JP4160611B2 - Scanning distance measuring device - Google Patents

Scanning distance measuring device Download PDF

Info

Publication number
JP4160611B2
JP4160611B2 JP2006248315A JP2006248315A JP4160611B2 JP 4160611 B2 JP4160611 B2 JP 4160611B2 JP 2006248315 A JP2006248315 A JP 2006248315A JP 2006248315 A JP2006248315 A JP 2006248315A JP 4160611 B2 JP4160611 B2 JP 4160611B2
Authority
JP
Japan
Prior art keywords
light
unit
measurement
scanning
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006248315A
Other languages
Japanese (ja)
Other versions
JP2008070199A (en
Inventor
利宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2006248315A priority Critical patent/JP4160611B2/en
Publication of JP2008070199A publication Critical patent/JP2008070199A/en
Application granted granted Critical
Publication of JP4160611B2 publication Critical patent/JP4160611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、測定光を出力する投光部と、前記投光部から出力された測定光を測定対象空間に向けて走査する走査部と、前記測定対象空間に存在する測定対象物からの反射光を検出する受光部を備え、前記受光部で検出された前記反射光に基づいて前記測定対象物までの距離を測定する走査式測距装置に関する。   The present invention includes a light projecting unit that outputs measurement light, a scanning unit that scans the measurement light output from the light projecting unit toward the measurement target space, and a reflection from the measurement target existing in the measurement target space. The present invention relates to a scanning distance measuring device that includes a light receiving unit that detects light, and that measures a distance to the measurement object based on the reflected light detected by the light receiving unit.

この種の走査式測距装置は、ロボットや無人搬送車の視覚センサ、或いは、ドアの開閉センサや監視領域への侵入者の有無を検出する監視センサ、さらには、危険な装置に人や物が近づくのを検出し、機械を安全に停止する安全センサ等に利用され、発光ダイオードやレーザダイオード等の光源からの出力を所定の変調信号により変調した測定光を出力する投光部と、測定光を測定対象空間に向けて回転走査する走査部と、走査された測定光が測定対象物で反射した反射光を光電変換素子により検出する受光部と、前記投光部から出力される測定光と、測定対象物で反射した反射光に基づいて物体までの距離を演算する演算部を備えて構成されている。   This type of scanning distance measuring device is a visual sensor of a robot or an automated guided vehicle, a door opening / closing sensor, a monitoring sensor for detecting the presence or absence of an intruder into a monitoring area, and a person or object in a dangerous device. Is used as a safety sensor that detects the approaching of the machine and safely stops the machine, and a light projecting unit that outputs measurement light obtained by modulating the output from a light source such as a light emitting diode or laser diode with a predetermined modulation signal, and measurement A scanning unit that rotates and scans light toward a measurement target space, a light receiving unit that detects reflected light reflected by the measurement target by the photoelectric conversion element, and measurement light output from the light projecting unit And a calculation unit that calculates the distance to the object based on the reflected light reflected by the measurement object.

上述の走査式測距装置における測距方式として、AM方式とTOF方式が実用化されている。AM方式とはレーザ光またはLED光を正弦波で変調した測定光を出力し、測定対象物で反射して帰ってきた反射信号と測定光の位相差に基づいて、以下の数式により距離を算出する方式である。ここに、φは計測された位相差、Cは光速、Fは変調周波数である。   As a distance measuring method in the above-described scanning distance measuring device, an AM method and a TOF method have been put into practical use. The AM method outputs laser light or LED light measuring light modulated with a sine wave, and calculates the distance using the following formula based on the phase difference between the reflected signal reflected by the measurement object and the measuring light. It is a method to do. Here, φ is the measured phase difference, C is the speed of light, and F is the modulation frequency.

Figure 0004160611
Figure 0004160611

TOF方式とはレーザ光またはLED光をパルス光に変調した測定光を出力し、測定対象物で反射して帰ってきた反射信号と測定光との時間差に基づいて、以下の数式により距離を算出する方式である。ここに、Cは光速、Tは時間差である。   The TOF method outputs measurement light obtained by modulating laser light or LED light into pulse light, and calculates the distance using the following formula based on the time difference between the reflected signal reflected by the measurement object and the measurement light. It is a method to do. Here, C is the speed of light and T is the time difference.

Figure 0004160611
Figure 0004160611

例えば、TOF方式を採用する場合、特許文献1に記載されているように、前記演算部は、前記光源に対する駆動信号の立ち上りエッジから前記受光部により検出される反射光の検出タイミング迄の遅延時間を検出するカウンタ回路を備えた信号処理回路で構成され、反射光のピーク値に基づいて遅延時間が補正されるように構成されているが、光源の発光特性や受光部に設けた光電変換素子の受光特性等の部品間のばらつきや経時変化による変動に起因して、算出される距離に誤差が生じるという問題があった。   For example, when the TOF method is adopted, as described in Patent Document 1, the calculation unit delays from the rising edge of the driving signal for the light source to the detection timing of the reflected light detected by the light receiving unit. It is composed of a signal processing circuit with a counter circuit that detects light and is configured so that the delay time is corrected based on the peak value of the reflected light, but the light emitting characteristics of the light source and the photoelectric conversion element provided in the light receiving unit There is a problem that an error occurs in the calculated distance due to variations in parts such as the light receiving characteristics of the light and fluctuations due to changes over time.

AM方式も測定光に対する測定対象物からの反射光の遅延時間に基づいて距離を求めるという観点で同様の方式であるため、これらの方式を採用する場合には、測定精度を向上させるために、上述の誤差要因を排除する必要があった。   The AM method is a similar method from the viewpoint of obtaining the distance based on the delay time of the reflected light from the measurement object with respect to the measurement light. Therefore, when these methods are employed, in order to improve the measurement accuracy, It was necessary to eliminate the above error factors.

そこで、特許文献2には、走査部を構成する回転体が基準回転位置にあるときに投光部と受光部とを一定の光路長さで光学的に結合させる基準機構をケーシングに設け、回転体が基準回転位置にきたときの演算出力、つまり、投光部への駆動信号と基準機構を介して受光部で検出される測定光との時間差に基づいて基準距離を演算し、投光部への駆動信号と受光部で検出される反射光との時間差に基づいて演算される距離を前記基準距離で補正する信号処理回路を備えた走査式測距装置が提案されている。
特開平6−214027号公報 特開平7−191142号公報
Thus, in Patent Document 2, a casing is provided with a reference mechanism that optically couples the light projecting unit and the light receiving unit with a fixed optical path length when the rotating body constituting the scanning unit is at the reference rotation position. Calculates the reference distance based on the calculation output when the body reaches the reference rotation position, that is, the time difference between the drive signal to the light projecting unit and the measurement light detected by the light receiving unit via the reference mechanism, and the light projecting unit There has been proposed a scanning distance measuring device including a signal processing circuit that corrects a distance calculated based on a time difference between a drive signal to and a reflected light detected by a light receiving unit using the reference distance.
Japanese Patent Laid-Open No. 6-214027 Japanese Unexamined Patent Publication No. 7-191142

しかし、上述の特許文献2に記載された走査式測距装置では、基準機構が走査部の外部ケーシングに配置されているため、ケーシング内で反射して発生する迷光が受光部で検出されると測距演算に影響を与えることが多く、迷光を防ぐための複雑な機構や、基準機構を構成するためのプリズム等の特殊な光学素子をケーシングに設けるための複雑な機構によりコストの上昇を来たすという問題があった。   However, in the scanning distance measuring device described in the above-mentioned Patent Document 2, since the reference mechanism is disposed in the outer casing of the scanning unit, if stray light reflected and generated in the casing is detected by the light receiving unit. It often affects the distance measurement calculation, and a complicated mechanism for preventing stray light and a complicated mechanism for providing a special optical element such as a prism for constituting the reference mechanism on the casing increase the cost. There was a problem.

本発明の目的は、上述した問題点に鑑み、簡単な構成の基準機構を走査部に設けることにより、安価で且つ高精度な測距を実現し得る走査式測距装置を提供する点にある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a scanning distance measuring device that can realize a low-cost and highly accurate distance measurement by providing a scanning mechanism with a reference mechanism having a simple configuration in view of the above-described problems. .

上述の目的を達成するため、本発明による走査式測距装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、測定光を出力する投光部と、前記投光部から出力された測定光を測定対象空間に向けて走査する走査部と、前記測定対象空間に存在する測定対象物からの反射光を検出する受光部を備え、前記受光部で検出された前記反射光に基づいて前記測定対象物までの距離を測定する走査式測距装置であって、前記走査部は、前記投光部から出力された測定光を前記測定対象空間に伝播させる第一反射部材と、前記測定対象物からの反射光を前記受光部に導く第二反射部材の一対の反射部材と、前記一対の反射部材を所定の回転軸心周りで回転させる回転機構を備え、前記投光部と前記受光部が前記反射部材を挟んで対向配置されるとともに、前記回転軸心と前記投光部から出力される測定光の光軸とが平行となるように前記投光部と前記走査部が配置され、前記走査部の特定回転位置で前記投光部から出力された測定光の一部が基準光として、前記反射部材を介することなく前記受光部に導かれるように構成されている点にある。 In order to achieve the above-described object, a first characteristic configuration of a scanning distance measuring device according to the present invention is, as described in claim 1 of the claims, a light projecting unit that outputs measurement light, A scanning unit that scans the measurement light output from the light projecting unit toward the measurement target space, and a light receiving unit that detects reflected light from the measurement target existing in the measurement target space, and is detected by the light receiving unit. A scanning distance measuring device that measures a distance to the measurement object based on the reflected light, wherein the scanning unit is configured to propagate measurement light output from the light projecting unit to the measurement target space. A reflection member, a pair of reflection members of a second reflection member that guides reflected light from the measurement object to the light receiving unit, and a rotation mechanism that rotates the pair of reflection members around a predetermined rotation axis, The light projecting unit and the light receiving unit are opposed to each other with the reflection member interposed therebetween. With the location, wherein the scanning unit rotation axis and the optical axis of the outputted measurement light from the light projecting unit and the light projecting unit so as to be parallel is disposed at a specific rotational position of the scanning unit A part of the measurement light output from the light projecting unit is configured to be guided to the light receiving unit as reference light without passing through the reflecting member.

上述の構成によれば、投光部と受光部が、前記投光部から出力された測定光を測定対象空間に伝播させる第一反射部材と、前記測定対象物からの反射光を前記受光部に導く第二反射部材の一対の反射部材を挟んで対向配置されるとともに、回転軸心と投光部から出力される測定光の光軸とが平行となるように投光部と走査部が配置されているので、走査部が回転して特定回転位置に位置すると、第一反射部材から反射した測定光の一部が投光窓で反射して受光部に入射するような不都合を回避しながら、走査部の反射部材を介することなく投光部から受光部へ基準光が導かれるようになる。また、前記走査部が特定回転位置に位置していない場合は、前記投光部から前記受光部への基準光の経路から外れて、測定光が測定対象空間に向けて走査されるようになる。従って、ケーシング等の他の構成部を経由させて投光部から受光部へ前記基準光を導く場合のような複雑な機構が不要になるばかりでなく、誤差要因となる迷光の発生を防止することができる。 According to the above-described configuration, the light projecting unit and the light receiving unit transmit the measurement light output from the light projecting unit to the measurement target space, and the light receiving unit reflects the reflected light from the measurement target. The light projecting unit and the scanning unit are disposed so as to face each other with the pair of reflecting members of the second reflecting member guided to the light source , and the rotation axis and the optical axis of the measurement light output from the light projecting unit are parallel to each other. Therefore, when the scanning unit is rotated and positioned at a specific rotation position, a part of the measurement light reflected from the first reflecting member is reflected by the light projection window and is incident on the light receiving unit. while, so that the reference light is guided to the light receiving unit from the light projecting unit without passing through the reflecting member of the scanning unit. In addition, when the scanning unit is not located at the specific rotation position, the measurement light is scanned toward the measurement target space by deviating from the path of the reference light from the light projecting unit to the light receiving unit. . Accordingly, not only a complicated mechanism as in the case where the reference light is guided from the light projecting unit to the light receiving unit via other components such as a casing, but also the generation of stray light causing an error is prevented. be able to.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記走査部の特定回転位置で前記投光部から出力された測定光の一部が基準光として、前記一対の反射部材を介することなく前記受光部に導かれるように案内する導光部材が前記走査部に設けられている点にある。 In the second feature configuration, in addition to the first feature configuration described above, a part of the measurement light output from the light projecting unit at a specific rotation position of the scanning unit is a reference. as light guide to the light guide member as guided to the light receiving portion is in the point that is provided in the scanning unit without passing through the previous SL pair of reflection members.

投光部から出力された測定光の光軸と受光部の光軸が一致していないような場合には、基準光が受光部に適切に検出されないおそれがあるが、導光部材を設けることにより、走査部が特定回転位置に位置するときにのみ、確実に基準光を検出することができるようになる If the optical axis of the measurement light output from the light projecting unit does not match the optical axis of the light receiving unit, the reference light may not be detected properly by the light receiving unit, but a light guide member should be provided. Accordingly, only when the scanning unit is located at a particular rotational position, it is possible to detect the securely reference light.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二特徴構成に加えて、前記測定光の出力タイミングに同期して前記受光部により検出される前記基準光に基づいて前記測定対象物までの距離を補正する補正値を算出する補正値算出部と、前記測定光の出力タイミングに同期して前記受光部により検出される前記反射光と前記補正値に基づいて前記測定対象物までの距離を算出する演算部とを備えている点にある。 The third feature configuration is the reference light detected by the light receiving unit in synchronization with the output timing of the measurement light in addition to the first or second feature configuration described above. Based on the reflected light and the correction value detected by the light receiving unit in synchronization with the output timing of the measurement light And a calculation unit for calculating a distance to the measurement object.

上述の構成によれば、補正値算出部により、光源の発光特性や受光部に設けた光電変換素子の受光特性等の部品間のばらつきや経時変化による変動に起因する距離の誤差を是正する補正値を算出し、演算部において距離を算出するときに、算出された距離に前記補正値の加算または減算を行うことにより、前記誤差が相殺されるため、測定対象物までの距離を精度良く算出することができる。   According to the above-described configuration, the correction value calculation unit corrects the error in the distance caused by the variation between components such as the light emission characteristic of the light source and the light reception characteristic of the photoelectric conversion element provided in the light receiving unit, or the variation due to aging. When calculating the value and calculating the distance in the calculation unit, the error is offset by adding or subtracting the correction value to the calculated distance, so the distance to the measurement object can be calculated accurately. can do.

以上説明した通り、本発明によれば、簡単な構成の基準機構を走査部に設けることにより、安価で且つ高精度な測距を実現し得る走査式測距装置を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a scanning distance measuring device that can realize an inexpensive and highly accurate distance measurement by providing a scanning mechanism with a reference mechanism having a simple configuration. became.

以下、本発明による走査式測距装置の実施形態を図面に基づいて説明する。   Embodiments of a scanning distance measuring apparatus according to the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施形態に係る走査式測距装置の全体構成を示す概略縦断面図である。同図に示すように、この走査式測距装置1は、ハウジング2を備えると共に、このハウジング2の内部に、投光部3と、走査部4と、受光部5とを主たる構成要素として備えている。   FIG. 1 is a schematic longitudinal sectional view showing the overall configuration of the scanning distance measuring apparatus according to the first embodiment of the present invention. As shown in the figure, the scanning distance measuring device 1 includes a housing 2, and a light projecting unit 3, a scanning unit 4, and a light receiving unit 5 as main components inside the housing 2. ing.

ハウジング2は、図中の上下方向の両端が閉じられた円筒状を呈し、その周壁部2aの全周から一部を除いた側壁(図1では右側壁に示している)に亘って湾曲し上下方向に一定の幅を有する透光窓2a1が形成され、この透光窓2a1を介して、後述する投光部3から出力される測定光と、物体で反射して受光部5に至る反射光とが往来可能となっている。   The housing 2 has a cylindrical shape in which both ends in the vertical direction in the figure are closed, and is curved over a side wall (shown on the right side wall in FIG. 1) excluding a part from the entire circumference of the peripheral wall portion 2a. A translucent window 2a1 having a certain width in the vertical direction is formed, and through this translucent window 2a1, measurement light output from a light projecting unit 3 to be described later and reflection reflected by an object and reaching the light receiving unit 5 Light can come and go.

また、前記ハウジング2における前記透光窓2a1以外の部分は、光の完全な遮光かつ反射防止のために、表面に凹凸を設けた暗幕等の吸光部材で被覆される光吸収壁で構成されている。   Further, the portion of the housing 2 other than the translucent window 2a1 is composed of a light absorbing wall that is covered with a light absorbing member such as a dark curtain having an uneven surface to completely block light and prevent reflection. Yes.

投光部3は、例えば発光ダイオードや半導体レーザ等の発光素子と、発光素子の駆動回路を備えて構成され、発光素子は図中の下向きに測定光を出力するように配置されている。この投光部3から下向きに出力された測定光が通る投光入射光路L1上には、光のビーム径を一定にする光学レンズ7が配置されている。   The light projecting unit 3 includes, for example, a light emitting element such as a light emitting diode or a semiconductor laser, and a drive circuit for the light emitting element, and the light emitting element is arranged to output measurement light downward in the drawing. An optical lens 7 for making the beam diameter of the light constant is disposed on the light incident optical path L1 through which the measurement light output downward from the light projecting unit 3 passes.

走査部4は、投光部3から出力された測定光をハウジング2の透光窓2a1を介して外部の測定対象空間に走査するもので、本実施形態では、回転体8と、前記測定対象空間に存在する測定対象物からの反射光を前記受光部5に導く反射部材9と、回転機構としてのモータ11とから構成されている。   The scanning unit 4 scans the measurement light output from the light projecting unit 3 to the external measurement target space through the light transmission window 2a1 of the housing 2, and in this embodiment, the rotating body 8 and the measurement target are scanned. A reflection member 9 that guides reflected light from a measurement object existing in the space to the light receiving unit 5 and a motor 11 as a rotation mechanism.

回転体8は、筒状の周壁部8aと、周壁部8aの上端を塞ぐ天板部8bとから構成されている。周壁部8aの下端部は縮径され、その内周面に軸受12を介して中空軸13が挿入されており、この中空軸13によって回転可能に支承されている。   The rotating body 8 includes a cylindrical peripheral wall portion 8a and a top plate portion 8b that closes the upper end of the peripheral wall portion 8a. The lower end portion of the peripheral wall portion 8a is reduced in diameter, and a hollow shaft 13 is inserted into the inner peripheral surface thereof via a bearing 12, and is rotatably supported by the hollow shaft 13.

回転体8を回転駆動するモータ11は、固定子側にコイル11aを、回転子側にマグネット11bをそれぞれ備え、マグネット11bが、回転体8の周壁部8aの下端部の外周面に取り付けられ、コイル11aとの相互作用により、回転体8が、前記反射部材9を所定の回転軸心周りで回転させるように構成されている。   The motor 11 that rotationally drives the rotating body 8 includes a coil 11a on the stator side and a magnet 11b on the rotor side, and the magnet 11b is attached to the outer peripheral surface of the lower end portion of the peripheral wall portion 8a of the rotating body 8, The rotating body 8 is configured to rotate the reflecting member 9 around a predetermined rotation axis by the interaction with the coil 11a.

走査部4の回転軸心と投光部3から出力される測定光の光軸とが平行となるように投光部3と走査部4が配置され、回転軸心上に受光部5が配置されている。具体的には、走査部4の回転軸心が、図1の破線で示すように、反射部材9における投光入射光路L1の光軸から所定距離x離れた位置に設定されている。つまり、前記反射部材9は、所定の回転軸心を中心として円を描いて回転するように構成されている。   The light projecting unit 3 and the scanning unit 4 are arranged so that the rotational axis of the scanning unit 4 and the optical axis of the measurement light output from the light projecting unit 3 are parallel, and the light receiving unit 5 is arranged on the rotational axis. Has been. Specifically, as shown by the broken line in FIG. 1, the rotation axis of the scanning unit 4 is set at a position that is a predetermined distance x away from the optical axis of the light incident light path L1 in the reflecting member 9. That is, the reflection member 9 is configured to rotate in a circle around a predetermined rotation axis.

反射部材9は、対向配置される投光部3と受光部5の間に配置され、投光部3から出力された測定光を測定対象空間に伝播させる第一反射部材91としての投光ミラーと、測定対象物からの反射光を受光部5に導く第二反射部材92としての受光ミラーの一対で構成されている。   The reflecting member 9 is disposed between the light projecting unit 3 and the light receiving unit 5 arranged to face each other, and the light projecting mirror as the first reflecting member 91 that propagates the measurement light output from the light projecting unit 3 to the measurement target space. And a pair of light receiving mirrors as the second reflecting member 92 for guiding the reflected light from the measurement object to the light receiving unit 5.

回転体8の天板部8bの上下面には、回転軸から所定距離の位置に、第一反射部材91と、第二反射部材92とがそれぞれ傾斜姿勢で取り付けられ、投光部3から出射された測定光が、投光入射光路L1によって第一反射部材91に入射した後、反射して水平な投光出射光路L2に導かれるとともに、ハウジング2の外方に形成される測定対象空間である走査領域内に存在する物体、つまり測定対象物からの反射光が、回転体8の周壁部8aの一部に形成されている開口部8a1を介して、受光入射光路L3によって第二反射部材92に入射した後、反射して受光出射光路L4に導かれる。この受光出射光路L4上には、受光レンズ14が取り付けられており、物体からの反射光が受光部5で集束されるようになっている。   A first reflecting member 91 and a second reflecting member 92 are attached to the upper and lower surfaces of the top plate portion 8b of the rotating body 8 at a predetermined distance from the rotation axis in an inclined posture, and are emitted from the light projecting unit 3. The measured light is incident on the first reflecting member 91 by the light incident light path L1 and then reflected and guided to the horizontal light projecting light path L2, and the measurement target space formed outside the housing 2 The reflected light from the object existing in the scanning region, that is, the measurement object, is second reflected by the light receiving incident light path L3 through the opening 8a1 formed in a part of the peripheral wall 8a of the rotating body 8. After entering the member 92, it is reflected and guided to the light receiving and emitting optical path L4. A light receiving lens 14 is mounted on the light receiving and emitting light path L4, and reflected light from the object is focused by the light receiving unit 5.

また、回転体8の回転軸心を挟んで測定光の光軸と反対側に、投光部3より出射された測定光を回転体8の天板部8bの上面から下面へ導くための基準光孔10が設けられており、回転体8が回転して、図2に示すように、前記基準光孔10が投光部3の真下に位置したときには、測定光の一部が基準光として装置の外部に出射されることなく前記基準光孔10を通過して受光部5へ導かれるように構成されている。   Further, a reference for guiding the measurement light emitted from the light projecting unit 3 from the upper surface to the lower surface of the top plate portion 8b of the rotator 8 on the opposite side of the optical axis of the measurement light across the rotation axis of the rotator 8. When the light hole 10 is provided and the rotating body 8 rotates and the reference light hole 10 is located directly below the light projecting unit 3 as shown in FIG. 2, a part of the measurement light is used as the reference light. It is configured to be guided to the light receiving unit 5 through the reference light hole 10 without being emitted to the outside of the apparatus.

なお、本実施形態では、第一反射部材91及び第二反射部材92は、回転体8の回転軸に対してそれぞれ45度で傾斜しており、投光出射光路L2及び受光出射光路L3とが、投光入射光路L1の光軸(受光入射光路L4の光軸)と直交する光軸をそれぞれ有し、互いに平行となるように設定されている。これにより、投光出射光路L2により物体に照射されて反射する反射光を、受光入射光路L3から取り込むことが可能となる。さらに、回転体8の走査角度を検出する走査角度検出部15が、回転体8の外周面に固定された光学的スリットを有するスリット板15aと、スリット板15aの回転経路上に配置されたフォトインタラプタ15bとから構成されている。   In the present embodiment, the first reflecting member 91 and the second reflecting member 92 are inclined at 45 degrees with respect to the rotation axis of the rotating body 8, respectively, and the light projecting and emitting light path L2 and the light receiving and emitting light path L3. Are respectively set to be parallel to each other, having optical axes orthogonal to the optical axis of the light incident optical path L1 (the optical axis of the light receiving incident optical path L4). As a result, it is possible to take in reflected light that is irradiated and reflected on the object through the light projecting and exiting optical path L2 from the light receiving incident optical path L3. Further, the scanning angle detector 15 for detecting the scanning angle of the rotator 8 includes a slit plate 15a having an optical slit fixed to the outer peripheral surface of the rotator 8, and a photo arranged on the rotation path of the slit plate 15a. It is comprised from the interrupter 15b.

受光部5は、前記測定対象物からの反射光を検出するように構成されており、例えばアバランシェフォトダイオードなどの受光素子と、光電変換された信号を増幅する増幅回路を備えて構成され、回転体8の内部に収容された状態で、投光部3と対向するように配置されている。詳述すると、受光部5は、回転体8を支承する中空軸13の上端面に配置されており、モータ11による回転体8の回転動作とは無関係に、常に静止状態を維持するようになっている。また、受光部5からの出力信号は、図示していないが、中空軸13の内部空間に挿通された信号線により後述の信号処理回路に接続されている。   The light receiving unit 5 is configured to detect reflected light from the measurement object, and includes, for example, a light receiving element such as an avalanche photodiode and an amplification circuit that amplifies the photoelectrically converted signal, and rotates. It is arranged so as to face the light projecting unit 3 while being accommodated in the body 8. More specifically, the light receiving unit 5 is disposed on the upper end surface of the hollow shaft 13 that supports the rotating body 8, and always maintains a stationary state regardless of the rotating operation of the rotating body 8 by the motor 11. ing. Although not shown, the output signal from the light receiving unit 5 is connected to a signal processing circuit described later by a signal line inserted into the internal space of the hollow shaft 13.

回転体8を回転させると、投光部3から出力された測定光は、回転体8の回転軸を中心として放射状に周囲を走査する。   When the rotating body 8 is rotated, the measurement light output from the light projecting unit 3 scans the periphery radially around the rotation axis of the rotating body 8.

しかし、反射部材9が回転体8によって回転させられて、図2に示すように、特定回転位置、つまり、走査部4から出力される測定光が湾曲形成される透光窓2a1を外れてハウジング2の光吸収壁に向けて出力される位置であって、基準光孔10が投光部5及び光学レンズ7の真下にくるような位置に走査部4が位置している場合は、図中の一点鎖線で示すように、投光部3から出力された測定光の一部が基準光として基準光孔10を介して受光部5に導かれる。このとき、第一反射部材91に入射した測定光の一部は、ハウジング2の光吸収壁で吸収されるために装置外部に出射されることがない。特定回転位置は、走査部4から出力される測定光が透光窓2a1の左右中心位置に対して反対側に向けられる位置とすることが望ましい。   However, the reflecting member 9 is rotated by the rotating body 8, and as shown in FIG. 2, the housing is moved away from the light transmitting window 2a1 where the measurement light output from the scanning unit 4 is curved as shown in FIG. When the scanning unit 4 is located at a position where the reference light hole 10 is positioned directly below the light projecting unit 5 and the optical lens 7, the position being output toward the light absorbing wall 2. As indicated by the one-dot chain line, a part of the measurement light output from the light projecting unit 3 is guided to the light receiving unit 5 through the reference light hole 10 as reference light. At this time, a part of the measurement light incident on the first reflecting member 91 is absorbed by the light absorption wall of the housing 2 and thus is not emitted outside the apparatus. The specific rotation position is desirably a position at which the measurement light output from the scanning unit 4 is directed to the opposite side with respect to the left-right center position of the translucent window 2a1.

なお、測定光が外部に走査される透光窓2a1の形成範囲は、投光入射光路L1の光軸周りに180度から270度前後の角度範囲に設定されている。   The formation range of the transparent window 2a1 through which the measurement light is scanned to the outside is set to an angular range of 180 to 270 degrees around the optical axis of the light incident optical path L1.

つまり、走査部4の回転軸心と投光部3から出力される測定光の光軸とが平行となるように投光部3と走査部4が配置され、走査部4の特定回転位置で投光部3から出力された測定光の一部が基準光として反射部材9を介することなく受光部3に導かれるように構成されている。   That is, the light projecting unit 3 and the scanning unit 4 are arranged so that the rotation axis of the scanning unit 4 and the optical axis of the measurement light output from the light projecting unit 3 are parallel to each other. A part of the measurement light output from the light projecting unit 3 is configured to be guided to the light receiving unit 3 without passing through the reflecting member 9 as reference light.

さらに、図11に示すように、透光窓2a1に前記天板部8bと略同一の面位置で段差部2a2を形成することにより、測定光が透光窓2a1を介して受光部5に検出されるような漏れ光を効果的に減衰させることができる。   Further, as shown in FIG. 11, the stepped portion 2a2 is formed in the translucent window 2a1 at substantially the same surface position as the top plate portion 8b, so that the measurement light is detected by the light receiving unit 5 through the translucent window 2a1. The leaked light can be effectively attenuated.

図3に示すように、走査式測距装置は、走査部4が特定回転位置に位置しているときに、投光部3から測定光S2が出射されてから受光部5に基準光S3が到達するまでの時間t1を算出しておき、前記走査部4が特定回転位置以外に位置しているときに、投光部3から測定光S2が出射されてから測定対象物からの反射光S4が受光部5に到達するまでの時間t2を算出する。   As shown in FIG. 3, in the scanning rangefinder, when the scanning unit 4 is located at a specific rotation position, the reference light S3 is emitted to the light receiving unit 5 after the measurement light S2 is emitted from the light projecting unit 3. The time t1 to reach is calculated, and when the scanning unit 4 is located at a position other than the specific rotation position, the reflected light S4 from the measurement object after the measurement light S2 is emitted from the light projecting unit 3 is calculated. The time t <b> 2 until the light reaches the light receiving unit 5 is calculated.

算出した時間t1は、装置内部のみを通って投光部3から受光部5へ到った場合の時間であり、一方、算出した時間t2は、装置内部および装置外部を通って投光部3から受光部5へ到った場合の時間であることから、算出した時間t2から時間t1を減じる演算を行なうことで、装置外部のみを通って投光部3から受光部5へ到った時間、つまり、装置内部の不安定要素の変動の影響を的確に低減した時間を算出することができる。   The calculated time t1 is the time when the light projecting unit 3 reaches the light receiving unit 5 only through the inside of the apparatus, while the calculated time t2 passes through the inside of the apparatus and the outside of the apparatus. Time from the light projecting unit 3 to the light receiving unit 5 only through the outside of the apparatus by performing an operation of subtracting the time t1 from the calculated time t2. That is, it is possible to calculate the time during which the influence of fluctuations in unstable elements inside the apparatus is accurately reduced.

なお、図3で説明した時間の算出と、前記時間に基づいた走査式測距装置と測定対象物の距離の算出の詳細については後述する。   The details of the calculation of the time described in FIG. 3 and the calculation of the distance between the scanning distance measuring device and the measurement object based on the time will be described later.

図4は、本発明の第2の実施形態に係る走査式測距装置の全体構成を示す概略縦断面図である。この実施形態は、基準光路の構成のみが上記の第1の実施形態と相違するものである。以下では、相違点となる基準光路の構成を中心に説明し、共通の構成要素については同符号を付して詳しい説明を省略する。   FIG. 4 is a schematic longitudinal sectional view showing the overall configuration of the scanning distance measuring apparatus according to the second embodiment of the present invention. This embodiment is different from the first embodiment only in the configuration of the reference optical path. Below, it demonstrates centering around the structure of the reference | standard optical path used as a difference, and attaches | subjects the same code | symbol about a common component, and abbreviate | omits detailed description.

同図に示すように、この走査式測距装置における前記基準光路は、上述の第1の実施形態において基準光孔10が設けられていた位置に、投光部3より出射された測定光を回転体8の天板部8bの上面から下面へ導くための導光部材16が設けられており、走査部5の特定回転位置で投光部3から出力された測定光の一部が基準光として導光部材16を介して受光部5に導かれるように構成されている。   As shown in the figure, the reference optical path in the scanning distance measuring device is configured such that the measurement light emitted from the light projecting unit 3 is provided at the position where the reference light hole 10 is provided in the first embodiment. A light guide member 16 for guiding the top plate portion 8b of the rotating body 8 from the upper surface to the lower surface is provided, and a part of the measurement light output from the light projecting unit 3 at a specific rotation position of the scanning unit 5 is the reference light. It is comprised so that it may be guide | induced to the light-receiving part 5 through the light guide member 16.

詳述すると、導光部材16は、光学レンズ7の近傍で測定光を受けるために、一端を光学レンズ7の最下面より下である近傍に位置させて他端を天板部8bの下面より下部に位置させて固定設置した光ファイバーケーブル161と、前記光ファイバーケーブル161を通って出力された測定光を受光部5へ確実に導くために、前記光ファイバーケーブル161の他端に取り付けられている光拡散板162とを備えて構成されている。   Specifically, in order to receive the measurement light in the vicinity of the optical lens 7, the light guide member 16 has one end positioned in the vicinity below the lowermost surface of the optical lens 7 and the other end from the lower surface of the top plate portion 8b. An optical fiber cable 161 fixedly placed at the lower part and a light diffusion attached to the other end of the optical fiber cable 161 in order to reliably guide the measurement light output through the optical fiber cable 161 to the light receiving unit 5 And a plate 162.

走査部5が特定回転位置に位置しない場合は、図4に示すように、投光部3から出射された測定光が、投光入射光路L1によって第一反射部材91に入射した後、反射して投光出射光路L2に導かれる。このとき、導光部材16の入光端部が光学レンズ7の近傍直下に配置されているために、前記光学レンズ7から導光部材16に直接に測定光は入らず、また、前記第一反射部材91にて反射した測定光も、周壁部2aを構成する光吸収壁によって反射することはないために、前記光学レンズ7から導光部材16に間接にも測定光は入らない。   When the scanning unit 5 is not located at the specific rotation position, as shown in FIG. 4, the measurement light emitted from the light projecting unit 3 is reflected after being incident on the first reflecting member 91 through the light incident optical path L1. Then, the light is guided to the light projecting and exiting optical path L2. At this time, since the light incident end portion of the light guide member 16 is disposed immediately below the optical lens 7, the measurement light does not enter the light guide member 16 directly from the optical lens 7, and the first Since the measurement light reflected by the reflecting member 91 is not reflected by the light absorption wall constituting the peripheral wall portion 2a, the measurement light does not enter the light guide member 16 indirectly from the optical lens 7.

投光出射光路L2導かれた測定光は、装置外部へ出射された後、測定対象物に照射されて反射する。この反射光は、受光入射光路L3によって開口部8a1を通過するのであるが、前記開口部8a1を通過した直後の位置に受光レンズ14が設けられており、前記反射光は受光レンズ14によって集束されてから、第二反射部材92で反射して受光出射光路L4に導かれ受光部5に到達する。   The measurement light guided by the light projecting and exiting optical path L2 is emitted to the outside of the apparatus, and then irradiated and reflected on the measurement object. The reflected light passes through the opening 8a1 by the light receiving incident optical path L3. A light receiving lens 14 is provided at a position immediately after passing through the opening 8a1, and the reflected light is focused by the light receiving lens 14. After that, the light is reflected by the second reflecting member 92 and guided to the light receiving / emitting light path L4 and reaches the light receiving unit 5.

一方、走査部5が特定回転位置に位置する場合は、図5に示すように、導光部材16の入光端部が光学レンズ7の真下に位置し、図中に一点鎖線で示すように、前記投光部3から出力された測定光の一部が基準光として光ファイバーケーブル161を介して光拡散板162へ到達し、図中に二点鎖線で示すように、光拡散板162から出力される拡散光が受光部5で検出される。   On the other hand, when the scanning unit 5 is located at the specific rotation position, as shown in FIG. 5, the light incident end of the light guide member 16 is located directly below the optical lens 7, as indicated by a one-dot chain line in the drawing. A part of the measurement light output from the light projecting unit 3 reaches the light diffusion plate 162 through the optical fiber cable 161 as reference light, and is output from the light diffusion plate 162 as indicated by a two-dot chain line in the figure. The diffused light is detected by the light receiving unit 5.

なお、図5に示すように、光拡散板162から出力される基準光をより確実に受光部5へ導くとともに、迷光が受光部5に入射するのを防止するために、光拡散板162に遮光板162aを取り付けた構成であってもよい。   As shown in FIG. 5, in order to guide the reference light output from the light diffusing plate 162 to the light receiving unit 5 more reliably and to prevent stray light from entering the light receiving unit 5, The structure which attached the light-shielding plate 162a may be sufficient.

本実施形態のように、投光部3から出力された測定光の光軸と受光部5の光軸が一致していないような場合には、基準光が受光部4に適切に検出されないおそれがあるが、導光部材16を設けることにより確実に基準光を検出することができるようになるのである。光ファイバーケーブル161を介して導かれる基準光を受光部5に導くために光拡散板162を配置しているが、光拡散板162を配置せずに光ファイバーケーブル161をその出光部端部が受光部5に向くように配置するものであってもよい。   If the optical axis of the measurement light output from the light projecting unit 3 and the optical axis of the light receiving unit 5 do not match as in the present embodiment, the reference light may not be detected properly by the light receiving unit 4 However, the reference light can be reliably detected by providing the light guide member 16. The light diffusing plate 162 is arranged to guide the reference light guided through the optical fiber cable 161 to the light receiving unit 5, but the end of the light emitting unit of the optical fiber cable 161 is arranged without the light diffusing plate 162. It may be arranged so as to face 5.

TOF方式に適した発光点の大きな発光素子が投光部3に備えられている場合、光線束の径が太くなるために平行光に収束させるための光学レンズ7の径も大きなものを採用する必要がある。本実施形態は、そのような場合に好適な構成で、測定光が測定対象空間に向けて出力されるときに、測定光の一部が反射部材9の最外部から漏れ出て直接受光部3に導かれるおそれがある場合であっても、導光部材16を設けることにより、走査部4が特定回転位置に位置するときにのみ測定光を基準光として受光部5に導くことができるようになる。   When the light emitting element having a large light emitting point suitable for the TOF method is provided in the light projecting unit 3, a light beam having a large diameter is used for focusing on parallel light because the beam bundle has a large diameter. There is a need. The present embodiment has a configuration suitable for such a case, and when the measurement light is output toward the measurement target space, a part of the measurement light leaks from the outermost part of the reflecting member 9 and directly receives the light receiving unit 3. Even if there is a possibility of being guided to the light, the provision of the light guide member 16 allows the measurement light to be guided to the light receiving unit 5 as reference light only when the scanning unit 4 is located at the specific rotation position. Become.

導光部材16の入光端部を光学レンズ7の近傍直下に配置しているために、導光部材16により基準光として必要な測定光のみを確実に受光部5に導くことができる。 Since the light incident end of the light guide member 16 is disposed immediately below the optical lens 7, only the measurement light necessary as reference light can be reliably guided to the light receiving unit 5 by the light guide member 16.

図6は、本発明の第3の実施形態に係る走査式測距装置の全体構成を示す概略縦断面図である。この実施形態は、受光部5の配置、走査部4の構成、及び基準光路の構成が上記の第1及び第2の実施形態と相違するものである。以下では、相違点となる、受光部5の配置、走査部4の構成、及び基準光路を中心に説明し、共通の構成要素については同一符号を付して詳しい説明を省略する。   FIG. 6 is a schematic longitudinal sectional view showing the overall configuration of a scanning distance measuring apparatus according to the third embodiment of the present invention. This embodiment is different from the first and second embodiments in the arrangement of the light receiving unit 5, the configuration of the scanning unit 4, and the configuration of the reference optical path. In the following description, the arrangement of the light receiving unit 5, the configuration of the scanning unit 4, and the reference optical path, which are different points, will be mainly described, and the common components are denoted by the same reference numerals and detailed description thereof is omitted.

走査部4は、投光部3から出力された測定光を測定対象空間に伝播させるとともに、測定対象物からの反射光を受光部4に導く反射部材9と、反射部材9を支持する回転体8と回転体8を所定の回転軸心(図中、破線で示す)周りで回転させる回転機構としてのモータ11を備えている。   The scanning unit 4 propagates the measurement light output from the light projecting unit 3 to the measurement target space, guides the reflected light from the measurement target to the light receiving unit 4, and a rotating body that supports the reflection member 9. 8 and a motor 11 as a rotating mechanism that rotates the rotating body 8 around a predetermined rotation axis (indicated by a broken line in the figure).

投光部3と受光部5が反射部材9の一側に配置され、投光部3から出力された測定光が投光入射光路L1の光軸と45度の角度で傾斜配置された反射部材9により外部の測定対象空間に向けて反射されて投光出射光路L2に導かれ、測定対象物からの反射光が受光入射光路L3に沿って反射部材9に入射し、反射部材9で反射されて受光出射光路L4を介して受光部5に入射される。つまり、反射部材9が投光用ミラーと反射用ミラーとして兼用されている。   The light projecting unit 3 and the light receiving unit 5 are arranged on one side of the reflecting member 9, and the reflecting member in which the measurement light output from the light projecting unit 3 is inclined at an angle of 45 degrees with the optical axis of the light incident light path L1. 9 is reflected toward the external measurement object space and guided to the light projecting / emission optical path L2, and the reflected light from the measurement object is incident on the reflecting member 9 along the light receiving incident optical path L3 and reflected by the reflecting member 9 Then, the light is incident on the light receiving unit 5 through the light receiving and emitting light path L4. That is, the reflecting member 9 is used as both a light projecting mirror and a reflecting mirror.

走査部4の回転軸心と投光部3から出力される測定光の光軸つまり投光入射光路L1の光軸とが平行となるように投光部3が配置され、当該回転軸心上に受光部5が配置されている。   The light projecting unit 3 is arranged such that the rotation axis of the scanning unit 4 and the optical axis of the measurement light output from the light projecting unit 3, that is, the optical axis of the light incident light path L1, are arranged on the rotation axis. The light receiving part 5 is arranged on the front side.

反射部材9の一部に導光部材17が設けられており、走査部4の特定回転位置、つまり、走査部4から出力される測定光が湾曲形成される透光窓2a1を外れてハウジング2の光吸収壁に向けて出力される位置に走査部4が回転したときに、投光部3から出力された測定光の一部が導光部材17により反射され、基準光として受光部5に導かれるように構成されている。特定回転位置は、走査部4から出力される測定光が透光窓2a1の左右中心位置に対して反対側に向けられる位置とすることが望ましい。   A light guide member 17 is provided on a part of the reflecting member 9, and the housing 2 is separated from the specific rotation position of the scanning unit 4, that is, the translucent window 2 a 1 in which the measurement light output from the scanning unit 4 is curved. When the scanning unit 4 is rotated to the position where it is output toward the light absorbing wall, a part of the measurement light output from the light projecting unit 3 is reflected by the light guide member 17 and is transmitted to the light receiving unit 5 as reference light. It is configured to be guided. The specific rotation position is desirably a position at which the measurement light output from the scanning unit 4 is directed to the opposite side with respect to the left-right center position of the translucent window 2a1.

詳述すると、導光部材17は、図6に示すように、走査部4により測定光が透光窓2a1に向けて走査される間では投光入射光路L1の外部に位置し、図7に示すように、走査部4から出力される測定光が透光窓2a1を外れたハウジング2の光吸収壁に向けて走査される間の何れかの時期に投光入射光路L1の内部に位置するように、反射部材9の縁部に設けられた拡散反射板で構成されている。   More specifically, as shown in FIG. 6, the light guide member 17 is positioned outside the light projection incident light path L1 while the measurement light is scanned toward the light transmission window 2a1 by the scanning unit 4, as shown in FIG. As shown, the measurement light output from the scanning unit 4 is located inside the light incident light path L1 at any time during scanning toward the light absorption wall of the housing 2 outside the light transmission window 2a1. Thus, it is comprised with the diffused reflection board provided in the edge of the reflection member 9. As shown in FIG.

つまり、投光入射光路L1から拡散反射板に入射した測定光は、当該拡散反射板で拡散反射され、その一部が受光レンズ14を介して受光部5に導かれるのである。   That is, the measurement light incident on the diffuse reflector from the projection incident light path L1 is diffusely reflected by the diffuse reflector, and a part of the measurement light is guided to the light receiver 5 via the light receiving lens 14.

導光部材17としては、拡散反射板に代えて少なくとも測定光の一部を選択的に受光部5に向けて反射させる反射テープで構成されるものであってもよい。この場合には、拡散反射で生じる迷光の発生をより低減させることができる。   The light guide member 17 may be formed of a reflective tape that selectively reflects at least a part of the measurement light toward the light receiving unit 5 instead of the diffuse reflector. In this case, generation of stray light caused by diffuse reflection can be further reduced.

投光部3は走査部4の回転軸心から径方向に離間した位置に設置され、投光部3の直下には光学レンズ7が配置されている。また受光部3は走査部4の回転軸心上に配置され、受光部5の直下には反射光及び基準光を受光部5に集光する受光レンズ14が配置されている。   The light projecting unit 3 is installed at a position spaced radially from the rotational axis of the scanning unit 4, and an optical lens 7 is disposed immediately below the light projecting unit 3. The light receiving unit 3 is disposed on the rotational axis of the scanning unit 4, and a light receiving lens 14 that condenses reflected light and reference light on the light receiving unit 5 is disposed immediately below the light receiving unit 5.

なお、上述の構成において、特定回転位置で投光部3から出射された測定光の一部が導光部材17の周辺部の反射部材9に入射して反射光による迷光の発生を回避するために、図7に示すように、遮光板7a(図中、破線で示す)を設けてもよい。   In the above-described configuration, part of the measurement light emitted from the light projecting unit 3 at the specific rotation position is incident on the reflection member 9 in the peripheral portion of the light guide member 17 to avoid generation of stray light due to the reflected light. Further, as shown in FIG. 7, a light shielding plate 7a (shown by a broken line in the figure) may be provided.

以下に、上述した第1から第3の実施形態に係る走査式測距装置において、測定光の出力タイミングに同期して受光部5により検出される基準光に基づいて測定対象物までの距離を補正する補正値を算出する補正値算出部と、測定光の出力タイミングに同期して受光部5により検出される反射光と前記補正値に基づいて測定対象物までの距離を算出する演算部とを備えている信号処理回路について説明する。   In the scanning distance measuring apparatus according to the first to third embodiments described above, the distance to the measurement object is determined based on the reference light detected by the light receiving unit 5 in synchronization with the output timing of the measurement light. A correction value calculation unit for calculating a correction value to be corrected, a calculation unit for calculating the distance to the measurement object based on the reflected light detected by the light receiving unit 5 in synchronization with the output timing of the measurement light and the correction value; A signal processing circuit including the above will be described.

図9に示すように、信号処理回路70は、走査角度検出部15から出力された走査角度を示す角度信号に基づいて前記角度信号に同期した発光駆動信号を出力する発光制御部71と、走査部5が特定回転位置でない場合に、受光部5から出力された電気信号を測定光信号として検出する測定光検出部72と、走査部5が特定回転位置である場合に、受光部5から出力された電気信号を基準光信号として検出する基準光検出部73と、前記基準光検出部73で検出された基準光信号に基づいて当該走査式測距装置と測定対象物との測定距離に対する補正値を算出する補正値算出部74と、前記測定光検出部72で検出された測定光信号に基づいて測定距離を算出し、前記測定距離と前記補正値に基づいて最終測定距離を算出する演算部75と、前記基準光検出部73で検出された基準光に基づいて故障を検出する故障判定部76と、前記角度信号と前記最終測定距離から測定対象物の位置を演算して出力する信号制御部77とを備えて構成されている。   As shown in FIG. 9, the signal processing circuit 70 includes a light emission control unit 71 that outputs a light emission drive signal synchronized with the angle signal based on an angle signal indicating the scanning angle output from the scanning angle detection unit 15, and a scanning. When the unit 5 is not at the specific rotation position, the measurement light detection unit 72 that detects the electrical signal output from the light receiving unit 5 as a measurement light signal, and when the scanning unit 5 is at the specific rotation position, output from the light reception unit 5 A reference light detection unit 73 that detects the detected electrical signal as a reference light signal, and correction for the measurement distance between the scanning distance measuring device and the measurement object based on the reference light signal detected by the reference light detection unit 73 A correction value calculation unit 74 for calculating a value, and an operation for calculating a measurement distance based on the measurement light signal detected by the measurement light detection unit 72 and calculating a final measurement distance based on the measurement distance and the correction value Part 75; A failure determination unit 76 that detects a failure based on the reference light detected by the reference light detection unit 73; a signal control unit 77 that calculates and outputs the position of the measurement object from the angle signal and the final measurement distance; It is configured with.

システムに電源が投入されると、図示しないシステム制御部からモータ制御回路80にモータ駆動信号が出力され、前記モータ制御回路80によりモータ11が所定速度で駆動される。モータの回転駆動に伴って走査角度検出部15から出力されるパルス信号が発光制御部71に入力され、当該パルス信号に基づいて前記発光制御部71では走査部4による測定光の出力方向が把握される。尚、前記走査角度検出部15を構成するスリット板15aのスリット間隔が予め設定された回転体の基準位置で他と異なるように形成されているため、パルス信号の波形に基づいて基準位置が検出され、基準位置からのパルス数をカウントすることにより基準位置からの回転角度が算出される。   When the system is powered on, a motor drive signal is output from a system control unit (not shown) to the motor control circuit 80, and the motor 11 is driven by the motor control circuit 80 at a predetermined speed. A pulse signal output from the scanning angle detection unit 15 as the motor is driven to rotate is input to the light emission control unit 71, and the light emission control unit 71 grasps the output direction of the measurement light from the scanning unit 4 based on the pulse signal. Is done. In addition, since the slit interval of the slit plate 15a constituting the scanning angle detector 15 is formed so as to be different from the other reference position of the rotary body set in advance, the reference position is detected based on the waveform of the pulse signal. The rotation angle from the reference position is calculated by counting the number of pulses from the reference position.

図10に示すように、走査角度検出部15から出力される角度信号であるパルス信号に基づいて計測タイミングを算出した信号制御部77から、発光制御部71に計測タイミング信号が入力されると、発光制御部71から当該計測タイミング信号を基準とする所定タイミングで投光部3に所定デューティ比の発光駆動信号S1が出力される。   As shown in FIG. 10, when the measurement timing signal is input to the light emission control unit 71 from the signal control unit 77 that calculates the measurement timing based on the pulse signal that is the angle signal output from the scanning angle detection unit 15, A light emission drive signal S1 having a predetermined duty ratio is output from the light emission control unit 71 to the light projecting unit 3 at a predetermined timing based on the measurement timing signal.

発光駆動信号S1を受け取った投光部3では、変調回路31がレーザ光またはLED光をパルス状の測定光に変調し、図示しない駆動回路が前記発光駆動信号S1に同期して発光素子32を駆動させて、発光素子32が測定光S2を装置外部に出射させる。つまり、測定光S2の発光強度は当該発光駆動信号S1のデューティ比及び発光素子32の駆動電流により制御され、所定周期で出力される計測タイミング信号と同周期で発光素子が間歇駆動される。   In the light projecting unit 3 that has received the light emission drive signal S1, the modulation circuit 31 modulates laser light or LED light into pulsed measurement light, and a drive circuit (not shown) causes the light emitting element 32 to be synchronized with the light emission drive signal S1. Driven, the light emitting element 32 emits the measuring light S2 to the outside of the apparatus. That is, the light emission intensity of the measurement light S2 is controlled by the duty ratio of the light emission drive signal S1 and the drive current of the light emitting element 32, and the light emitting element is intermittently driven at the same cycle as the measurement timing signal output at a predetermined cycle.

走査部5が特定回転位置に位置しない場合は、出力された測定光S2aのうち測定対象物で反射した反射光S4が受光素子52で検出され、増幅回路51において反射光S4の光電変換が行なわれて変換後の電気信号が信号解析可能なレベルまで増幅されて出力される。   When the scanning unit 5 is not located at the specific rotation position, the reflected light S4 reflected by the measurement object in the output measurement light S2a is detected by the light receiving element 52, and the amplification circuit 51 performs photoelectric conversion of the reflected light S4. Then, the converted electrical signal is amplified to a level that allows signal analysis and output.

測定光検出部72は、当該電気信号を反射信号S5aとして検出して、補正値算出部74と故障判定部75へ出力する。なお、走査部5が特定回転位置に位置する場合は、測定光検出部72は信号を検出しないように構成されている。   The measurement light detection unit 72 detects the electrical signal as the reflection signal S5a and outputs the detected signal to the correction value calculation unit 74 and the failure determination unit 75. In addition, when the scanning part 5 is located in a specific rotation position, the measurement light detection part 72 is comprised so that a signal may not be detected.

一方、走査部5が特定回転位置に位置する場合は、出力された測定光S2bの一部が基準光S3として装置外部に出射されることなく上述の基準光路を介して受光部5で検出され、増幅回路51において基準光S3の光電変換が行なわれて変換後の電気信号が信号解析可能なレベルまで増幅させられて出力される。   On the other hand, when the scanning unit 5 is located at the specific rotation position, a part of the output measurement light S2b is detected by the light receiving unit 5 through the above-described reference optical path without being emitted outside the apparatus as the reference light S3. Then, the photoelectric conversion of the reference light S3 is performed in the amplifier circuit 51, and the converted electric signal is amplified to a level at which signal analysis is possible and output.

基準光検出部73は、当該電気信号を基準信号S5bとして検出して、演算部77へ出力する。なお、走査部5が特定回転位置でない場合は、基準光検出部73は信号を検出しないように構成されている。   The reference light detection unit 73 detects the electrical signal as the reference signal S5b and outputs it to the calculation unit 77. In addition, when the scanning part 5 is not a specific rotation position, the reference light detection part 73 is comprised so that a signal may not be detected.

補正値算出部74では、測定光S2bに対応する発光駆動信号S1と基準信号S5bの時間差t1が算出され、時間差t1より当該走査式測距装置と測定対象物との測定距離に対する補正値ΔLを〔数2〕より算出する。なお、補正値ΔLの算出では、〔数2〕において時間差t1をTに代入して、Lとしての前記補正値ΔLを算出する。   In the correction value calculation unit 74, a time difference t1 between the light emission drive signal S1 corresponding to the measurement light S2b and the reference signal S5b is calculated, and a correction value ΔL for the measurement distance between the scanning distance measuring device and the measurement object is calculated from the time difference t1. Calculated from [Equation 2]. In calculating the correction value ΔL, the time difference t1 is substituted into T in [Equation 2] to calculate the correction value ΔL as L.

演算部75では、測定光S2aに対応する発光駆動信号S1と反射信号S5aの時間差t2が算出され、時間差t2より測定距離L1を〔数2〕より算出する。なお、測定距離L1の算出では、〔数2〕において時間差t2をΔtに代入して、Lとしての前記測定距離L1を算出する。   In the calculation unit 75, the time difference t2 between the light emission drive signal S1 corresponding to the measurement light S2a and the reflected signal S5a is calculated, and the measurement distance L1 is calculated from [Equation 2] from the time difference t2. In calculating the measurement distance L1, the measurement distance L1 as L is calculated by substituting the time difference t2 into Δt in [Expression 2].

また、前記演算部75では、算出された前記測定距離L1から前記補正値ΔLを減算することで最終測定距離L2を算出する。   Further, the calculation unit 75 calculates the final measurement distance L2 by subtracting the correction value ΔL from the calculated measurement distance L1.

故障判定部76では、基準光信号S5bを算出することで走査式測距装置の内部回路に故障がないか否かを検出する。   The failure determination unit 76 detects whether or not there is a failure in the internal circuit of the scanning distance measuring device by calculating the reference light signal S5b.

以下に詳述する。基準光信号S5bは、装置外部に出射されることなく、もっぱら装置内部の基準光路によって発光制御部71から投光部3、受光部5を介して基準光検出部73に導かれるため、外部の影響を受けない安定した信号が得られる。   This will be described in detail below. Since the reference light signal S5b is guided to the reference light detection unit 73 from the light emission control unit 71 via the light projecting unit 3 and the light receiving unit 5 exclusively by the reference light path inside the device without being emitted to the outside of the device. A stable signal that is not affected is obtained.

よって、故障判定部76は、上述の安定した信号のうち、走査式測距装置に故障が発生していないときの基準光信号、例えば、装置が製造された直後等に調整された基準光信号の波形を記憶しておき、装置の運転時は常に、入力してきた基準光信号S5bの波形を、記憶された基準光信号の波形と比較して、両波形が同一である場合は故障なし、異なる場合は発光制御部71、投光部3、受光部5、基準光検出部73の何れかに故障ありとの判断を行うように構成されている。   Therefore, the failure determination unit 76 uses the reference optical signal when no failure has occurred in the scanning distance measuring device among the stable signals described above, for example, the reference optical signal adjusted immediately after the device is manufactured. The waveform of the input reference optical signal S5b is compared with the stored waveform of the reference optical signal whenever the apparatus is in operation, and when both waveforms are the same, there is no failure. If they are different, it is determined that any of the light emission control unit 71, the light projecting unit 3, the light receiving unit 5, and the reference light detecting unit 73 is defective.

故障判定部76で判断された結果は、故障した状態での動作防止や誤った結果の出力防止等のため、補正値算出部74と信号制御部77に出力されて以後の走査式測距装置の動作に反映される。   The result determined by the failure determination unit 76 is output to the correction value calculation unit 74 and the signal control unit 77 in order to prevent an operation in a failed state or to prevent an erroneous result from being output. It is reflected in the operation.

信号制御部77では、前記角度信号と前記最終測定距離から測定対象物の位置を演算して出力する。つまり、前記角度信号からは走査式測距装置に対する測定対象物の方向が算出され、前記最終測定距離からは走査式測距装置から測定対象物の距離が算出される。   The signal control unit 77 calculates and outputs the position of the measurement object from the angle signal and the final measurement distance. That is, the direction of the measurement object with respect to the scanning distance measuring device is calculated from the angle signal, and the distance of the measurement object from the scanning distance measuring device is calculated from the final measurement distance.

よって、所定周期で出力される計測タイミング信号と同周期で発光素子が間歇駆動されることで、特定回転位置以外の全周囲における測定対象物の位置を演算して出力する。なお、当該走査式測距装置自体が方向を変更することで、それまで特定回転位置であった方向が特定回転位置でなくなることから、特定回転位置における測定対象物の位置も演算することができる。   Therefore, the light emitting element is intermittently driven in the same cycle as the measurement timing signal output in a predetermined cycle, thereby calculating and outputting the position of the measurement object in the entire circumference other than the specific rotation position. In addition, since the scanning distance measuring device itself changes the direction, the direction that has been the specific rotation position until then is no longer the specific rotation position, so the position of the measurement object at the specific rotation position can also be calculated. .

以下、別実施形態について説明する。   Hereinafter, another embodiment will be described.

上述の第三の実施形態では、図7に示すように、導光部材17が反射部材9に貼付された反射テープである構成について説明したが、導光部材17は、図8に示すように、投光部3から出射された測定光の一部を基準光として、直接受光部5へ反射させることができる角度に取り付けられた補助反射部材93を前記反射部材9に取り付ける構成であってもよい。   In the third embodiment described above, the configuration in which the light guide member 17 is a reflective tape affixed to the reflective member 9 as shown in FIG. 7 has been described. However, the light guide member 17 is configured as shown in FIG. Even if the auxiliary reflecting member 93 is attached to the reflecting member 9 at an angle that allows a part of the measurement light emitted from the light projecting unit 3 to be reflected directly to the light receiving unit 5 as a reference light. Good.

上述の実施形態では、測定光検出部72と基準光検出部73を備えており、走査部4が特定回転位置であるか否かで何れに反射光が入力するかを決定する構成について説明したが、測定光の検出と基準光の検出で共通に使用される光検出部を備えており、さらに、補正値算出部74の機能を演算部75に組み込んで一体の演算部とした構成であってもよい。   In the above-described embodiment, the configuration in which the measurement light detection unit 72 and the reference light detection unit 73 are provided and which determines whether the reflected light is input depending on whether the scanning unit 4 is at the specific rotation position has been described. Is provided with a light detection unit that is commonly used for detection of measurement light and reference light, and further, the function of the correction value calculation unit 74 is incorporated into the calculation unit 75 to form an integrated calculation unit. May be.

本発明の走査式測距装置では、特定回転位置であるか否かが明確に区別されており、測定対象物を経由する測定光と経由しない基準光が受光部5に同時入力することはなく、補正値の演算と測定距離の演算を同時に実行することがないので、上述の構成であっても距離の演算を行なう上で支障はない。   In the scanning distance measuring device of the present invention, it is clearly distinguished whether or not the rotation position is a specific rotational position, and the measurement light passing through the measurement object and the reference light not passing through are not simultaneously input to the light receiving unit 5. Since the calculation of the correction value and the calculation of the measurement distance are not performed at the same time, there is no problem in calculating the distance even with the above-described configuration.

発光駆動信号と出力信号(測定信号および基準信号)との時間差を算出する際に、各信号の立ち上がりタイミングを検出する必要があるが、立ち上がりタイミング検出は、信号が所定の閾値を超えた時点を検出するコンパレータを設けることにより、容易に検出できる。コンパレータによる検出では、信号の立ち上がりの微小な変動による影響を受けるため、以下の手法で補正することができる。   When calculating the time difference between the light emission drive signal and the output signal (measurement signal and reference signal), it is necessary to detect the rise timing of each signal. The rise timing detection is performed when the signal exceeds a predetermined threshold. By providing a comparator to detect, it can be easily detected. Since the detection by the comparator is affected by a minute fluctuation of the rising edge of the signal, it can be corrected by the following method.

例えば、反射信号および基準信号を時間軸に関して積分することで積分値を算出し、複数の積分値に夫々対応する補正値を予め記憶しておいたマップデータから、当該積分値に対応する補正値を導出することで、反射信号および基準信号の立ち上がり位置を求める構成であってもよい。立ち上がり時間の変動が信号の積分値と相関を有するという特性を利用するものである。   For example, the integral value is calculated by integrating the reflected signal and the reference signal with respect to the time axis, and the correction value corresponding to the integral value is calculated from the map data in which correction values corresponding to the plurality of integral values are stored in advance. It is possible to obtain the rising position of the reflected signal and the reference signal by deriving. The characteristic is that the rise time fluctuation has a correlation with the integral value of the signal.

さらに、反射信号および基準信号のピーク値を算出し、複数のピーク値に夫々対応する補正値を予め記憶しておいたマップデータから、当該ピーク値に対応する補正値を導出することで、反射信号および基準信号の立ち上がり位置を補正する構成であってもよい。立ち上がり時間の変動が信号のピーク値と相関を有するという特性を利用するものである。   Further, the peak value of the reflected signal and the reference signal is calculated, and the correction value corresponding to the peak value is derived from the map data in which correction values corresponding to the plurality of peak values are stored in advance. The configuration may be such that the rising positions of the signal and the reference signal are corrected. The characteristic is that the rise time fluctuation has a correlation with the peak value of the signal.

さらに別の方法として、反射信号および基準信号を時間軸に関して微分することで微分信号を生成し、前記微分信号の正領域の時間軸上での重心位置を、基準信号及び反射信号の立ち上がり位置として求める構成であってもよい。   As another method, the differential signal is generated by differentiating the reflected signal and the reference signal with respect to the time axis, and the center of gravity position on the time axis of the positive region of the differential signal is used as the rising position of the reference signal and the reflected signal. The required configuration may be used.

また、反射信号および基準信号の立ち上がり部分の時間軸上での重心位置を算出する方法や、反射信号および基準信号の立ち上がり部分を直線近似または多項式近似して、その近似線と出力信号のオフセットレベルとの交点の位置を算出する方法等を採用するものであってもよい。   Also, a method of calculating the center of gravity position on the time axis of the rising part of the reflected signal and the reference signal, or a linear approximation or polynomial approximation of the rising part of the reflected signal and the reference signal, and the offset level of the approximate line and the output signal For example, a method of calculating the position of the intersection with the line may be adopted.

上述の実施形態では、本発明を、レーザ光をパルス光に変調した測定光を出力し、測定対象物で反射して帰ってきた反射信号と発光駆動信号との時間差に基づいて、測定対象物までの距離を計算するTOF方式を採用した走査式測距装置に適用した場合について説明したが、レーザ光またはLED光を正弦波で変調した測定光を出力し、測定対象物で反射して帰ってきた反射信号と発光駆動信号との位相差に基づいて、測定対象物までの距離を計算するAM方式を採用した走査式測距装置に適用することも可能である。   In the above-described embodiment, the measurement object is output based on the time difference between the reflected signal returned from the measurement object that is output from the measurement light obtained by modulating the laser light into the pulsed light, and the light emission drive signal. The case of applying to a scanning distance measuring device that employs the TOF method for calculating the distance up to has been explained. However, laser light or LED light modulated by a sine wave is output and reflected by the measurement object. The present invention can also be applied to a scanning distance measuring device that employs an AM method that calculates the distance to the measurement object based on the phase difference between the reflected signal and the light emission drive signal.

この場合、発光制御部71から発光駆動信号を受け取った投光部3からは、変調回路31においてレーザ光またはLED光が正弦波で変調された測定光が出射される。   In this case, the light projecting unit 3 that has received the light emission drive signal from the light emission control unit 71 emits measurement light obtained by modulating the laser light or LED light with a sine wave in the modulation circuit 31.

そして、補正値算出部74と演算部75では、共に正弦波形である変調回路31から出力された測定光と増幅回路51から出力された測定光信号(または基準光信号)との間で位相差が算出され、前記位相差より補正値や測定距離が算出される。   In the correction value calculation unit 74 and the calculation unit 75, the phase difference between the measurement light output from the modulation circuit 31 having a sine waveform and the measurement light signal (or reference light signal) output from the amplification circuit 51 is obtained. And a correction value and a measurement distance are calculated from the phase difference.

上述した何れの実施形態も、本発明の一実施例であり、走査式測距装置の具体的形状、構成、使用材料、信号処理のための回路構成等各部の具体的な構成は、本発明による作用効果を奏する範囲において適宜変更設計できることはいうまでもない。   Any of the above-described embodiments is an example of the present invention, and the specific configuration of each part such as the specific shape, configuration, material used, circuit configuration for signal processing of the scanning distance measuring device is the present invention. Needless to say, the design can be changed as appropriate within the range where the effects of the above are achieved.

本発明の第1の実施形態を示す走査式測距装置の全体構成を示す概略縦断面図1 is a schematic longitudinal sectional view showing an overall configuration of a scanning distance measuring apparatus showing a first embodiment of the present invention. 本発明の第1の実施形態で特定回転位置にある場合を示す走査式測距装置の全体構成を示す概略縦断面図1 is a schematic longitudinal sectional view showing an overall configuration of a scanning distance measuring device showing a case where a specific rotational position is in a first embodiment of the present invention. 図1の走査式測距装置における光信号波形と電気信号波形のタイミングを示す説明図Explanatory drawing which shows the timing of the optical signal waveform and electrical signal waveform in the scanning distance measuring device of FIG. 本発明の第2の実施形態を示す走査式測距装置の全体構成を示す概略縦断面図Schematic longitudinal cross-sectional view which shows the whole structure of the scanning rangefinder which shows the 2nd Embodiment of this invention 本発明の第2の実施形態で特定回転位置にある場合を示す走査式測距装置の全体構成を示す概略縦断面図Schematic longitudinal cross-sectional view which shows the whole structure of the scanning rangefinder which shows the case where it exists in a specific rotation position in the 2nd Embodiment of this invention 本発明の第3の実施形態を示す走査式測距装置の全体構成を示す概略縦断面図Schematic longitudinal cross-sectional view which shows the whole structure of the scanning rangefinder which shows the 3rd Embodiment of this invention. 本発明の第3の実施形態で特定回転位置にある場合を示す走査式測距装置の全体構成を示す概略縦断面図Schematic longitudinal cross-sectional view which shows the whole structure of the scanning rangefinder which shows the case where it exists in a specific rotation position in the 3rd Embodiment of this invention 本発明の第3の実施形態で別の導光部材を使用した場合を示す走査式測距装置の全体構成を示す概略縦断面図Schematic longitudinal cross-sectional view which shows the whole structure of the scanning rangefinder which shows the case where another light guide member is used in the 3rd Embodiment of this invention. 本発明による走査式測距装置の信号処理回路のブロック構成図Block diagram of a signal processing circuit of a scanning distance measuring device according to the present invention. 基準光信号と測定光信号の時間差を求めるためのタイミングを示す説明図Explanatory drawing showing the timing for obtaining the time difference between the reference optical signal and the measurement optical signal 本発明の別実施形態を示す走査式測距装置の全体構成を示す概略縦断面図The schematic longitudinal cross-sectional view which shows the whole structure of the scanning rangefinder which shows another embodiment of this invention

符号の説明Explanation of symbols

1 走査式測距装置
2 ハウジング
3 投光部
4 走査部
5 受光部
8 回転体
9 反射部材
10 基準光孔
11 モータ
15 走査角度検出部
16 導光部材
17 導光部材
31 変調回路
32 発光素子
51 増幅回路
52 受光素子
70 信号処理回路
71 発光制御部
72 測定光検出部
73 基準光検出部
74 補正値算出部
75 演算部
76 故障判定部
77 信号制御部
91 第一反射部材
92 第二反射部材
161 光ファイバーケーブル
162 光拡散板
DESCRIPTION OF SYMBOLS 1 Scanning distance measuring device 2 Housing 3 Light projection part 4 Scanning part 5 Light receiving part 8 Rotating body 9 Reflecting member 10 Reference light hole 11 Motor 15 Scan angle detection part 16 Light guide member 17 Light guide member 31 Modulation circuit 32 Light emitting element 51 Amplifier circuit 52 Light receiving element 70 Signal processing circuit 71 Light emission control unit 72 Measurement light detection unit 73 Reference light detection unit 74 Correction value calculation unit 75 Calculation unit 76 Failure determination unit 77 Signal control unit 91 First reflection member 92 Second reflection member 161 Optical fiber cable 162 Light diffusion plate

Claims (3)

測定光を出力する投光部と、前記投光部から出力された測定光を測定対象空間に向けて走査する走査部と、前記測定対象空間に存在する測定対象物からの反射光を検出する受光部を備え、前記受光部で検出された前記反射光に基づいて前記測定対象物までの距離を測定する走査式測距装置であって、
前記走査部は、前記投光部から出力された測定光を前記測定対象空間に伝播させる第一反射部材と、前記測定対象物からの反射光を前記受光部に導く第二反射部材の一対の反射部材と、前記一対の反射部材を所定の回転軸心周りで回転させる回転機構を備え、
前記投光部と前記受光部が前記反射部材を挟んで対向配置されるとともに、前記回転軸心と前記投光部から出力される測定光の光軸とが平行となるように前記投光部と前記走査部が配置され、
前記走査部の特定回転位置で前記投光部から出力された測定光の一部が基準光として、前記反射部材を介することなく前記受光部に導かれるように構成されている走査式測距装置。
A light projecting unit that outputs measurement light, a scanning unit that scans the measurement light output from the light projecting unit toward the measurement target space, and reflected light from the measurement target existing in the measurement target space are detected. A scanning distance measuring device comprising a light receiving unit and measuring a distance to the measurement object based on the reflected light detected by the light receiving unit;
The scanning unit includes a pair of a first reflecting member that propagates measurement light output from the light projecting unit to the measurement target space and a second reflecting member that guides reflected light from the measurement target to the light receiving unit. A reflection member and a rotation mechanism that rotates the pair of reflection members around a predetermined rotation axis;
The light projecting unit and the light receiving unit are disposed opposite to each other with the reflection member interposed therebetween, and the light projecting unit is configured such that the rotation axis and the optical axis of the measurement light output from the light projecting unit are parallel to each other. And the scanning unit is arranged,
A scanning distance measuring device configured such that a part of the measurement light output from the light projecting unit at a specific rotation position of the scanning unit is guided to the light receiving unit without passing through the reflecting member as reference light .
前記走査部の特定回転位置で前記投光部から出力された測定光の一部が基準光として、前記一対の反射部材を介することなく前記受光部に導かれるように案内する導光部材が前記走査部に設けられている請求項1記載の走査式測距装置。 As measurement light some reference light output from the light projecting unit at a particular rotational position of the scanning unit, the guide guiding member is guided in the receiving part without passing through the previous SL pair of reflection members The scanning rangefinder according to claim 1, wherein the scanning unit is provided in the scanning unit. 前記測定光の出力タイミングに同期して前記受光部により検出される前記基準光に基づいて前記測定対象物までの距離を補正する補正値を算出する補正値算出部と、前記測定光の出力タイミングに同期して前記受光部により検出される前記反射光と前記補正値に基づいて前記測定対象物までの距離を算出する演算部とを備えている請求項1または2記載の走査式測距装置。 A correction value calculation unit that calculates a correction value for correcting the distance to the measurement object based on the reference light detected by the light receiving unit in synchronization with the output timing of the measurement light, and the output timing of the measurement light The scanning distance measuring device according to claim 1, further comprising: an arithmetic unit that calculates the distance to the measurement object based on the reflected light detected by the light receiving unit in synchronization with the correction value and the correction value. .
JP2006248315A 2006-09-13 2006-09-13 Scanning distance measuring device Expired - Fee Related JP4160611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006248315A JP4160611B2 (en) 2006-09-13 2006-09-13 Scanning distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006248315A JP4160611B2 (en) 2006-09-13 2006-09-13 Scanning distance measuring device

Publications (2)

Publication Number Publication Date
JP2008070199A JP2008070199A (en) 2008-03-27
JP4160611B2 true JP4160611B2 (en) 2008-10-01

Family

ID=39291911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248315A Expired - Fee Related JP4160611B2 (en) 2006-09-13 2006-09-13 Scanning distance measuring device

Country Status (1)

Country Link
JP (1) JP4160611B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186998B2 (en) * 2008-05-19 2013-04-24 村田機械株式会社 Optical distance measuring device
JP4579321B2 (en) 2008-08-29 2010-11-10 株式会社日本自動車部品総合研究所 Position detection device
JP5488099B2 (en) * 2009-12-08 2014-05-14 株式会社デンソーウェーブ Laser radar equipment
JP5626770B2 (en) * 2010-06-08 2014-11-19 株式会社Ihiエアロスペース Laser distance measuring device
JP5689089B2 (en) * 2012-03-27 2015-03-25 三菱電機株式会社 Fall detection device and passenger conveyor
JP6362027B2 (en) * 2014-05-13 2018-07-25 株式会社リコー Object detection device and sensing device
JP6372820B2 (en) * 2014-07-31 2018-08-15 船井電機株式会社 Laser range finder and method of manufacturing oscillating mirror
JP6772667B2 (en) * 2016-08-24 2020-10-21 株式会社デンソーウェーブ Laser radar device
CN106444267B (en) * 2016-10-08 2019-05-14 深圳市金立通信设备有限公司 A kind of laser focusing test device
CN107315426A (en) * 2017-08-31 2017-11-03 珠海市微半导体有限公司 One kind rotation ranging sensing device and robot
CN112368594B (en) * 2018-08-29 2024-06-21 松下知识产权经营株式会社 Distance measuring device
JP2021076408A (en) * 2019-11-06 2021-05-20 パイオニア株式会社 Sensor device
WO2022168378A1 (en) * 2021-02-04 2022-08-11 パナソニックIpマネジメント株式会社 Laser radar
CN115616593B (en) * 2022-11-22 2023-04-25 深圳煜炜光学科技有限公司 Laser radar, calibration method and method for improving laser radar measurement precision

Also Published As

Publication number Publication date
JP2008070199A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4160611B2 (en) Scanning distance measuring device
JP5598831B2 (en) Scanning distance measuring device
JP4098341B1 (en) Optical window dirt detector for scanning rangefinder
US8305561B2 (en) Scanning-type distance measuring apparatus
JP4116052B2 (en) Ranging device
JP2008070159A (en) Scanning range finder
JP5310098B2 (en) Laser distance measuring device
JP2013210378A (en) Laser radar device
JP2009229255A (en) Scanning range finder
JP4663743B2 (en) Scanning distance measuring device
JPH08122061A (en) Obstacle detection device
JP2008076131A (en) Range finder
JP2012242189A (en) Signal processor for scanning type distance measuring apparatus, signal processing method and scanning type distance measuring apparatus
JP5177003B2 (en) Laser distance measuring device
JP2008111855A5 (en)
JP2017181105A (en) Laser radar device
JP5765698B2 (en) Multi-signal processing device, distance measuring device, and multi-range measuring system
JP2014071028A (en) Laser radar device
JP6540388B2 (en) Laser radar device
US9354169B2 (en) Attachment for placement onto an optical sensor and method of operating an optical sensor
JP2015184026A (en) laser radar device
JP4579321B2 (en) Position detection device
JP2011122999A (en) Optical waveguide device and calibration system
KR102645857B1 (en) Laser scanner
JP2002286844A (en) Distance measuring equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees