有機マトリックス中において、イオン交換体にイオン伝導パスを形成させるに際し、半流動性の材料(ゾル又はゲル)に剪断応力をかけて成形することにより、マトリックス中のイオン交換体が全く無秩序に種々の方向を向いた状態(無配向状態)から、剪断応力の方向への配向性を生じた状態となり、それによって、イオン伝導性材料として優れた特性を有する材料が得られることを見出し、これに基づき本発明を完成させた。
【0013】
すなわち本発明は、
(1)イオン交換体とこれを含有する無機又は無機−有機マトリックスとを含んでなるイオン伝導性材料であって、該マトリックス中において該イオン交換体がイオン伝導パスを形成しており、該イオン伝導パスの該材料の法線方向への配向度が0.05以上であるイオン伝導性材料、
(2)イオン交換基を側鎖に有する線状高分子からなるイオン交換体を分散又は溶解させたマトリックス構成材料を含んでなるゲル又はゾルに剪断応力をかけた後、硬化させ、得られた硬化物を、剪断応力をかけた方向に直角に切り出し又は切削して形成することにより得られるものであることを特徴とする、上記(1)に記載のイオン伝導性材料、
(3)該イオン交換基が酸性基の塩の形をとっており、該切り出し又は切削の前又は後に該硬化物を酸処理することを特徴する、上記(2)に記載のイオン伝導性材料、
(4)イオン交換体のイオン交換基が、スルホン酸基、ホスフィン酸基、ホスホン酸基又はカルボキシル基又はこれらの塩であることを特徴とする、上記(1)ないし(3)の何れかに記載のイオン伝導性材料、
(5)該ゲル又はゾルが、式:RmSi(OR’)4-m(R,R’は炭素数1〜3のアルキル基を、及び、mは0〜2の整数を表す。)で示されるシラン化号物Aに水を加えることにより、該シラン化号物Aの加水分解及び重縮合反応を進行させるステップと、該反応の途中において、反応混合物に式:XnSi(OR”)4-n(式中、Xはフェニル基を、R”は炭素数1〜3のアルキル基を、及び、nは1又は2を表す。)で示されるシラン化号物Bを加えて混合することにより、該シラン化号物Bの加水分解及び重縮合反応をも同時に行わせつつ、反応混合物に更に、水、及び、イオン交換体としてフェニル基を有する有機ポリマー(但し、該フェニル基のうち45モル%以上に−SO3M基が結合しており、ここにMは、H、Na、Li、K又はNH4を表す。)を加えて混合することにより、該シラン化号物A及び該シラン化号物Bのその後の加水分解及び重縮合反応を該フェニル基を有する有機ポリマーの存在下において更に進行させるステップとを含む方法によって得られる、上記(2)又は(3)に記載のイオン伝導性材料、
(6)該シラン化号物Aの10重量部に対して、該シラン化号物Bを2〜10重量部、該有機ポリマーを1〜6重量部用いるものである、上記(5)に記載のイオン伝導性材料、
(7)イオン交換基を側鎖に有する線状高分子からなるイオン交換体を分散又は溶解させたマトリックス構成材料を含んでなるゲル又はゾルに剪断応力をかけた後、硬化させ、得られた硬化物を、剪断応力をかけた方向に直角に切り出し又は切削して形成する工程を含むことを特徴とする、イオン伝導性材料の製造方法、
(8)該イオン交換基が酸性基の塩の形をとっており、該切り出し又は切削の前又は後に該硬化物を酸処理することを特徴する、上記(7)に記載の製造方法、
(9)イオン交換体によって形成されるイオン伝導パスの該材料の法線方向への配向度を0.05以上とすることを特徴とする、上記(7)又は(8)に記載の製造方法、
(10)イオン交換体のイオン交換基が、スルホン酸基、ホスフィン酸基、ホスホン酸基又はカルボキシル基又はこれらの塩であることを特徴とする、請求項7ないし9の何れかに記載の製造方法、
(11)該ゲル又はゾルが、式:RmSi(OR’)4-m(R,R’は炭素数1〜3のアルキル基を、及び、mは0〜2の整数を表す。)で示されるシラン化号物Aに水を加えることにより、該シラン化号物Aの加水分解及び重縮合反応を進行させるステップと、該反応の途中において、反応混合物に式:XnSi(OR”)4-n(式中、Xはフェニル基を、R”は炭素数1〜3のアルキル基を、及び、nは1又は2を表す。)で示されるシラン化号物Bを加えて混合することにより、該シラン化号物Bの加水分解及び重縮合反応をも同時に行わせつつ、反応混合物に更に、水、及び、イオン交換体としてフェニル基を有する有機ポリマー(但し、該フェニル基のうち45モル%以上に−SO3M基が結合しており、ここにMは、H、Na、Li、K又はNH4を表す。)を加えて混合することにより、該シラン化号物A及び該シラン化号物Bのその後の加水分解及び重縮合反応を該フェニル基を有する有機ポリマーの存在下において更に進行させるステップとを含む方法によって製造されるものであることを特徴とする、上記(7)ないし(10)の何れかに記載の製造方法、
(12)該シラン化号物Aの10重量部に対して、該シラン化号物Bを2〜10重量部、該有機ポリマーを1〜6重量部用いるものである、上記(11)に記載のイオン伝導性材料、
を提供するものである。
【0014】
【発明の実施の形態】
本明細書において、「イオン交換基」とは、陽イオン交換に与るイオン性基であって、遊離酸の形態又は塩の形態の何れのものもいう。またそのようなイオン交換基を有する分子又は高分子、好ましくは有機の分子又は高分子、特に好ましくは線状のものを、本明細書において「イオン交換体」という。
【0015】
本明細書において「イオン伝導パス」とは、イオンの流れる経路をいう。本発明においては、イオン交換体のイオン交換基に沿ってイオンが流れるから、「イオン伝導パス」は、イオン交換体分子を経由する形で形成される。
【0016】
また、本明細書において、「材料の法線方向」とは、イオン伝導性材料を通してイオンを流そうとする方向をいい、通常、材料の両側に位置する1対の面(例えば、シートの両面、直方体の対向面、円柱の上下の底面等)を結ぶ方向が法線方向となる。
【0017】
本発明のイオン伝導性材料は、マトリックスを無機又は無機−有機マトリックスとし、マトリックス中でイオン交換体がイオン伝導パスを形成しており、該イオン伝導パスの材料の法線方向への配向性を有している。これにより、(1)内部抵抗を小さくし且つマトリックス中でメタノールのクロスオーバー現象が起こるのを防止することによる燃料電池の効率向上、(2)電解質を全固体型とすることにより電解質や溶媒が漏洩しない二次電池の作製、及び(3)ガス検知の温度依存性が小さく低温でガス検知ができるガスセンサーの作製が、それぞれ可能となる。
【0018】
本発明のイオン伝導性材料は、無機又は無機−有機マトリックスが水酸基を有するものであることが好ましい。これは一つには、水酸基が存在すると、それ自身がイオン伝導パスの一部となるからである。また、水酸基はイオン伝導の担い手である水を保持するため、膜の温度上昇時の電池効率の低下を防止するのに有効だからでもある。
【0019】
本発明のイオン伝導性材料は、そのイオン伝導パスに材料の法線方向への配向性を賦与してあるため、イオン伝導パスのジグザグ性が減少している。、そのため、これを燃料電池等の電池として用いると、内部抵抗の小さなものを得ることができる。この目的のためには、イオン交換体の法線方向への配向度は0.05以上であることが好ましく、0.10以上であることがより好ましい。但し、特に高性能とするには、配向度は0.5以上であることが好ましく、0.6以上であることが更に好ましい。
【0020】
本明細書において、「配向度」とは、イオン交換体分子の個々の方向を示すベクトルと材料の法線方向を示すベクトルとのなす角をθiとしたとき、下記の計算式で定義されるSの値をいう。(法線方向に全ての分子が完全に配向しているときはS=1、無配向のときは、S=0、直角方向に全ての分子が完全に配向しているときはS=−0.5となる。)
【0021】
【数1】

Figure 0004163032
【0022】
ここに、「< >」は相加平均を表す。
【0023】
配向度の評価方法としては、NMR法、レーザーラマン法、赤外吸収二色法等を用いることができるが、測定が比較的容易であることから、赤外吸収二色法による評価法が望ましい。
【0024】
例えば、イオン交換体がフェニル基を側鎖として有する有機ポリマーであるときは、フェニル基が作る面は主鎖の方向に対して垂直に配向することが知られている。従って、フェニル基のC−H面外変角振動の方向が有機ポリマーの主鎖に対して平行な関係となるから、このIR吸収を赤外吸収二色法で測定することによって、イオン交換体分子の配向度を容易に評価することができる。すなわち、材料の法線方向に平行な偏光面について測定した赤外光の吸収をAx、材料の法線方向に対し垂直な偏光面について測定した赤外光の吸収をAyとしたとき、下記の式により法線方向の配向度Sが求められる。
【0025】
D=Ax/Ay
S=(D−1)/(D+2)
【0026】
本発明のイオン伝導性材料の無機又は無機−有機マトリックスは、非多孔体でも多孔体でもよい。
【0027】
本発明の無機又は無機−有機マトリックスに基づくイオン伝導性材料は、イオン交換基を側鎖に有する線状高分子からなるイオン交換体を分散又は溶解させたマトリックス構成材料を含んでなるゲル又はゾル等の半流動物に剪断応力をかけた後、硬化させ、剪断応力をかけた方向に直角に切り出し又は切削して形成することによって製造することができる。無機又は無機−有機マトリックスを構成するゾルの調製方法には特に制限はないが、例えば、テトラエトキシシラン、テトラメトキシシラン等のテトラアルコキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン等のトリアルコキシシラン、ジメチルジメトキシシラン等のジアルコキシシラン、リン酸トリメチル、テトラ−n−ブトキシジルコニウム、テトライソブトキシジルコニウム、トリイソプロポキシアルミニウム、トリ−sec−ブトキシアルミニウム、テトライソプロポキシチタン等のアルコキシドを加水分解、縮重合させることによって調製することができる。
【0028】
マトリックス材料中に分散又は溶解させる、イオン交換基を側鎖に有する線状高分子からなるイオン交換体に特に制限はないが、例えば、スチレンスルホン酸のホモポリマー、スチレンスルホン酸と2−ヒドロキシエチルメタクリレート、メタクリル酸、メタクリル酸ナトリウム、アクリル酸、メチルメタクリレート、メチルアクリレート、アクリルアミド、酢酸ビニル、塩化ビニル、メチルビニルエーテル又はメチルプロペニルエーテル等の共重合成分との共重合ポリマー等を挙げることができる。スチレンスルホン酸とスチレンとの共重合体を用いるときは、共重合体のフェニル基の45モル%以上がスルホン酸基を有していればイオン伝導性には十分である。
【0029】
上記イオン交換体を分散又は溶解したゾル又はゲルに剪断応力をかける方法に特に制限はない。例えば、微細な孔が多数開いたノズルから、また例えば、微細な間隙を有するダイから押出し又は引出した後、収束して一体化し、熱処理等により硬化させ、剪断応力をかけた方向(押出し方向又は引出し方向)に直角に切り出し又は切削する等して形成することにより、目的とするイオン伝導性材料が得られる。硬化前の材料に剪断応力をかけることにより、それまで全体として均質に分布し方向性の無かったイオン交換体分子に、剪断応力の方向への配向性が生じる。例えば、ノズル又はダイから押出し又は引出された材料は、ノズル又はダイの内壁面に接する部分と内壁面から離れた部分との間で、内壁面との距離に応じて押出し又は引出し方向の流動速度に勾配を生じることから、材料にかかる剪断応力は押出し又は引出し方向に一致する。材料の流動速度にこのような一定方向の分布を生じさせるような他の任意の処理を、材料に剪断応力をかけるための方法として適宜採用することができる。また、ノズルやダイから離れた部位における材料の一軸延伸によっても延伸方向に剪断応力が働くから、これを本発明のイオン伝導性材料の製造に利用することができる。
【0030】
なお、イオン交換基を塩の形で側鎖に有する線状高分子をイオン交換体の塩として分散又は溶解させたマトリックス構成材料を用いる場合は、該材料よりなるゲル又はゾルに剪断応力をかけた後、硬化させ、得られた硬化物を、剪断応力をかけた方向に直角に切り出し又は切削する工程に加えて、酸処理の工程を更に設けることができる。酸処理の工程は、切り出し又は切削の前又は後の何れに設けてもよいが、切り出し又は切削によって目的とするイオン伝導材料の形状を得た後で酸処理を行うという順序による方が塩を形成しているカチオンがプロトンに置換される速度が速くなるため、好ましい。塩を形成するカチオンの種類に制限はないが、Na+、Li+、K+等のアルカリ金属イオン等が挙げられる。遊離酸でなく塩の形とすることで、マトリックス構成材料のゲル化速度を調整し易くなる。酸処理の方法に特に制限はないが、イオン交換基よりpKaが小さい酸が用いられ、例えば、塩酸、硝酸、過塩素酸、硫酸等の強酸及びその水溶液又は有機溶媒溶液にゲルを浸漬し、水又は有機溶媒で洗浄する等の方法によることができる。
【0031】
イオン交換基を塩の形で側鎖に有する線状高分子からなるイオン交換体の塩は、特に制限はないが、例えば、前記したスチレンスルホン酸のホモポリマー又は共重合体の塩を挙げることができる。塩を形成するカチオンの例としては、ナトリウムイオン、リチウムイオン、カリウムイオン等のアルカリ金属イオン、及びアンモニウムイオンが挙げられる。
【0032】
本発明において、イオン交換体中のイオン交換基は、酸性度の観点から、スルホン酸基、ホスフィン酸基、ホスホン酸基又はカルボキシル基であることが好ましい。イオン交換基をスルホン酸基、ホスフィン酸基、ホスホン酸基又はカルボキシル基とした場合、プロトンを解離し易くなり、プロトン伝導性が高いイオン伝導性材料が得られる。
【0033】
硬化は熱処理により行うことが好ましく、100℃以上の熱処理により行うことがより好ましい。酸処理を行う場合、硬化は、酸処理の前後何れに行うこともできる。
【0034】
【実施例】
以下、典型的な実施例を挙げて本発明を更に具体的に説明するが、本発明が該実施例に限定されることは意図しない。
【0035】
〔実施例1〕
テトラエトキシシラン、0.04mol/L濃度の硝酸のメタノール溶液、及び水を、モル比でメタノール:テトラエトキシシラン:水:硝酸=8.5:1:1:0.01となるように混合し、室温にて1時間撹拌しテトラエトキシシランを加水分解することにより、均質なオリゴマー溶液を得た。次いで、この溶液にフェニルトリエトキシシラン及びメタノールを、モル比でフェニルトリエトキシシラン:メタノール:テトラエトキシシラン=0.37:8.5:1になるように添加後、30分間撹拌し、均質な溶液を得た(テトラエトキシシランとフェニルトリエトキシシランの重量比=10:4.3)。次いで、スチレンスルホン酸ナトリウムと2−ヒドロキシエチルメタクリレートとの共重合ポリマー〔東ソー(株):スチレンスルホン酸ナトリウム45モル%、平均分子量14,000〕を、共重合ポリマー成分が全重量(固形物重量)の20%、及び水を、モル比でテトラエトキシシラン:水=1:10となるように添加し、1時間撹拌することにより均質なゾルを得た。次いでこれを40℃の乾燥機中で8時間反応させることにより、高粘度のゾルを調製した
【0036】
上記で得られたゾルを、小型の手動式押出成形機のシリンダー内に注入後、プランジャーを押してゲルを口径5mmのノズルから押し出すことにより、直径約4mmのロッド状の成形物を得、これを更に100℃で8時間加熱することにより、実施例1のイオン伝導性材料を得た。
【0037】
〔比較例1〕
実施例1における押出前の材料の一部を100℃にて8時間熱処理することにより、比較例1のイオン伝導性材料を得た。
【0038】
〔比較例2〕
実施例1における押出前の材料の一部を酸処理(3N硝酸、室温、72時間浸漬)してイオン交換し蒸留水に24時間浸漬し、洗浄した後、100℃にて8時間熱処理することにより、比較例2のイオン伝導性材料とした。
【0039】
配向度の評価:
実施例1のイオン伝導性材料におけるイオン交換体の配向度をフーリエ変換顕微赤外分光計(FT−IR)の赤外全反射吸収スペクトル(ATR)装置を用いて評価した。ロッド状の試料の側面をミクロトームにより表面から約20μm切削して平面を作成し、この面について試料の押出方向に対し電場ベクトルが平行な偏光について測定し、次いでこの偏光の電場ベクトルに対し垂直な方向に試料を回転させて測定しスペクトルを得た。また、スチレンスルホン酸ナトリウムと2−ヒドロキシエチルメタクリレートの共重合ポリマーを添加しないほかは実施例1と同様にして作成したロッド状試料についても、上記と同様にしてスペクトルを得、これをブランクとして用いた。実施例1の試料について得られた試料の方向を90°変えた2つの偏光スペクトルから、ブランクについて得られた試料の方向を90°変えた対応する2つの偏光スペクトルをそれぞれ差し引いて得られるスペクトルより、848cm-1に位置する、共重合ポリマーの側鎖を形成するスルホン酸ナトリウム基を有するフェニル基のC−H面外変角振動吸収に基づく吸光度を、平行偏光及び垂直偏光につき求め、それぞれAx、Ayとした。これらの値を用いて、次式より二色比D及び配向度Sを求めた。
D=Ax/Ay
S=(D−1)/(D+2)
【0040】
比較例1及び2の試料については、剪断応力をかける操作を行っていないため、それらの試料中でイオン交換体分子は無配向状態(S=0)に近い状態であると見なし、配向度の測定は行わなかった。
【0041】
なお簡便方法として、ブランクスペクトルを用いずに、実施例1の試料についての平行偏光及び垂直偏光のスペクトルにおいて、848cm-1に位置する、共重合ポリマーの側鎖のスルホン酸ナトリウム基を有するフェニル基のC−H面外変角振動吸収に基づく吸光度を、平行偏光及び垂直偏光につき求め、それぞれA’x、A’yとした。これらの値を用いて上記式よりD及びSを求めた。結果を表1に示す。
【0042】
電気伝導度の評価:
実施例1並びに比較例1及び2のイオン伝導性材料につき、電気伝導度をインピーダンスアナライザー(アジレントテクノロジー社製、4294A、接続ケーブル16047E)により測定した。実施例1のイオン伝導性材料は、押出方向が厚み方向となるようにミクロトームで厚さ約3mmに切削し、40℃、相対湿度95%に1時間保持したものを測定に用いた。比較例1及び2のイオン伝導性材料についても同様に切り出して、40℃、相対湿度95%に1時間保持したものを測定に用いた。装置の周波数範囲を40Hz〜5MHzとし、この範囲で周波数を変化させつつインピーダンスを測定し、複素インピーダンスプロットを行い、グラフ上でバルクインピーダンスに相当する半円と実軸の交点から抵抗Rを求め、これを次式に代入して電気伝導度(σ)を求めた。結果を表1に示す。
σ=d/πr2
ここに、d:測定試料の厚み[cm]、r:測定用電極の半径[cm]
【0043】
【表1】
Figure 0004163032
【0044】
表に示されているように、実施例1の試料について、ブランク試料を用いて評価したとき、配向度0.123が得られた。配向度は0より有意に大きく、実施例1の試料中においてイオン交換体分子が法線方向に配向性を有していることが判明した。実施例1の試料は、40℃という比較的低い温度にもかかわらず、高い電気伝導度を示し、またその値は比較例1及び2の試料に比して、大幅に高かった。なお、ブランク不使用の簡便方法で求めた配向度は0.070と、ブランクを使用した場合の値に比べて低かったが、これは、ブランク不使用ではバックグラウンドの吸収が両偏光スペクトルの目的ピークに混入し、二色比Dが低めに算出されたことによるものと思われる。
【0045】
【発明の効果】
本発明のイオン伝導性材料は、無機又は無機−有機マトリックス中において、イオン交換体がイオン伝導パスを形成しており、該イオン伝導パスが材料の法線方向に配向性を有するため、燃料電池に用いた場合電池の効率を向上させることができる。また、メタノールによる膨潤がないためそのクロスオーバーのおそれがなく、この点でも電池の効率を向上させることができる。またリチウム電池に用いたときは、漏洩の危険性を低減させ、保存安定性を向上し、且つ、加熱下においても膨潤や揮発を回避することができる。また、40℃等の低温でも高い電気伝導度を有するため、低温でガス検知が可能なガスセンサーの作製に利用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion conductive material. More specifically, the present invention relates to an electrolyte for a fuel cell using methanol or hydrogen as an energy source, an element for a hydrogen gas sensor, and an electrolyte used for a lithium-polymer secondary battery material using a Li ion as a conduction source. The present invention relates to an ion conductive material suitably used.
[0002]
[Prior art]
As a proton conductive membrane used in a fuel cell using hydrogen or methanol as an energy source, a polymer membrane having a crystalline perfluorinated polyethylene as a skeleton and a fluoroether having a sulfo group at the terminal as a side chain is used. The side chain attached to the skeleton forms an ion cluster region formed from -SO 3 - group and a counter ion, proton or sodium ion, and a water molecule that hydrates to the counter ion, and these clusters are connected to each other. It is supposed to form a hydrophilic channel. In the hydrophilic channel, a flexible sulfo group at the end of the side chain is arranged facing inward, and the central portion is filled with water molecules, forming a proton conduction path.
[0003]
In polymer membranes with crystalline perfluorinated polyethylene as the backbone and fluoroethers with sulfo groups at the ends in the side chain, connecting tubes with proton conduction paths that are narrowed in the middle are naturally generated everywhere, Since the proton conduction path is originally zigzag, the internal resistance is high, and the efficiency of the fuel cell is low.
[0004]
In addition, when methanol is used as an energy source, in addition to the above-mentioned problems, the crystalline perfluorinated polyethylene skeleton swells due to methanol, which causes a phenomenon in which methanol moves through the membrane (crossover phenomenon). There is a problem that the efficiency is reduced.
[0005]
For this reason, there has been a demand for an ion conductive material that has a low internal resistance and that can be used to construct a highly efficient fuel cell that does not swell even when methanol is used as an energy source.
[0006]
On the other hand, a gas sensor is a device that detects gas, and identifies a gas to be detected by its chemical properties. Gas sensors include solid electrolyte sensors that use selective permeation and semiconductor gas sensors that measure gas concentration from changes in electrical conductivity due to gas adsorption.
[0007]
As a solid electrolyte sensor, an oxygen sensor using stabilized zirconia has been manufactured, but the operating temperature is as high as 500 ° C. or higher. The semiconductor gas sensor also has a gas concentration detection temperature in the range of 300 ° C.
[0008]
For this reason, there is a need for a gas sensor that can operate at lower temperatures.
[0009]
Further, the polymer solid electrolyte includes a high polar polymer impregnated with a polar high boiling point solvent in which an inorganic salt is dissolved, and a polyether polymer blended with an inorganic salt. Among these, those using polyether polymers such as polyethylene oxide and polypropylene oxide are mainly used. These ion conduction mechanisms are based on the segmental motion of a polymer matrix in which an alkali metal salt is dissolved and dissociated and the electrostatic interaction between the polymer and ions.
[0010]
Solid polymer electrolytes are applied to lithium secondary batteries, but they reduce the risk of leakage, improve storage stability, avoid swelling and volatilization under heating, and processability during battery fabrication by solidification. Improvements in shape and flexibility in shape have been demanded. Moreover, although the segment motion of a polymer becomes active at a temperature equal to or higher than the glass transition point, there is a demand for a material that exhibits high conductivity even at a low temperature.
[0011]
[Problems to be solved by the invention]
The present invention provides an ion conductive material that has low internal resistance and that does not swell even when methanol is used as an energy source for constructing a high-efficiency fuel cell. An object of the present invention is to provide a sensor element material for constructing a sensor, and to provide an ion conductive material for constructing a secondary battery in which problems such as leakage are improved.
[0012]
[Means for Solving the Problems]
As a result of research aimed at solving the above-mentioned problems, the present inventors made a semi-fluid material (sol or gel) when forming an ion conduction path in an ion exchanger in an inorganic or inorganic-organic matrix. By forming with the shear stress, the ion exchanger in the matrix changes from a state in which the ion exchanger is directed in various directions (non-oriented state) to a state in which the orientation in the direction of the shear stress occurs, thereby The inventors have found that a material having excellent characteristics as an ion conductive material can be obtained, and based on this, the present invention has been completed.
[0013]
That is, the present invention
(1) An ion conductive material comprising an ion exchanger and an inorganic or inorganic-organic matrix containing the ion exchanger, wherein the ion exchanger forms an ion conduction path in the matrix. An ion conductive material having an orientation degree in the normal direction of the material of the conduction path of 0.05 or more,
(2) Obtained by applying a shear stress to a gel or sol containing a matrix constituent material in which an ion exchanger composed of a linear polymer having an ion exchange group in the side chain is dispersed or dissolved, and then curing the gel or sol. The ion-conductive material according to (1) above, which is obtained by cutting or cutting a cured product perpendicularly to a direction in which a shear stress is applied,
(3) The ion-conductive material according to (2), wherein the ion-exchange group is in the form of an acid group salt, and the cured product is acid-treated before or after cutting or cutting. ,
(4) The ion exchange group of the ion exchanger is a sulfonic acid group, a phosphinic acid group, a phosphonic acid group, a carboxyl group or a salt thereof, according to any one of (1) to (3) above The ion-conductive material according to the description,
(5) the gel or sol, wherein: R m Si (OR ') 4-m (R, R' is an alkyl group having 1 to 3 carbon atoms, and, m is an integer of 0 to 2.) In the course of the reaction, water is added to the silanized compound A represented by the following formula: Xn Si (OR “) 4-n (wherein X represents a phenyl group, R” represents an alkyl group having 1 to 3 carbon atoms, and n represents 1 or 2). By mixing, while simultaneously carrying out hydrolysis and polycondensation reaction of the silanized compound B, the reaction mixture is further mixed with water and an organic polymer having a phenyl group as an ion exchanger (provided that the phenyl group has -SO 3 M group is bonded to more than 45 mol% of, where M, H, Na, Li, Or NH4 is added) and mixed to further proceed the subsequent hydrolysis and polycondensation reaction of the silanized compound A and the silanized compound B in the presence of the organic polymer having the phenyl group. An ion-conductive material according to (2) or (3) obtained by a method comprising:
(6) 2 to 10 parts by weight of the silanized compound B and 1 to 6 parts by weight of the organic polymer are used with respect to 10 parts by weight of the silanized compound A. Of ion conductive material,
(7) Obtained by applying shear stress to a gel or sol containing a matrix constituent material in which an ion exchanger composed of a linear polymer having an ion exchange group in the side chain is dispersed or dissolved, and then curing the gel or sol. A method for producing an ion conductive material, comprising a step of cutting or cutting a cured product perpendicularly to a direction in which a shear stress is applied,
(8) The production method according to (7) above, wherein the ion exchange group is in the form of an acid group salt, and the cured product is acid-treated before or after the cutting or cutting.
(9) The method according to (7) or (8) above, wherein the degree of orientation of the material in the normal direction of the ion conduction path formed by the ion exchanger is 0.05 or more. ,
(10) The production according to any one of claims 7 to 9, wherein the ion exchange group of the ion exchanger is a sulfonic acid group, a phosphinic acid group, a phosphonic acid group, a carboxyl group or a salt thereof. Method,
(11) the gel or sol, wherein: R m Si (OR ') 4-m (R, R' is an alkyl group having 1 to 3 carbon atoms, and, m is an integer of 0 to 2.) In the course of the reaction, water is added to the silanized compound A represented by the following formula: Xn Si (OR “) 4-n (wherein X represents a phenyl group, R” represents an alkyl group having 1 to 3 carbon atoms, and n represents 1 or 2). By mixing, while simultaneously carrying out hydrolysis and polycondensation reaction of the silanized compound B, the reaction mixture is further mixed with water and an organic polymer having a phenyl group as an ion exchanger (provided that the phenyl group has -SO 3 M group is bonded to more than 45 mol% of, where M, H, Na, Li K or NH4) is added and mixed to further hydrolyze and polycondensate the silanized compound A and the silanized compound B in the presence of the organic polymer having the phenyl group. A production method according to any one of (7) to (10) above, wherein the production method comprises:
(12) In the above (11), 2 to 10 parts by weight of the silanized compound B and 1 to 6 parts by weight of the organic polymer are used with respect to 10 parts by weight of the silanized compound A. Of ion conductive material,
Is to provide.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present specification, the “ion exchange group” is an ionic group that undergoes cation exchange, and refers to any of a free acid form or a salt form. A molecule or polymer having such an ion exchange group, preferably an organic molecule or polymer, particularly preferably linear, is referred to as “ion exchanger” in the present specification.
[0015]
In this specification, the “ion conduction path” refers to a path through which ions flow. In the present invention, since ions flow along the ion exchange group of the ion exchanger, the “ion conduction path” is formed through the ion exchanger molecules.
[0016]
In the present specification, the “normal direction of the material” refers to a direction in which ions are caused to flow through the ion conductive material, and usually a pair of surfaces located on both sides of the material (for example, both surfaces of the sheet). The direction connecting the rectangular parallelepiped facing surface, the upper and lower bottom surfaces of the cylinder, etc. is the normal direction.
[0017]
In the ion conductive material of the present invention, the matrix is an inorganic or inorganic-organic matrix, and the ion exchanger forms an ion conductive path in the matrix, and the orientation of the material of the ion conductive path in the normal direction is set. Have. As a result, (1) fuel cell efficiency is improved by reducing the internal resistance and preventing the crossover phenomenon of methanol in the matrix. (2) By making the electrolyte all solid, electrolytes and solvents It is possible to manufacture a secondary battery that does not leak, and (3) a gas sensor that can detect gas at low temperatures with low temperature dependency of gas detection.
[0018]
In the ion conductive material of the present invention, the inorganic or inorganic-organic matrix preferably has a hydroxyl group. For one thing, the presence of a hydroxyl group itself becomes part of the ionic conduction path. In addition, since the hydroxyl group retains water which is a carrier of ion conduction, it is effective in preventing a decrease in battery efficiency when the temperature of the membrane rises.
[0019]
Since the ion conductive material of the present invention imparts an orientation in the normal direction of the material to the ion conduction path, the zigzag property of the ion conduction path is reduced. Therefore, when this is used as a battery such as a fuel cell, a battery having a small internal resistance can be obtained. For this purpose, the degree of orientation of the ion exchanger in the normal direction is preferably 0.05 or more, and more preferably 0.10 or more. However, in order to achieve particularly high performance, the degree of orientation is preferably 0.5 or more, and more preferably 0.6 or more.
[0020]
In this specification, “degree of orientation” is defined by the following calculation formula, where θ i is an angle between a vector indicating the individual direction of the ion exchanger molecule and a vector indicating the normal direction of the material. The value of S. (S = 1 when all molecules are perfectly oriented in the normal direction, S = 0 when not oriented, and S = -0 when all molecules are perfectly oriented in the perpendicular direction. .5)
[0021]
[Expression 1]
Figure 0004163032
[0022]
Here, “<>” represents an arithmetic mean.
[0023]
As an evaluation method for the degree of orientation, an NMR method, a laser Raman method, an infrared absorption dichroic method, or the like can be used. However, since the measurement is relatively easy, an evaluation method using an infrared absorption dichroic method is desirable. .
[0024]
For example, when the ion exchanger is an organic polymer having a phenyl group as a side chain, it is known that the surface formed by the phenyl group is oriented perpendicular to the direction of the main chain. Accordingly, since the direction of the CH out-of-plane bending vibration of the phenyl group is parallel to the main chain of the organic polymer, the ion exchanger is measured by measuring this IR absorption by infrared absorption dichroism. The degree of molecular orientation can be easily evaluated. That is, when the absorption of infrared light measured with respect to the polarization plane parallel to the normal direction of the material is Ax, and the absorption of infrared light measured with respect to the polarization plane perpendicular to the normal direction of the material is Ay , The degree of orientation S in the normal direction is obtained from the following equation.
[0025]
D = A x / A y
S = (D-1) / (D + 2)
[0026]
The inorganic or inorganic-organic matrix of the ion conductive material of the present invention may be non-porous or porous.
[0027]
The ion conductive material based on an inorganic or inorganic-organic matrix of the present invention is a gel or sol comprising a matrix constituent material in which an ion exchanger comprising a linear polymer having an ion exchange group in the side chain is dispersed or dissolved. It can be manufactured by applying a shearing stress to a semi-fluid such as, then curing, and cutting or cutting perpendicularly to the direction of the shearing stress. There are no particular restrictions on the method for preparing the sol constituting the inorganic or inorganic-organic matrix, but examples include tetraalkoxysilanes such as tetraethoxysilane and tetramethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, and phenyltriethoxysilane. , Trialkoxysilanes such as vinyltrimethoxysilane, dialkoxysilanes such as dimethyldimethoxysilane, trimethyl phosphate, tetra-n-butoxyzirconium, tetraisobutoxyzirconium, triisopropoxyaluminum, tri-sec-butoxyaluminum, tetraiso It can be prepared by hydrolysis and polycondensation of an alkoxide such as propoxy titanium.
[0028]
There is no particular limitation on the ion exchanger made of a linear polymer having an ion exchange group in the side chain dispersed or dissolved in the matrix material. For example, a homopolymer of styrene sulfonic acid, styrene sulfonic acid and 2-hydroxyethyl Mention may be made of a copolymer with a copolymer component such as methacrylate, methacrylic acid, sodium methacrylate, acrylic acid, methyl methacrylate, methyl acrylate, acrylamide, vinyl acetate, vinyl chloride, methyl vinyl ether or methyl propenyl ether. When a copolymer of styrene sulfonic acid and styrene is used, it is sufficient for ionic conductivity if 45 mol% or more of the phenyl groups of the copolymer have sulfonic acid groups.
[0029]
There is no particular limitation on the method of applying shear stress to the sol or gel in which the ion exchanger is dispersed or dissolved. For example, after extruding or pulling out from a nozzle having a large number of fine holes, or from a die having fine gaps, for example, converged and integrated, cured by heat treatment, etc., and subjected to shear stress (extrusion direction or The target ion conductive material is obtained by cutting or cutting at right angles to the (drawing direction). By applying a shear stress to the material before curing, the ion exchanger molecules that have been distributed homogeneously and not oriented as a whole have an orientation in the direction of the shear stress. For example, the material extruded or pulled out from the nozzle or die is flow rate in the direction of extrusion or drawing between the portion in contact with the inner wall surface of the nozzle or die and the portion away from the inner wall surface depending on the distance from the inner wall surface. The shear stress on the material coincides with the direction of extrusion or withdrawal. Any other treatment that causes such a unidirectional distribution in the flow rate of the material can be suitably employed as a method for applying shear stress to the material. In addition, since the shear stress acts in the stretching direction also by uniaxial stretching of the material at a site away from the nozzle or die, this can be used for the production of the ion conductive material of the present invention.
[0030]
When a matrix constituent material in which a linear polymer having ion exchange groups in the side chain in the form of a salt is dispersed or dissolved as an ion exchanger salt is used, shear stress is applied to the gel or sol made of the material. After that, in addition to the step of cutting and cutting the obtained cured product at right angles to the direction in which the shear stress is applied, an acid treatment step can be further provided. The acid treatment step may be provided either before or after cutting or cutting, but the salt is formed by the order of acid treatment after obtaining the desired shape of the ion conductive material by cutting or cutting. This is preferable because the rate at which the cations formed are replaced with protons increases. Although there is no restriction | limiting in the kind of cation which forms a salt, Alkali metal ions, such as Na <+> , Li <+> , K <+ > , etc. are mentioned. By using a salt form instead of a free acid, the gelation rate of the matrix constituent material can be easily adjusted. The acid treatment method is not particularly limited, but an acid having a pKa smaller than that of the ion exchange group is used. For example, the gel is immersed in a strong acid such as hydrochloric acid, nitric acid, perchloric acid, sulfuric acid, and an aqueous solution or an organic solvent solution thereof. It can be performed by a method such as washing with water or an organic solvent.
[0031]
The salt of the ion exchanger comprising a linear polymer having an ion exchange group in the side chain in the form of a salt is not particularly limited, and examples thereof include the above-mentioned styrene sulfonic acid homopolymer or copolymer salt. Can do. Examples of cations that form salts include alkali metal ions such as sodium ion, lithium ion, and potassium ion, and ammonium ion.
[0032]
In the present invention, the ion exchange group in the ion exchanger is preferably a sulfonic acid group, a phosphinic acid group, a phosphonic acid group or a carboxyl group from the viewpoint of acidity. When the ion exchange group is a sulfonic acid group, a phosphinic acid group, a phosphonic acid group or a carboxyl group, protons are easily dissociated, and an ion conductive material having high proton conductivity can be obtained.
[0033]
Curing is preferably performed by heat treatment, and more preferably by heat treatment at 100 ° C. or higher. When acid treatment is performed, curing can be performed before or after acid treatment.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to typical examples. However, the present invention is not intended to be limited to the examples.
[0035]
[Example 1]
Tetraethoxysilane, a methanol solution of nitric acid having a concentration of 0.04 mol / L, and water are mixed so that a molar ratio of methanol: tetraethoxysilane: water: nitric acid = 8.5: 1: 1: 0.01. The mixture was stirred at room temperature for 1 hour to hydrolyze tetraethoxysilane to obtain a homogeneous oligomer solution. Next, phenyltriethoxysilane and methanol were added to this solution in a molar ratio of phenyltriethoxysilane: methanol: tetraethoxysilane = 0.37: 8.5: 1, and the mixture was stirred for 30 minutes, and homogeneous. A solution was obtained (weight ratio of tetraethoxysilane to phenyltriethoxysilane = 10: 4.3). Next, a copolymer of sodium styrenesulfonate and 2-hydroxyethyl methacrylate [Tosoh Corporation: 45 mol% sodium styrenesulfonate, average molecular weight of 14,000] was added to the total weight of the copolymer component (solid weight). ) And water were added in a molar ratio of tetraethoxysilane: water = 1: 10 and stirred for 1 hour to obtain a homogeneous sol. Next, this was reacted in a dryer at 40 ° C. for 8 hours to prepare a high-viscosity sol.
After injecting the sol obtained above into a cylinder of a small manual extruder, the plunger is pushed to extrude the gel from a nozzle having a diameter of 5 mm to obtain a rod-shaped molded article having a diameter of about 4 mm. Was further heated at 100 ° C. for 8 hours to obtain an ion conductive material of Example 1.
[0037]
[Comparative Example 1]
A part of the material before extrusion in Example 1 was heat-treated at 100 ° C. for 8 hours to obtain an ion conductive material of Comparative Example 1.
[0038]
[Comparative Example 2]
Part of the material before extrusion in Example 1 is acid-treated (3N nitric acid, immersed at room temperature for 72 hours), ion-exchanged, immersed in distilled water for 24 hours, washed, and then heat treated at 100 ° C. for 8 hours. Thus, an ion conductive material of Comparative Example 2 was obtained.
[0039]
Evaluation of orientation degree:
The degree of orientation of the ion exchanger in the ion conductive material of Example 1 was evaluated using an infrared total reflection absorption spectrum (ATR) apparatus of a Fourier transform microscopic infrared spectrometer (FT-IR). A side surface of the rod-shaped sample is cut from the surface by a microtome about 20 μm to create a plane, and the plane is measured for polarized light whose electric field vector is parallel to the direction of sample extrusion, and then perpendicular to the electric field vector of this polarized light The spectrum was obtained by rotating the sample in the direction. Further, a spectrum was obtained in the same manner as described above for a rod-shaped sample prepared in the same manner as in Example 1 except that a copolymer of sodium styrenesulfonate and 2-hydroxyethyl methacrylate was not added, and this was used as a blank. It was. From the spectrum obtained by subtracting the corresponding two polarized spectra obtained by changing the direction of the sample obtained for the blank by 90 ° from the two polarized spectra obtained by changing the direction of the sample obtained for the sample of Example 1 by 90 °. , The absorbance based on CH out-of-plane variable vibration absorption of a phenyl group having a sodium sulfonate group forming a side chain of the copolymer polymer located at 848 cm −1 was determined for parallel polarized light and perpendicular polarized light, respectively, and A x and Ay . Using these values, the dichroic ratio D and the degree of orientation S were determined from the following equations.
D = A x / A y
S = (D-1) / (D + 2)
[0040]
Since the sample of Comparative Examples 1 and 2 was not subjected to an operation of applying a shear stress, the ion exchanger molecules in these samples are considered to be in a non-orientated state (S = 0), and the degree of orientation was determined. Measurement was not performed.
[0041]
As a simple method, without using a blank spectrum, a phenyl group having a sodium sulfonate group in the side chain of the copolymer polymer located at 848 cm −1 in the parallel polarized light and the vertically polarized spectrum of the sample of Example 1. Absorbance based on the C-H out-of-plane variable vibration absorption was determined for parallel polarized light and vertically polarized light, and were respectively A ′ x and A ′ y . Using these values, D and S were determined from the above formula. The results are shown in Table 1.
[0042]
Electrical conductivity evaluation:
For the ion conductive materials of Example 1 and Comparative Examples 1 and 2, the electrical conductivity was measured with an impedance analyzer (manufactured by Agilent Technologies, 4294A, connection cable 16047E). The ion-conductive material of Example 1 was cut into a thickness of about 3 mm with a microtome so that the direction of extrusion was the thickness direction, and kept for 1 hour at 40 ° C. and relative humidity of 95%. The ion conductive materials of Comparative Examples 1 and 2 were similarly cut out and used for measurement at 40 ° C. and 95% relative humidity for 1 hour. The frequency range of the device is 40 Hz to 5 MHz, the impedance is measured while changing the frequency in this range, a complex impedance plot is performed, and the resistance R is obtained from the intersection of the semicircle and the real axis corresponding to the bulk impedance on the graph, This was substituted into the following equation to obtain the electrical conductivity (σ). The results are shown in Table 1.
σ = d / πr 2 R
Where d: thickness of the measurement sample [cm], r: radius of the measurement electrode [cm]
[0043]
[Table 1]
Figure 0004163032
[0044]
As shown in the table, when the sample of Example 1 was evaluated using a blank sample, an orientation degree of 0.123 was obtained. The degree of orientation was significantly greater than 0, and it was found that the ion exchanger molecules had orientation in the normal direction in the sample of Example 1. The sample of Example 1 showed high electrical conductivity despite a relatively low temperature of 40 ° C., and its value was significantly higher than that of Comparative Examples 1 and 2. In addition, although the orientation degree calculated | required by the simple method of non-use of a blank was 0.070 and was low compared with the value at the time of using a blank, this is the objective of both polarization | polarized-light spectrum when a blank is not used. This seems to be due to the fact that the dichroic ratio D was calculated to be low, mixed in the peak.
[0045]
【The invention's effect】
In the ion conductive material of the present invention, the ion exchanger forms an ion conduction path in an inorganic or inorganic-organic matrix, and the ion conduction path has an orientation in the normal direction of the material. When used in the battery, the efficiency of the battery can be improved. Further, since there is no swelling due to methanol, there is no fear of the crossover, and the efficiency of the battery can be improved also in this respect. When used in a lithium battery, the risk of leakage can be reduced, storage stability can be improved, and swelling and volatilization can be avoided even under heating. Further, since it has high electrical conductivity even at a low temperature such as 40 ° C., it can be used for manufacturing a gas sensor capable of detecting a gas at a low temperature.

Claims (10)

イオン交換体とこれを含有する無機又は無機−有機マトリックスとを含んでなるイオン伝導性材料であって,該マトリックス中において該イオン交換体がイオン伝導パスを形成しており,該イオン伝導パスの該材料の法線方向への配向度が0.05以上であり,ここに該イオン交換体がスチレンスルホン酸と,2−ヒドロキシエチルメタクリレート,メタクリル酸,アクリル酸,メチルメタクリレート,メチルアクリレート,アクリルアミド及び酢酸ビニルより選ばれる共重合成分との共重合ポリマー又それらの塩であり,該無機又は無機−有機マトリックスが,式:R m Si(OR’) 4-m (R,R’は炭素数1〜2のアルキル基を,及び,mは0〜1の整数を表す。)で示されるシラン化合物Aと,X n Si(OR”) 4-n (式中,Xはフェニル基を,R”は炭素数1〜2のアルキル基を,及び,nは1を表す。)で示されるシラン化合物Bとを加水分解,縮重合してなる材料より構成されているものである,イオン伝導性材料。An ion conductive material comprising an ion exchanger and an inorganic or inorganic-organic matrix containing the ion exchanger, wherein the ion exchanger forms an ion conduction path in the matrix, and the ion conduction path orientation degree in the normal direction of the material is Ri der 0.05 or more, here the said ion exchanger is styrene sulfonic acid, 2-hydroxyethyl methacrylate, methacrylic acid, acrylic acid, methyl methacrylate, methyl acrylate, acrylamide And a copolymer or a salt thereof with a copolymer component selected from vinyl acetate, wherein the inorganic or inorganic-organic matrix has the formula: R m Si (OR ′) 4−m (R and R ′ are carbon numbers) 1-2 alkyl groups, and, m is a silane compound a represented by the representative.) the integer from 0 to 1, in X n Si (oR ") 4 -n ( wherein, X is Fe And R ″ is an alkyl group having 1 to 2 carbon atoms, and n is 1). There is an ion conductive material. R,R’及びR”が炭素数2のアルキル基である,請求項1に記載のイオン伝導性材料 The ion conductive material according to claim 1, wherein R, R ′ and R ″ are alkyl groups having 2 carbon atoms . 該シラン化合物Aが,テトラエトキシシラン,テトラメトキシシラン,メチルトリエトキシシラン及びメチルトリメトキシシランより選ばれるものであり,該シラン化合物Bがフェニルトリエトキシシランである,請求項1に記載のイオン伝導性材料 The ion conduction according to claim 1, wherein the silane compound A is selected from tetraethoxysilane, tetramethoxysilane, methyltriethoxysilane and methyltrimethoxysilane, and the silane compound B is phenyltriethoxysilane. Sex material . イオン交換体を分散又は溶解させたマトリックス構成材料を含んでなるゲル又はゾルに剪断応力をかけた後,硬化させ,得られた硬化物を,剪断応力をかけた方向に直角に切り出し又は切削して形成することにより得られるものであることを特徴とする,請求項1ないし3の何れかに記載のイオン伝導性材料。After shearing stress to the gel or sol comprising the matrix constituent material that is dispersed or dissolved the ion exchanger, is cured, the cured product obtained, at right angles to the direction in which shearing stress cut or The ion conductive material according to claim 1, wherein the ion conductive material is obtained by cutting. イオン交換体が有するスルホン酸基が塩の形をとっており,該切り出し又は切削の前又は後に該硬化物を酸処理することを特徴する,請求項に記載のイオン伝導性材料。The ion-conductive material according to claim 4 , wherein the sulfonic acid group of the ion exchanger is in the form of a salt, and the cured product is acid-treated before or after the cutting or cutting. 該ゲル又はゾルが,式:RmSi(OR’)4-m(R,R’は炭素数1〜のアルキル基を,及び,mは0〜の整数を表す。)で示されるシラン化物Aに水を加えることにより,該シラン化物Aの加水分解及び重縮合反応を進行させるステップと,該反応の途中において,反応混合物に式:XnSi(OR”)4-n(式中,Xはフェニル基を,R”は炭素数1〜のアルキル基を,及び,nはを表す。)で示されるシラン化物Bを加えて混合することにより,該シラン化物Bの加水分解及び重縮合反応をも同時に行わせつつ,反応混合物に更に,水,及び,該イオン交換体(但し , 該イオン交換体が該共重合ポリマーの塩であるときは,該塩はNa,Li,K又はNH 4 塩である。)を加えて混合することにより,該シラン化合物A及び該シラン化物Bのその後の加水分解及び重縮合反応を該フェニル基を有する有機ポリマーの存在下において更に進行させるステップとを含む方法によって得られる,請求項4又は5に記載のイオン伝導性材料。The gel or sol, represented by the formula: R m Si '(the alkyl group of 2 to several atoms, and, m is an integer of 0~ 1. (OR) R, R) 4-m' by adding water to silane of compound a, comprising the steps of advancing the hydrolysis and polycondensation reaction of the silane of compound a, in the course of the reaction, wherein the reaction mixture: X n Si (oR ") 4 -n (wherein the X is a phenyl group, R "is an alkyl group of 2 to several atoms, and, n represents represents 1.) by mixing by adding silanized compound B represented by, while also simultaneously carried out the hydrolysis and polycondensation reaction of the silane of compound B, further to the reaction mixture, water, and, the ion exchanger (provided that when the ion exchanger is a salt of the copolymer polymer The salt is a Na, Li, K or NH 4 salt. And obtainable by a method comprising the steps of further advancing in the presence of an organic polymer having the phenyl group and subsequent hydrolysis and polycondensation reaction of the silane of compound B, ionic conductivity according to claim 4 or 5 Sex material. R,R’及びR”が炭素数2のアルキル基である請求項6に記載のイオン伝導性材料 7. The ion conductive material according to claim 6, wherein R, R ′ and R ″ are alkyl groups having 2 carbon atoms . 該シラン化合物Aが,テトラエトキシシラン,テトラメトキシシラン,メチルトリエトキシシラン及びメチルトリメトキシシランより選ばれるものであり,該シラン化合物Bがフェニルトリエトキシシランである,請求項6に記載のイオン伝導性材料 The ion conduction according to claim 6, wherein the silane compound A is selected from tetraethoxysilane, tetramethoxysilane, methyltriethoxysilane, and methyltrimethoxysilane, and the silane compound B is phenyltriethoxysilane. Sex material . 該シラン化物Aの10重量部に対して,該シラン化物Bを2〜10重量部,該イオン交換体を1〜6重量部用いるものである,請求項6ないし8の何れかに記載のイオン伝導性材料。Relative to 10 parts by weight of the silane of compound A, 2 to 10 parts by weight of the silane of compound B, and the ion exchanger is to use 1-6 parts by weight, any one of claims 6 to 8 The ion conductive material described in 1. 該イオン交換体が該共重合ポリマー又はその塩であって,スチレンスルホン酸が該共重合ポリマーの少なくとも45モル%以上をなすものである,請求項1ないし9の何れかのイオン伝導性材料 The ion conductive material according to any one of claims 1 to 9, wherein the ion exchanger is the copolymer or a salt thereof, and styrene sulfonic acid constitutes at least 45 mol% or more of the copolymer .
JP2003093475A 2003-03-31 2003-03-31 Ion conductive material Expired - Lifetime JP4163032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093475A JP4163032B2 (en) 2003-03-31 2003-03-31 Ion conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093475A JP4163032B2 (en) 2003-03-31 2003-03-31 Ion conductive material

Publications (2)

Publication Number Publication Date
JP2004303514A JP2004303514A (en) 2004-10-28
JP4163032B2 true JP4163032B2 (en) 2008-10-08

Family

ID=33406264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093475A Expired - Lifetime JP4163032B2 (en) 2003-03-31 2003-03-31 Ion conductive material

Country Status (1)

Country Link
JP (1) JP4163032B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942235B1 (en) * 2009-02-13 2011-07-22 Centre Nat Rech Scient IONIC CONDUCTIVE GELS, PROCESS FOR THEIR PREPARATION AND THEIR USE AS ELECTROLYTE
WO2014103335A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
JP6131081B2 (en) * 2013-03-28 2017-05-17 日本碍子株式会社 ORGANIC-INORGANIC COMPOSITE, STRUCTURE AND METHOD FOR PRODUCING ORGANIC-INORGANIC COMPOSITE
JP6199700B2 (en) * 2013-11-05 2017-09-20 日本碍子株式会社 Organic-inorganic composite and structure
JP2021073433A (en) * 2018-03-06 2021-05-13 シャープ株式会社 Chemical sensor element, manufacturing method of chemical sensor element, and chemical sensor

Also Published As

Publication number Publication date
JP2004303514A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
Chopade et al. Anhydrous proton conducting polymer electrolyte membranes via polymerization-induced microphase separation
Wang et al. Preparation and characterization of gel polymer electrolytes using poly (ionic liquids) and high lithium salt concentration ionic liquids
Chopade et al. Robust polymer electrolyte membranes with high ambient-temperature lithium-ion conductivity via polymerization-induced microphase separation
Safronova et al. New cation-exchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems
Li et al. Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries
Galluzzo et al. Measurement of three transport coefficients and the thermodynamic factor in block copolymer electrolytes with different morphologies
Tripathi et al. Organic-inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications
Echelmeyer et al. Novel ternary composite electrolytes: Li ion conducting ionic liquids in silica glass
Lin et al. Properties of water in prestretched recast Nafion
Tsang et al. Ionic purity and connectivity of proton-conducting channels in fluorous-ionic diblock copolymers
Golubenko et al. Influence of the water state on the ionic conductivity of ion-exchange membranes based on polyethylene and sulfonated grafted polystyrene
Sun et al. Morphology and proton transport in humidified phosphonated peptoid block copolymers
Yunis et al. The anion effect in ternary electrolyte systems using poly (diallyldimethylammonium) and phosphonium-based ionic liquid with high lithium salt concentration
Wu et al. A sol-gel solid electrolyte with high lithium ion conductivity
US9790339B2 (en) Crosslinked speek cation exchange membrane having improved chemical stability by radiation and method of preparing the same
Lee et al. Ion-conductive poly (vinyl alcohol)-based IPMCs
Bhattacharya et al. Effect of sodium-mixed anion doping in PEO-based polymer electrolytes
Świerczyński et al. Composite polymeric electrolytes from the PEODME− LiClO4− SiO2 System
Shen et al. A nanocomposite proton exchange membrane based on PVDF, poly (2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells
Bao et al. Facile synthesis of poly (vinyl alcohol)/α-titanium phosphate nanocomposite with markedly enhanced properties
Dos Santos et al. Electrospinning a versatile tool for designing hybrid proton conductive membrane
Chen et al. Lithium-Ion Transport in Poly (ionic liquid) Diblock Copolymer Electrolytes: Impact of Salt Concentration and Cation and Anion Chemistry
Baek et al. Preparation and Characterisation of Non‐aqueous Proton‐Conducting Membranes with the Low Content of Ionic Liquids
JP4163032B2 (en) Ion conductive material
Lufrano et al. UV-cured gel polymer electrolytes based on poly (ethylene glycol) and organo-modified nanoclays for lithium ions batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term