JP4162344B2 - Humidity sensor - Google Patents

Humidity sensor Download PDF

Info

Publication number
JP4162344B2
JP4162344B2 JP2000005941A JP2000005941A JP4162344B2 JP 4162344 B2 JP4162344 B2 JP 4162344B2 JP 2000005941 A JP2000005941 A JP 2000005941A JP 2000005941 A JP2000005941 A JP 2000005941A JP 4162344 B2 JP4162344 B2 JP 4162344B2
Authority
JP
Japan
Prior art keywords
potential
capacitor
charge
output
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000005941A
Other languages
Japanese (ja)
Other versions
JP2001194332A (en
Inventor
俊彦 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000005941A priority Critical patent/JP4162344B2/en
Publication of JP2001194332A publication Critical patent/JP2001194332A/en
Application granted granted Critical
Publication of JP4162344B2 publication Critical patent/JP4162344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、湿度センサに関するもので、エアコン、冷蔵庫などに応用される。
【0002】
【従来の技術】
従来の湿度センサには、2枚の電極間に吸湿性誘電体をいれて、湿度による誘電率変化を容量で検出する方式、金属酸化物半導体のガス吸着による抵抗値変化により検出する方式、ヒータの放熱度合いの変化を測温抵抗で検出する方式、湿度により変化する定常的な表面電流を検出する方式などがある。
【0003】
【発明が解決しようとする課題】
しかし、上記従来技術の方式の湿度センサは、いずれも半導体CMOSプロセスとのコンパチビリティが良くない。このため、半導体化が困難で、安価で、小型の湿度センサができない。また、CMOSプロセスで製造可能な、定常的な表面電流を検出する方式のセンサの場合、表面電流自体が非常に小さいため、感度が低い問題がある。
【0004】
本発明は、半導体ICの表面を移動する過度的な電荷を検出する方式により、高感度で、通常のCMOSプロセスで製造可能な、安価、小型の湿度センサ提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の湿度センサは、一方の極板の電位がフロートである容量部と、前記容量部のフロート電位側の極板に接続してあり前記容量の電荷を基準値に戻すリセットスイッチと、前記容量部の近傍に配置されて前記容量部とは独立した電位をもつ電位部からなり、前記電位部を第1の電位から第2の電位に変化させたときに、前記電位部から前記容量部に過度的に移動する電荷を前記容量部に蓄積して出力することを特徴とする。本発明の湿度センサの表面雰囲気湿度が変化すると、湿度センサ表面状態が変わり、前記電位部から前記容量部にセンサ表面を経由して過度的に移動する電荷の量、時定数が変化する。
【0006】
このため、一定時間内に前記容量部に蓄積される電荷量が変わる。この電荷をCMOS増幅器で増幅して出力すれば、湿度センサ表面雰囲気の湿度に応じた出力が得られる。また、本発明のセンサは、前記容量部の近傍にある電位部からの過度的な移動電荷を検出する方式のため、従来の定常電流を検出する方式に比べて、極めて高い検出感度を得ることができる。
【0007】
検出方法としては、前記電位部の電位を変化させた直後の突入電荷量を検出する方式でもよいが、過度的な移動電荷量の時定数を検出してもよい。時定数を検出する場合は、前記電位部を変化させた後、任意の時間だけ前記容量部に過度的に移動する電荷蓄積して出力し、その後、前記容量部を基準値にリセットした後、再び任意の時間だけ前記容量部に過度的に移動する電荷蓄積して出力する動作を繰返すことで得ることができる。
【0008】
また、前記電位部を変化させた直後の一定時間に蓄積した電荷と、ある時間経過後の一定時間に蓄積した電荷を比較する方式でもよい。
また、周囲温度の影響、電源電圧変動の影響を抑制するため、前記容量部を基準電荷にリセットした時の電荷と、前記電位部の電位変化による過度的な電荷との差を出力する方式にしてもよい。
【0009】
本発明の湿度センサにおいて、前記容量部、前記電位部は、MOS容量、金属配線などで容易に形成できるため、通常のCMOSプロセスで製造することが可能である。また、前記容量部の容量値は小さいほど、検出感度が高くなる。このため、前記容量部は、前記容量部が前記容量部に蓄積した電荷を増幅するCMOS増幅器の入力容量とリセットスイッチまでの配線容量からなる寄生容量を使ってもよい。
【0010】
本方式のセンサは、センサ表面を移動する電荷を捕らえるが、移動する電荷はセンサ表面の絶対湿度に依存して変化する。このため、本センサに温度検出手段を搭載することで、相対湿度を出力することができる。温度検出手段としては、PN接合を使う方式、測温抵抗を使う方式、サーモパイルを使う方式などがあるが、どれでもよい。このとき、センサに演算機能を搭載すれば、絶対湿度と温度から容易に相対湿度を得ることができる。温度検出手段を搭載した場合は、雰囲気情報として、湿度だけでなく温度も出力してよい。
【0011】
また、メモリ機能を搭載して、湿度、温度出力を一定時間ごとに記録していけば、湿度、温度履歴を出力できるセンサにできる。また、メモリの一部をセンサのトリミングに使い、高精度なセンサとしてもよい。
これまでは、過度的な電荷の変化を、容量部近傍の電位部の電位変化によるセンサとして説明してきたが、電位部の電位は一定にしておき、容量部の電位を第1の電位から第2の電位に変化させ、その後、容量部の電荷を一度リセットした後に、過度的な電荷を蓄積する方式でも、同様の効果が得られる。
【0012】
【発明の実施の形態】
本発明の実施例を以下に示す。
図1に本発明のセンサのブロック図を示す。また、図3に配線3、4部の断面図を示す。
電荷を蓄積する容量部1は、蓄積した電荷を増幅する増幅器13の入力容量と、増幅器1とリセットスイッチ 2の間の配線3の寄生容量からなる。配線3は、リセットスイッチ 2を介して基準電圧1につながっている。配線3の近傍には、配線4が設置してある。配線4はスイッチ 5、6を介して、基準電圧1、2につながっている。配線3、4はアルミで形成して、間隔は3μmで、長さ100umとした。アルミの上層には、保護膜として窒化シリコン膜を形成した。増幅器13の出力は、出力スイッチ7を介して増幅器14(出力アンプ)につながっている。
【0013】
センサの動作は図4のタイミングチャートにそって説明する。
通常スタンバイ時は、リセットスイッチ 2、スイッチ 5を閉じておき、配線3、配線4の電位を基準電位1としておく。センサを動作させるときは、スイッチ 5を開き、スイッチ 6を閉じて配線4の電位を基準電位2とする。このとき、配線3と配線4の電位差が零から瞬時に基準電位1と基準電位2の差に変化して、配線4から配線3に過度的な電荷の移動がはじまる。同時にリセットスイッチ 2を開き、容量部1をフロート状態にして、配線4から移動した電荷を蓄積する。この間に、配線4から配線3に移動した電荷量Qと容量部1の容量Cに応じて増幅器13の出力はQ/Cだけ増加する。また、蓄積をしている間は出力スイッチ7は開いておく。
【0014】
一定の蓄積時間(数msec〜数十msec)で電荷蓄積した後、スイッチ7を閉じて増幅器14で増幅した出力を得る。 この後、リセットスイッチ 2を閉じて、容量部1を基準電位にリセットする。
時定数を検出するときには、再度、 スイッチ2、7を開き、容量部1の蓄積動作に入り、前述同様の動作で信号を出力を繰り返す。
【0015】
図5に本発明のセンサの出力を示す。この場合は、基準電位1を500mV、基準電位2を3Vとして、蓄積時間20msecとして、時定数を検出した場合の出力である。
図2には、図1の系においてのリセット時の増幅器13の出力電圧との差を出力することで、ノイズ等の影響をキャンセルできる回路構成の一例を示す。動作は、おおむね図1の場合と同じである。以下に説明を示す。
【0016】
電荷を蓄積する容量部1は、蓄積した電荷を増幅する増幅器13の入力容量と、増幅器1とリセットスイッチ 2の間の配線3の寄生容量からなる。配線3は、リセットスイッチ 2を介して基準電圧1につながっている。配線3の近傍には、配線4が設置してある。配線4はスイッチ 5、6を介して、基準電圧1、2につながっている。配線3、4はアルミで形成して、間隔は3μmで、長さ100umとした。アルミの上層には、保護膜として窒化シリコン膜を形成した。増幅器13の出力は、スイッチ 7、8を介して容量9、10につながり、さらにスイッチ 11、12を介して差動増幅器14の入力につながっている。
【0017】
通常スタンバイ時は、リセットスイッチ 2、スイッチ 5を閉じておき、配線3、配線4の電位を基準電位1としておく。また、スイッチ7、8、11、12も閉じておき、容量9、10もリセットしておく。このとき、容量10には基準電位1に応じた基準出力が入る。センサを動作させるときは、スイッチ 5を開き、スイッチ 6を閉じて配線4の電位を基準電位2とする。このとき、配線3と配線4の電位差が零から瞬時に基準電位1と基準電位2の差に変化して、配線4から配線3に過度的な電荷の移動がはじまる。同時に、スイッチ 7、8、11、12およびリセットスイッチ 2を開き、容量部1をフロート状態にして、配線4から移動した電荷を蓄積する。
【0018】
一定の蓄積時間(数msec〜数十msec)で電荷蓄積した後、スイッチ7を閉じて、容量部1に蓄積した電荷を増幅器13で増幅した信号出力を容量9に入れ、再びスイッチ7を開く。次に、スイッチ11、12を閉じて、容量9、10に入っていた信号出力と基準出力を差動増幅器14で10倍に増幅して出力として取出す。この後、リセットスイッチ 2、スイッチ 7、8、11、12を閉じて、容量部1及び 容量9、10を基準電位にリセットする。時定数を検出するときには、再度、 スイッチ 7、8、11、12およびリセットスイッチ 2を開き、容量部1の蓄積動作にはいり、前述同様の動作で信号を出力を繰り返すことでできる。
【0019】
また、上記2つの実施例では、配線4をアルミで形成したが、シリコンの拡散で形成してもよい。
センサICのパッケージは、図6のような通気穴をもつものであれば良い。IC保護は、通気性のある樹脂を塗布しても良いが、図6のように感湿度部に穴加工したガラスでカバーしても良い。
【0020】
【発明の効果】
本発明の構成とすることで、高感度で、通常のCMOSプロセスで製造可能な、安価、小型の湿度センサ提供することが可能となる。
【図面の簡単な説明】
【図1】図1は本発明の実施例の湿度センサブロック図である。
【図2】図2は本発明の他の実施例の湿度センサブロック図である。
【図3】図3は本発明の湿度センサの断面図である。
【図4】図4は本発明の湿度センサのタイミングチャートである。
【図5】図5は本発明の湿度センサの出力図である。
【図6】図6は本発明の湿度センサのパッケージの断面図である。
【符号の説明】
1 容量部
2 リセットスイッチ
3、4 配線
5、6、7、8、11、12 スイッチ
9、10 容量
13、14 増幅器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a humidity sensor and is applied to an air conditioner, a refrigerator, and the like.
[0002]
[Prior art]
Conventional humidity sensors include a hygroscopic dielectric material between two electrodes, a method of detecting a change in dielectric constant due to humidity by a capacitance, a method of detecting a change in resistance value due to gas adsorption of a metal oxide semiconductor, a heater There are a method for detecting a change in the degree of heat dissipation with a resistance temperature detector, a method for detecting a steady surface current that varies with humidity, and the like.
[0003]
[Problems to be solved by the invention]
However, none of the above-described conventional humidity sensors are compatible with the semiconductor CMOS process. For this reason, it is difficult to make a semiconductor, and an inexpensive and small-sized humidity sensor cannot be obtained. In addition, in the case of a sensor that can be manufactured by a CMOS process and detects a steady surface current, the surface current itself is very small, so that there is a problem of low sensitivity.
[0004]
An object of the present invention is to provide an inexpensive, small-sized humidity sensor that can be manufactured by a normal CMOS process with high sensitivity by detecting an excessive charge moving on the surface of a semiconductor IC.
[0005]
[Means for Solving the Problems]
The humidity sensor according to the present invention includes a capacitor unit in which a potential of one electrode plate is floated, a reset switch connected to a plate on the float potential side of the capacitor unit and returning the charge of the capacitor to a reference value, A potential portion that is disposed in the vicinity of the capacitance portion and has a potential independent of the capacitance portion; and when the potential portion is changed from a first potential to a second potential, the potential portion changes to the capacitance portion. The charge that moves excessively is accumulated in the capacitor and output. When the surface atmosphere humidity of the humidity sensor of the present invention changes, the humidity sensor surface state changes, and the amount of charge that moves excessively from the potential portion to the capacitance portion via the sensor surface and the time constant change.
[0006]
For this reason, the amount of charge accumulated in the capacitor portion changes within a certain time. If this charge is amplified and output by a CMOS amplifier, an output corresponding to the humidity of the humidity sensor surface atmosphere can be obtained. In addition, since the sensor of the present invention is a system that detects excessive mobile charge from the potential section in the vicinity of the capacitor section, it can obtain extremely high detection sensitivity compared to a conventional system that detects steady current. Can do.
[0007]
As a detection method, a method of detecting the amount of inrush charge immediately after changing the potential of the potential portion may be used, or a time constant of an excessive amount of mobile charge may be detected. In the case of detecting the time constant, after changing the potential portion, the charge portion that moves excessively to the capacitance portion for an arbitrary time is accumulated and output, and then the capacitance portion is reset to a reference value. It can be obtained by repeating the operation of accumulating and outputting the charge that moves excessively in the capacitor portion again for an arbitrary time.
[0008]
Further, a method of comparing the charge accumulated for a certain time immediately after changing the potential portion with the charge accumulated for a certain time after a certain time has elapsed may be employed.
In addition, in order to suppress the influence of ambient temperature and power supply voltage fluctuation, the system outputs a difference between the charge when the capacitor section is reset to the reference charge and the excessive charge due to the potential change of the potential section. May be.
[0009]
In the humidity sensor of the present invention, the capacitor part and the potential part can be easily formed by a MOS capacitor, a metal wiring, or the like, and can be manufactured by a normal CMOS process. In addition, the smaller the capacitance value of the capacitance section, the higher the detection sensitivity. For this reason, the capacitance unit may use a parasitic capacitance including an input capacitance of a CMOS amplifier that amplifies the charge accumulated in the capacitance unit and a wiring capacitance to the reset switch.
[0010]
The sensor of this system captures the charge moving on the sensor surface, but the moving charge changes depending on the absolute humidity of the sensor surface. For this reason, the relative humidity can be output by mounting the temperature detection means on this sensor. As the temperature detecting means, there are a method using a PN junction, a method using a resistance temperature detector, a method using a thermopile, etc., but any method may be used. At this time, if the sensor is equipped with a calculation function, the relative humidity can be easily obtained from the absolute humidity and the temperature. When the temperature detection means is mounted, not only humidity but also temperature may be output as atmosphere information.
[0011]
If a memory function is installed and humidity and temperature outputs are recorded at regular intervals, the sensor can output humidity and temperature history. Also, a part of the memory may be used for sensor trimming to provide a highly accurate sensor.
So far, the excessive charge change has been described as a sensor based on the potential change of the potential part near the capacitor part. However, the potential of the potential part is kept constant, and the potential of the capacitor part is changed from the first potential to the first potential. The same effect can be obtained by a method in which excessive charge is accumulated after changing the potential to 2 and then resetting the charge in the capacitor once.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention are shown below.
FIG. 1 shows a block diagram of the sensor of the present invention. FIG. 3 is a cross-sectional view of the wirings 3 and 4.
The capacitor unit 1 that accumulates charges includes an input capacitor of the amplifier 13 that amplifies the accumulated charges and a parasitic capacitance of the wiring 3 between the amplifier 1 and the reset switch 2. The wiring 3 is connected to the reference voltage 1 through the reset switch 2. A wiring 4 is installed in the vicinity of the wiring 3. The wiring 4 is connected to the reference voltages 1 and 2 through the switches 5 and 6. The wirings 3 and 4 were made of aluminum, the interval was 3 μm, and the length was 100 μm. A silicon nitride film was formed as a protective film on the upper layer of aluminum. The output of the amplifier 13 is connected to the amplifier 14 (output amplifier) via the output switch 7.
[0013]
The operation of the sensor will be described with reference to the timing chart of FIG.
During normal standby, the reset switch 2 and the switch 5 are closed, and the potentials of the wiring 3 and the wiring 4 are set to the reference potential 1. When the sensor is operated, the switch 5 is opened, the switch 6 is closed, and the potential of the wiring 4 is set to the reference potential 2. At this time, the potential difference between the wiring 3 and the wiring 4 changes from zero to the difference between the reference potential 1 and the reference potential 2 instantaneously, and excessive charge transfer from the wiring 4 to the wiring 3 starts. At the same time, the reset switch 2 is opened, and the capacitor portion 1 is floated to accumulate the charges moved from the wiring 4. During this time, the output of the amplifier 13 increases by Q / C in accordance with the amount of charge Q moved from the wiring 4 to the wiring 3 and the capacitance C of the capacitor 1. Further, the output switch 7 is kept open during accumulation.
[0014]
After accumulating charges for a certain accumulation time (several milliseconds to several tens of milliseconds), the switch 7 is closed and an output amplified by the amplifier 14 is obtained. Thereafter, the reset switch 2 is closed to reset the capacitor 1 to the reference potential.
When the time constant is detected, the switches 2 and 7 are opened again, the accumulation operation of the capacitor unit 1 is started, and the signal is repeatedly output in the same manner as described above.
[0015]
FIG. 5 shows the output of the sensor of the present invention. In this case, the reference potential 1 is 500 mV, the reference potential 2 is 3 V, the accumulation time is 20 msec, and the output is when the time constant is detected.
FIG. 2 shows an example of a circuit configuration in which the influence of noise or the like can be canceled by outputting a difference from the output voltage of the amplifier 13 at the time of reset in the system of FIG. The operation is almost the same as in FIG. An explanation is given below.
[0016]
The capacitor unit 1 that accumulates charges includes an input capacitor of the amplifier 13 that amplifies the accumulated charges and a parasitic capacitance of the wiring 3 between the amplifier 1 and the reset switch 2. The wiring 3 is connected to the reference voltage 1 through the reset switch 2. A wiring 4 is installed in the vicinity of the wiring 3. The wiring 4 is connected to the reference voltages 1 and 2 through the switches 5 and 6. The wirings 3 and 4 were made of aluminum, the interval was 3 μm, and the length was 100 μm. A silicon nitride film was formed as a protective film on the upper layer of aluminum. The output of the amplifier 13 is connected to the capacitors 9 and 10 via the switches 7 and 8 and further connected to the input of the differential amplifier 14 via the switches 11 and 12.
[0017]
During normal standby, the reset switch 2 and the switch 5 are closed, and the potentials of the wiring 3 and the wiring 4 are set to the reference potential 1. Further, the switches 7, 8, 11, and 12 are also closed, and the capacitors 9 and 10 are also reset. At this time, a reference output corresponding to the reference potential 1 is input to the capacitor 10. When the sensor is operated, the switch 5 is opened, the switch 6 is closed, and the potential of the wiring 4 is set to the reference potential 2. At this time, the potential difference between the wiring 3 and the wiring 4 changes from zero to the difference between the reference potential 1 and the reference potential 2 instantaneously, and excessive charge transfer from the wiring 4 to the wiring 3 starts. At the same time, the switches 7, 8, 11, 12 and the reset switch 2 are opened, the capacitance unit 1 is floated, and the charges moved from the wiring 4 are accumulated.
[0018]
After accumulating charges for a certain accumulation time (several milliseconds to several tens of milliseconds), the switch 7 is closed, the signal output obtained by amplifying the charges accumulated in the capacitor 1 by the amplifier 13 is put into the capacitor 9, and the switch 7 is opened again. . Next, the switches 11 and 12 are closed, and the signal output and the reference output contained in the capacitors 9 and 10 are amplified 10 times by the differential amplifier 14 and taken out as outputs. Thereafter, the reset switch 2 and the switches 7, 8, 11, and 12 are closed to reset the capacitor 1 and the capacitors 9 and 10 to the reference potential. When detecting the time constant, the switches 7, 8, 11, 12 and the reset switch 2 are opened again, the accumulation operation of the capacitor unit 1 is started, and the signal output is repeated by the same operation as described above.
[0019]
In the above two embodiments, the wiring 4 is made of aluminum, but may be formed by silicon diffusion.
The sensor IC package only needs to have a vent hole as shown in FIG. For IC protection, a resin having air permeability may be applied, but it may be covered with glass in which a hole is formed in the humidity sensitive portion as shown in FIG.
[0020]
【The invention's effect】
By adopting the configuration of the present invention, it is possible to provide an inexpensive, small-sized humidity sensor that is highly sensitive and can be manufactured by a normal CMOS process.
[Brief description of the drawings]
FIG. 1 is a block diagram of a humidity sensor according to an embodiment of the present invention.
FIG. 2 is a block diagram of a humidity sensor according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view of the humidity sensor of the present invention.
FIG. 4 is a timing chart of the humidity sensor of the present invention.
FIG. 5 is an output diagram of the humidity sensor of the present invention.
FIG. 6 is a cross-sectional view of a humidity sensor package according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Capacitor part 2 Reset switch 3, 4 Wiring 5, 6, 7, 8, 11, 12 Switch 9, 10 Capacitance 13, 14 Amplifier

Claims (7)

一方の極板の電位がフロートである容量部と、
前記容量部のフロート電位側の極板に接続してあり前記容量の電荷を基準値に戻すリセットスイッチと、
前記容量部の近傍に配置されて前記容量部とは独立した電位をもつ電位部からなり、
前記容量部が前記容量部に蓄積した電荷を増幅する増幅器の入力容量とリセットスイッチまでの配線容量からなり、
前記電位部を第1の電位から第2の電位に変化させたときに、前記電位部から前記容量部に過度的に移動する電荷を前記容量部に蓄積して出力することを特徴とする湿度センサ。
A capacitive part in which the potential of one electrode plate is floated;
A reset switch that is connected to a plate on the float potential side of the capacitor and returns the charge of the capacitor to a reference value;
It is composed of a potential portion that is arranged near the capacitance portion and has a potential independent of the capacitance portion,
The capacitor unit consists of an input capacitor of the amplifier that amplifies the charge accumulated in the capacitor unit and a wiring capacitor to the reset switch,
Humidity characterized in that, when the potential portion is changed from the first potential to the second potential, the charge that excessively moves from the potential portion to the capacitor portion is accumulated and output in the capacitor portion. Sensor.
前記第1の電位が前記容量の電荷を基準値に戻すための基準電位と同じ電位であることを特徴とする請求項1記載の湿度センサ。  The humidity sensor according to claim 1, wherein the first potential is the same potential as a reference potential for returning the charge of the capacitor to a reference value. 前記電位部から前記容量部に過度的に移動する電荷を前記容量部に蓄積したときの電荷と、前記容量部を基準値にリセットしたときの電荷の差を出力することを特徴とする請求項1もしくは請求項2記載の湿度センサ。  The output of the charge when the charge that excessively moves from the potential portion to the capacitor portion is accumulated in the capacitor portion and the charge when the capacitor portion is reset to a reference value is output. The humidity sensor according to claim 1 or 2. 前記電位部を第1の電位から第2の電位に変化させた後、任意の時間だけ前記容量部に過度的に移動する電荷蓄積して出力し、その後、前記容量部を基準値にリセットした後、再び任意の時間だけ前記容量部に過度的に移動する電荷蓄積して出力する動作を繰返すことを特徴とする請求項1〜3の湿度センサ。  After changing the potential portion from the first potential to the second potential, the charge portion that moves excessively to the capacitance portion for an arbitrary time is accumulated and output, and then the capacitance portion is reset to a reference value 4. The humidity sensor according to claim 1, wherein after that, the operation of accumulating and outputting the electric charge that moves excessively in the capacitance unit again for an arbitrary time is repeated. 温度を検出する手段を有することを特徴とする請求項1〜4記載の湿度センサ。  5. A humidity sensor according to claim 1, further comprising means for detecting temperature. 温度を検出する手段と演算機能を搭載して、相対湿度を演算して出力することを特徴とする請求項1〜5記載の湿度センサ。  The humidity sensor according to any one of claims 1 to 5, wherein means for detecting temperature and a calculation function are mounted to calculate and output relative humidity. 温度を検出する手段と演算機能とメモリ機能を搭載して、湿度と温度を演算して出力することに加えて、メモリに記録して、任意に記録を読み出すことのできる機能を有することを特徴とする請求項1〜6記載の湿度センサ。  It is equipped with a means for detecting temperature, a calculation function, and a memory function, and in addition to calculating and outputting the humidity and temperature, it has a function of recording in a memory and arbitrarily reading out the record. The humidity sensor according to claim 1.
JP2000005941A 2000-01-07 2000-01-07 Humidity sensor Expired - Lifetime JP4162344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005941A JP4162344B2 (en) 2000-01-07 2000-01-07 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005941A JP4162344B2 (en) 2000-01-07 2000-01-07 Humidity sensor

Publications (2)

Publication Number Publication Date
JP2001194332A JP2001194332A (en) 2001-07-19
JP4162344B2 true JP4162344B2 (en) 2008-10-08

Family

ID=18534541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005941A Expired - Lifetime JP4162344B2 (en) 2000-01-07 2000-01-07 Humidity sensor

Country Status (1)

Country Link
JP (1) JP4162344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512695B1 (en) * 2013-10-17 2015-04-17 한국과학기술원 A Humidity Sensor in a Standard CMOS Process without Post-Processing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538175B2 (en) * 2001-09-07 2010-09-08 本田技研工業株式会社 Exhaust gas purification device state determination device
JP2003083044A (en) * 2001-09-07 2003-03-19 Honda Motor Co Ltd Deterioration determining device for adsorbent
FR2856897B1 (en) 2003-07-04 2007-01-26 Oreal KIT, IN PARTICULAR FOR COSMETIC USE, COMPRISING AN AMBIENT HUMIDITY INDICATOR OR SENSOR
KR101322354B1 (en) * 2011-04-07 2013-10-25 한국과학기술원 Humidity sensor, humidity sensing method and transistor therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129739A (en) * 1979-03-30 1980-10-07 Anritsu Corp Detector for external atmosphere
JPS56112637A (en) * 1980-02-13 1981-09-05 Canon Inc Measuring method for temperature and humidity
JP3302784B2 (en) * 1993-06-29 2002-07-15 リコーエレメックス株式会社 Hygrometer
JPH07218462A (en) * 1994-02-07 1995-08-18 Teijin Eng Kk Method and instrument for measuring humidity of highly humid gas
JPH1082668A (en) * 1996-09-10 1998-03-31 Falcon Planning Kk Environment monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512695B1 (en) * 2013-10-17 2015-04-17 한국과학기술원 A Humidity Sensor in a Standard CMOS Process without Post-Processing

Also Published As

Publication number Publication date
JP2001194332A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
US6445565B1 (en) Capacitive moisture sensor and fabrication method for capacitive moisture sensor
CN106648218B (en) Integrated force sensing element
US7368715B2 (en) Semiconductor apparatus and infrared light sensor
EP2203738B1 (en) Improved structure for capacitive balancing of integrated relative humidity sensor and manufacturing method
CN101512331B (en) Method and apparatus for controlling sensitivity and value of capacitive humidity sensor
US6809530B2 (en) Sensor for detecting condensation and use in a sensor module
JPH03500687A (en) Control and detection circuit for mass airflow sensor
JP2006112830A (en) Device for detecting electrostatic capacity
US7924028B2 (en) Method and system for adjusting characteristics of integrated relative humidity sensor
JP2002243690A (en) Capacitance type humidity sensor and method for manufacturing the same
JP4162344B2 (en) Humidity sensor
US9234859B2 (en) Integrated device of a capacitive type for detecting humidity, in particular manufactured using a CMOS technology
Selvakumar et al. Low power, wide range threshold acceleration sensing system
US8082796B1 (en) Temperature extraction from a pressure sensor
JP3736026B2 (en) Current-voltage conversion circuit in pyroelectric infrared detector
US8207500B2 (en) Micromechanical sensor having a variable capacitor and method for detecting electromagnetic radiation using same
JP2005188970A (en) Thermal type infrared solid state image sensing device and infrared camera
EP1298618B1 (en) Fire heat sensor
Hagleitner et al. A gas detection system on a single CMOS chip comprising capacitive, calorimetric, and mass-sensitive microsensors
JP3200641B2 (en) Temperature sensor system
EP3211404B1 (en) Cmos-compatible dew point sensor device and method of determining a dew point
JP2002062108A (en) Surface shape recognizing sensor device
JP3363983B2 (en) Heat wire type acceleration detector
KR101512695B1 (en) A Humidity Sensor in a Standard CMOS Process without Post-Processing
Okcan et al. A thermal conductivity based humidity sensor in a standard CMOS process

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4162344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term