JP4159291B2 - Electronic endoscope device - Google Patents

Electronic endoscope device Download PDF

Info

Publication number
JP4159291B2
JP4159291B2 JP2002021076A JP2002021076A JP4159291B2 JP 4159291 B2 JP4159291 B2 JP 4159291B2 JP 2002021076 A JP2002021076 A JP 2002021076A JP 2002021076 A JP2002021076 A JP 2002021076A JP 4159291 B2 JP4159291 B2 JP 4159291B2
Authority
JP
Japan
Prior art keywords
signal
blood vessel
edge
coefficient
edge portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002021076A
Other languages
Japanese (ja)
Other versions
JP2003220025A (en
JP2003220025A5 (en
Inventor
充 樋口
圭一 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2002021076A priority Critical patent/JP4159291B2/en
Priority to US10/255,080 priority patent/US7042488B2/en
Priority to US10/255,079 priority patent/US6956602B2/en
Publication of JP2003220025A publication Critical patent/JP2003220025A/en
Publication of JP2003220025A5 publication Critical patent/JP2003220025A5/ja
Application granted granted Critical
Publication of JP4159291B2 publication Critical patent/JP4159291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電子内視鏡装置、特に被観察体内の血管を観察し易い状態で表示することができる電子内視鏡の画像処理に関する。
【0002】
【従来の技術】
電子内視鏡装置は、照明光を照射して対物光学系を介して捉えられた被観察体を、CCD(Charge Coupled Device)等の撮像素子で撮像し、この被観察体像をモニタ等に表示するものであるが、近年、この種の電子内視鏡装置では、上記対物光学系に変倍機構を組み込み、被観察体像を光学的に拡大して表示することが行われる。また同時に、電子ズーム機能によって画像を電子的に拡大することも行われており、モニタ等に表示された拡大画像により、注目部位の細部が良好に観察できるようになっている。
【0003】
【発明が解決しようとする課題】
ところで、電子内視鏡装置では、撮像対象が消化器官等、生体内であることが多く、図4に示されるように、拡大された被観察体画像1(モニタ等の表示)においては粘膜2の中に血管(特に毛細血管)3が存在しており、この血管3の走行状態や血管(血液)3の集中状況は、病巣の診断、癌組織の特定等において重要な観察対象となる。一方、生体内は桃色或いは赤みを帯びた色で構成されることから、血管3と粘膜2等の他の組織との区別が不明瞭になる傾向がある。従って、血管3を明確に表示できれば、生体内の観察、診断に役立つ情報を提供することが可能となる。
【0004】
本発明は上記問題点に鑑みてなされたものであり、その目的は、血管両端部を強調することにより、粘膜等の組織の中に存在する血管を明瞭に画像表示することができる電子内視鏡装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、撮像素子で得られた信号に基づきカラー表示のための所定の信号を形成するカラー信号処理回路を備えた電子内視鏡装置において、上記カラー信号処理回路から出力された所定の信号を入力し、血管の幅方向の両端のダウンエッジ部とアップエッジ部を検出する血管エッジ検出回路を含み、この血管エッジ検出回路で得られた血管のダウンエッジ部に対し1よりも小さなダウンエッジ係数を選択し、上記アップエッジ部に対し1よりも大きなアップエッジ係数を選択し、これらのダウンエッジ係数及びアップエッジ係数を血管信号に乗算することにより、血管を強調する血管強調回路を設けたことを特徴とする
【0006】
請求項に係る発明は、上記カラー信号処理回路では、赤、緑、青の色信号を形成し、上記血管強調回路は、上記緑信号を用いて血管の上記ダウンエッジ部とアップエッジ部を検出し、これらダウンエッジ部とアップエッジ部に対し選択された係数を少なくとも赤信号に乗算することを特徴とする。
請求項3に係る発明は、上記カラー信号処理回路では、輝度信号(及び色差信号)を形成し、上記血管強調回路は、この輝度信号を用いて血管の上記ダウンエッジ部とアップエッジ部を検出し、これらダウンエッジ部とアップエッジ部に対し選択された係数を色差信号又は上記色信号に乗算する。
【0007】
上記の構成によれば、カラー信号処理回路によりR(赤),G(緑),B(青)等の色信号が形成され、この中の例えばG信号の画像を用いて血管の幅方向両端のダウンエッジ部とアップエッジ部が検出される。そして、このダウンエッジ部に対して1よりも小さい係数、アップエッジ部に対して1よりも大きい係数、その他は1の係数が与えられており、これらの係数が、例えばR、Bの画像信号に乗算される。この結果、ダウンエッジ部は通常よりも低下した信号、アップエッジ部は通常よりも上昇した信号となり、血管の両端においてメリハリが付くことになり、粘膜の中にあっても血管が明瞭に表示される。なお、上記血管エッジ検出回路における血管両端部の検出は赤の信号でも可能ではあるが、緑の信号の方が粘膜部との差がより明確となるという利点がある。
【0008】
また、カラー信号処理回路では、輝度信号及び色差信号が形成される場合もあり、この場合には、輝度信号に基づいて血管の両端を検出し、この両端部の色差信号或いはR又はB信号に対して所定の係数を乗算するようにしてもよい。
【0009】
【発明の実施の形態】
図1には、実施例に係る電子内視鏡装置の血管強調に関する構成が示され、図2には、この電子内視鏡装置のスコープ及びプロセッサ装置(カラー信号処理回路)に関する構成が示されており、この電子内視鏡装置は、図示していないが、光源装置、モニタ及び記録装置等も有し、例えば撮像方式として同時式が採用される。まず、図2において、撮像素子であるCCD10がスコープ先端部に設けられ、このCCD10では画素単位の色フィルタ[例えばMg(マゼンタ),G(グリーン),Cy(シアン),Ye(イエロー)]を介して被観察体像が捉えられる。即ち、上記光源装置からの光がライトガイドを介してスコープ先端から被観察体に照射されることにより、この被観察体がCCD10で撮像される。また、このCCD10の前方に、変倍レンズが移動可能に組み込まれた対物光学系を設ければ、この変倍レンズを駆動することによって被観察体の拡大像を得ることができる。
【0010】
上記CCD10には、撮像信号として蓄積された電荷を読み出すためのCCDドライブ回路11が接続されると共に、このCCD10の後段には、CDS(Correlated Double Sampling−相関二重サンプリング)/AGC(Automatic Gain Control−自動利得制御回路)12が配置されており、このCDS/AGC12はCCD10の出力信号に対し相関二重サンプリングを施すと共に、所定の増幅処理をする。このCDS/AGC12には、クランプ回路14及びA/D(アナログ/デジタル)変換器15を介して、DSP(Digital Signal Processor−デジタル信号プロセッサ)16や電子ズーム回路17が設けられ、またこれらの回路を統括的に制御するマイコン18が配置される。
【0011】
上記DSP16では、ホワイトバランス、ガンマ補正等の各種の処理を施すと共に、Y(輝度)信号とR(赤)−Y及びB(青)−Yの色差(C)信号が形成される。上記電子ズーム回路17では、例えばスイッチ部19に配置されたズームスイッチに基づいて上記DSP16で得られた画像を拡大処理する。
【0012】
この電子ズーム回17の後段に、上記Y信号とC信号をR(赤),G(緑),B(青)の信号に色変換するRGB色変換回路21が設けられる。即ち、当該例のDSP16では、Mg,G,Cy,Yeの各色フィルタを介して得られた信号から色変換演算によってY信号とR−Y及びB−YのC信号が形成されるが、このY,C信号を更に色変換演算することによりR,G,Bの各色信号が得られる。
【0013】
そして、当該実施例では、このRGB色変換回路21の信号を入力する形で、血管を明確に表示するための血管強調回路22が設けられており、この詳細は図1により後述する。この血管強調回路22の後段には、R,G,Bの信号をY信号とC信号へ逆変換するYC色変換回路23が設けられ、また患者情報等のキャラクタを画像信号にミックスするキャラクタ混合回路24、Y信号とC信号に基づきモニタへの出力処理をするエンコーダ25、Y信号とC信号をR,G,Bの信号に変換するRGB色変換回路26、D/A変換器27等が接続される。
【0014】
図1に示されるように、上記血管強調回路22として、入力されたG信号の画像から血管のダウンエッジ部とアップエッジ部を検出するエッジ検出回路30、R信号に対するダウンエッジ係数及びアップエッジ係数Krを与える係数発生回路(メモリ等でもよい)31a,31b、これら係数(及び1)Krを選択するR係数セレクタ32、B信号に対するダウンエッジ係数及びアップエッジ係数Kbを与える係数発生回路33a,33b、これら係数(及び1)Kbを選択するB係数セレクタ34、係数Kr,Kbを乗算する乗算器35A,35Bが設けられる。
【0015】
図3には、この血管強調回路22での信号処理の状態が示されており、上記エッジ検出回路30では、図3(A)に示されるように、G信号画像のライン100において血管信号Sが得られるものとすると、この信号の立下り時をダウンエッジ部を示すダウンエッジ信号Sとして検出し、一方立上がり時をアップエッジ部を示すアップエッジ信号Sとして検出する。そして、R係数セレクタ32では、上記ダウンエッジ信号Sが検出された場合は、係数Krとして例えば0.6(≦1)が選択され、上記アップエッジ信号Sが検出された場合は、係数Krとして例えば1.6(≧1)が選択され、これを乗算器35Aに与える。また、B係数セレクタ34でも同様であり、検出されたダウンエッジ信号S及びアップエッジ信号Sに対応して所定の係数Kb(上記と同じ係数或いは異なる係数)を選択し、乗算器35Bに供給する。
【0016】
例えば、図3(B)に示されるように、R信号画像のライン100で血管3の信号SR1が得られるとすると、この血管信号SR1において、上記ダウンエッジ信号S及びアップエッジ信号Sで特定される位置の信号に係数Krを乗算することにより、図示の血管信号SR2を形成する。即ち、この信号SR2はダウンエッジ部が更に小さく、アップエッジ部が更に大きく強調された信号であり、この血管信号SR2によれば、最終画像では、図3(C)に示されるように、血管の左端部Bl(太線)が黒っぽく、右端部Br(二点鎖線)が赤みを帯びた血管3となる。
【0017】
第1実施例は以上の構成からなり、まずスコープ先端部からの照射光により照明された被観察体がCCD10で撮像されると、このCCD10からの出力信号は、CDS/AGC12でサンプリングされると共に増幅され、クランプ回路14、A/D変換器15を介してデジタル信号としてDSP16へ供給される。上述したように、このDSP16では、各種の画像処理が施されたY信号とR−Y及びB−YのC(色差)信号が形成される。
【0018】
そして、ズームスイッチが操作されると、電子ズーム回路17により電子的な画像拡大処理が施され、血管3も拡大される。また、光学的変倍機構を有する場合は、対物光学系の拡大レンズの駆動制御によって光学的拡大像が得られ、電子ズーム回路17はこの光学拡大像を更に拡大することができる。この電子ズーム回路17の出力、即ちY信号及びC信号はRGB色変換回路21によりR,G,Bの各色信号に変換され、これらの信号は血管強調回路22へ供給される。
【0019】
この血管強調回路22では、図1のエッジ検出回路30へG信号が供給されており、このG信号画像に基づいて血管3のダウンエッジ部とアップエッジ部が検出される。即ち、図3(A)で説明したように、G信号血管のダウンエッジ信号Sとアップエッジ信号Sが抽出され、これらの信号S,SがR係数セレクタ32とB係数セレクタ34に供給される。そうすると、このR係数セレクタ32では、係数Krとして、ダウンエッジ部に対し例えば0.6のダウンエッジ係数、アップエッジ部に対しては例えば1.6のアップエッジ係数が選択され、またその他の部分は1.0の係数が選択される。その後、この係数Krは乗算器35AでR信号へ乗算され、この結果、図3(C)のようにダウンエッジ部は更に小さく、アップエッジ部は大きくなるR血管信号SR2が得られる。
【0020】
一方、B係数セレクタ34でも、係数Kbとして、ダウンエッジ部に対し例えば0.8のダウンエッジ係数、アップエッジ部に対し例えば1.4のアップエッジ係数が選択され、またその他の部分は1.0の係数が選択される。そして、この係数Kbは乗算器35BでB信号へ乗算され、この結果、図3(C)の信号SR2と同様のB血管信号が得られる。
【0021】
このような血管強調回路22から出力された画像信号は、YC色変換回路23、キャラクタ混合回路24等を介してモニタへ供給されており、このモニタでは、図3(C)の最終画像に示されるように、血管幅方向の左端部Blが黒っぽく、右端部Brが赤っぽくなる形で両端部が強調され、血管3が良好なコントラストで明瞭に表示される。従って、粘膜2の中にあっても血管3の走行状態や集中状況が見やすくなり、この血管3の走行状態等を参考に病巣の診断、癌組織の特定等も良好に行われることになる。
【0022】
上記実施例では、G信号画像に基づいて血管両端部の検出を実施したが、R信号等の画像に基づいて行うこともでき、また図1に示されるように、電子ズーム回路17(またズームを機能させない場合はDSP16でもよい)から出力された輝度(Y)信号をエッジ検出回路30に供給し、このY信号に基づいてダウンエッジ部及びアップエッジ部を検出してもよい。更に、当該例では、R信号及びB信号について所定係数の乗算を行ったが、R信号のみにこの係数演算を施すようにしてもよい。また、Y信号によりエッジ検出する場合、色差(C)信号に係数演算を施すこともできる。
【0023】
【発明の効果】
以上説明したように、請求項1の発明によれば、カラー信号処理回路から出力された例えばG信号に基づいて、血管の幅方向の両端のダウンエッジ部とアップエッジ部を検出し、このダウンエッジ部に1よりも小さな係数を与え、他方のアップエッジ部には1よりも大きな係数を与え、これらの係数を少なくともR信号に乗算するようにしたので、左端部が黒っぽく、右端部が赤っぽくなる形で血管の両端部が強調される。この結果、粘膜等の組織の中に存在する血管を明瞭にモニタ表示することができ、被観察体の観察や診断に有益な情報を提供することが可能となる。
【0024】
また、請求項3の発明によれば、カラー信号処理回路で形成された輝度信号を用いて血管のダウンエッジ部とアップエッジ部を検出し、これらダウンエッジ部とアップエッジ部の色差信号等に対して所定の係数を乗算することによっても、上記の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係る電子内視鏡装置の血管強調に関する構成を示すブロック図である。
【図2】実施例の電子内視鏡装置におけるスコープ及びプロセッサ装置内の構成を示すブロック図である。
【図3】実施例における血管強調処理の状態を示す説明図である。
【図4】従来装置で表示される被観察体の拡大画像を示す図である。
【符号の説明】
10…CCD、 16…DSP、
17…電子ズーム回路、 18…マイコン、
21,26…RGB色変換回路、
22…血管強調回路、
23…YC色変換回路、 30…エッジ検出回路、
31a,31b,33a,33b…係数発生回路、
32…R係数セレクタ、 34…B係数セレクタ、
35A,35B…乗算器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to image processing of an electronic endoscope apparatus, and more particularly, to an electronic endoscope image process capable of displaying a blood vessel in a subject to be observed in an easily observable state.
[0002]
[Prior art]
The electronic endoscope apparatus captures an object to be observed captured through an objective optical system by irradiating illumination light with an imaging element such as a CCD (Charge Coupled Device), and uses the object image as a monitor. In recent years, in this type of electronic endoscope apparatus, a zooming mechanism is incorporated in the objective optical system, and an object image is optically enlarged and displayed. At the same time, the image is electronically enlarged by the electronic zoom function, and the details of the attention site can be satisfactorily observed by the enlarged image displayed on the monitor or the like.
[0003]
[Problems to be solved by the invention]
By the way, in an electronic endoscope apparatus, an imaging target is often in a living body such as a digestive organ, and as shown in FIG. 4, in an enlarged object image 1 (display on a monitor or the like), mucous membrane 2 A blood vessel (particularly a capillary blood vessel) 3 exists therein, and the running state of the blood vessel 3 and the concentration state of the blood vessel (blood) 3 are important observation targets in diagnosis of a lesion, identification of cancer tissue, and the like. On the other hand, since the living body is configured in pink or reddish color, the distinction between the blood vessel 3 and other tissues such as the mucous membrane 2 tends to be unclear. Therefore, if the blood vessel 3 can be clearly displayed, it is possible to provide information useful for in-vivo observation and diagnosis.
[0004]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electronic endoscope capable of clearly displaying a blood vessel existing in a tissue such as a mucous membrane by emphasizing both ends of the blood vessel. It is to provide a mirror device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is an electronic endoscope apparatus comprising a color signal processing circuit for forming a predetermined signal for color display based on a signal obtained by an image sensor. It includes a blood vessel edge detection circuit that inputs a predetermined signal output from the color signal processing circuit and detects a down edge portion and an up edge portion at both ends in the width direction of the blood vessel . By selecting a down edge coefficient smaller than 1 for the down edge part, selecting an up edge coefficient larger than 1 for the up edge part, and multiplying the blood vessel signal by these down edge coefficient and up edge coefficient A blood vessel enhancement circuit for enhancing blood vessels is provided .
[0006]
According to a second aspect of the present invention, the color signal processing circuit forms red, green, and blue color signals, and the blood vessel enhancement circuit uses the green signal to detect the down edge portion and the up edge portion of the blood vessel. Detecting and multiplying at least a red signal by a coefficient selected for the down edge portion and the up edge portion .
According to a third aspect of the present invention, the color signal processing circuit forms a luminance signal (and a color difference signal), and the blood vessel enhancement circuit detects the down edge portion and the up edge portion of the blood vessel using the luminance signal. and it is multiplied by coefficient selected for these down edge portion and the up-edge portion in the chrominance signal or the color signal.
[0007]
According to the above configuration, color signals such as R (red), G (green), and B (blue) are formed by the color signal processing circuit, and for example, both ends in the width direction of the blood vessel using the G signal image therein. The down edge part and the up edge part are detected. Then, a coefficient smaller than 1 is given to the down edge part, a coefficient larger than 1 is given to the up edge part, and other coefficients are given to 1 and these coefficients are, for example, R and B image signals. Is multiplied by As a result, the signal at the down edge is lower than normal and the signal at the up edge is higher than normal, and the edges of the blood vessels are sharpened, so that the blood vessels are clearly displayed even in the mucous membrane. The The blood vessel edge detection circuit can detect both ends of the blood vessel even with a red signal, but the green signal has an advantage that the difference from the mucous membrane portion becomes clearer.
[0008]
In addition, the color signal processing circuit may generate a luminance signal and a color difference signal. In this case, both ends of the blood vessel are detected based on the luminance signal, and the color difference signal or R or B signal at both ends is detected. Alternatively, a predetermined coefficient may be multiplied.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a configuration related to blood vessel enhancement of the electronic endoscope apparatus according to the embodiment, and FIG. 2 shows a configuration related to a scope and a processor device (color signal processing circuit) of the electronic endoscope apparatus. Although not shown, this electronic endoscope apparatus also has a light source device, a monitor, a recording device, and the like. For example, a simultaneous type is adopted as an imaging method. First, in FIG. 2, a CCD 10 which is an image pickup device is provided at the distal end of the scope, and the CCD 10 has color filters [for example, Mg (magenta), G (green), Cy (cyan), Ye (yellow)] in units of pixels. The image of the object to be observed is captured. That is, the object to be observed is imaged by the CCD 10 by irradiating the object to be observed from the distal end of the scope through the light guide with the light guide. Further, if an objective optical system in which a variable power lens is movably incorporated is provided in front of the CCD 10, an enlarged image of the object to be observed can be obtained by driving the variable power lens.
[0010]
The CCD 10 is connected to a CCD drive circuit 11 for reading out the electric charge accumulated as an image pickup signal, and a subsequent stage of the CCD 10 is a CDS (Correlated Double Sampling) / AGC (Automatic Gain Control). (Automatic gain control circuit) 12 is arranged, and this CDS / AGC 12 performs correlated double sampling on the output signal of the CCD 10 and performs predetermined amplification processing. The CDS / AGC 12 is provided with a DSP (Digital Signal Processor) 16 and an electronic zoom circuit 17 via a clamp circuit 14 and an A / D (analog / digital) converter 15, and these circuits are also provided. A microcomputer 18 is provided for overall control.
[0011]
The DSP 16 performs various processes such as white balance and gamma correction, and forms a Y (luminance) signal and R (red) -Y and B (blue) -Y color difference (C) signals. In the electronic zoom circuit 17, for example, an image obtained by the DSP 16 is enlarged based on a zoom switch arranged in the switch unit 19.
[0012]
Downstream of the electronic zoom circuits 17, the Y and C signals R (red), G (green), RGB color converter 21 for color conversion into signals B (blue) are provided. That is, in the DSP 16 of this example, the Y signal and the RY and BY C signals are formed from the signals obtained through the Mg, G, Cy, and Ye color filters by color conversion. R, G, and B color signals are obtained by further performing color conversion operations on the Y and C signals.
[0013]
In this embodiment, a blood vessel emphasizing circuit 22 for clearly displaying blood vessels is provided in the form of inputting signals of the RGB color conversion circuit 21, and details thereof will be described later with reference to FIG. A YC color conversion circuit 23 that reversely converts R, G, and B signals into Y and C signals is provided at the subsequent stage of the blood vessel enhancement circuit 22, and character mixing that mixes patient information and other characters with image signals. A circuit 24, an encoder 25 that performs output processing to the monitor based on the Y signal and the C signal, an RGB color conversion circuit 26 that converts the Y signal and the C signal into R, G, and B signals, a D / A converter 27, and the like. Connected.
[0014]
As shown in FIG. 1, as the blood vessel enhancement circuit 22, an edge detection circuit 30 for detecting a down edge portion and an up edge portion of a blood vessel from an input G signal image, a down edge coefficient and an up edge coefficient for the R signal Coefficient generating circuits (a memory or the like) 31a and 31b for providing Kr, an R coefficient selector 32 for selecting these coefficients (and 1) Kr, and coefficient generating circuits 33a and 33b for providing a down edge coefficient and an up edge coefficient Kb for the B signal A B coefficient selector 34 for selecting these coefficients (and 1) Kb, and multipliers 35A and 35B for multiplying the coefficients Kr and Kb are provided.
[0015]
FIG. 3 shows the state of signal processing in the blood vessel emphasizing circuit 22, and the edge detection circuit 30 in FIG. 3A shows the blood vessel signal S in the line 100 of the G signal image. assuming that G is obtained, to detect when a fall of the signal is detected as down edge signal S D indicating the down edge portion, whereas the up-edge signal S U indicating the up-edge portion when rising. Then, in the R coefficient selector 32, for example, 0.6 (≦ 1) is selected as the coefficient Kr when the down edge signal SD is detected, and when the up edge signal S U is detected, the coefficient Kr For example, 1.6 (≧ 1) is selected as Kr, and this is supplied to the multiplier 35A. The same can B coefficient selector 34, in response to the detected falling edge signal S D and the up-edge signal S U selects a predetermined coefficient Kb (same factor or different factors as described above), the multiplier 35B Supply.
[0016]
For example, as shown in FIG. 3 (B), when the signal S R1 of the blood vessel 3 in line 100 of the R signal image is obtained, in the blood vessel signal S R1, the down-edge signal S D and the up-edge signal S The illustrated blood vessel signal SR2 is formed by multiplying the signal at the position specified by U by the coefficient Kr. That is, the signal S R2 is a signal in which the down edge portion is further reduced and the up edge portion is further emphasized, and according to the blood vessel signal S R2 , the final image is as shown in FIG. The left end Bl (thick line) of the blood vessel is blackish, and the right end Br (two-dot chain line) is a reddish blood vessel 3.
[0017]
The first embodiment is configured as described above. First, when an object to be observed illuminated by the irradiation light from the scope tip is imaged by the CCD 10, the output signal from the CCD 10 is sampled by the CDS / AGC 12 and The amplified signal is supplied to the DSP 16 as a digital signal via the clamp circuit 14 and the A / D converter 15. As described above, in the DSP 16, a Y signal subjected to various image processing and RY and BY C (color difference) signals are formed.
[0018]
When the zoom switch is operated, an electronic image enlargement process is performed by the electronic zoom circuit 17, and the blood vessel 3 is also enlarged. Further, when the optical zoom mechanism is provided, an optically magnified image is obtained by driving control of the magnifying lens of the objective optical system, and the electronic zoom circuit 17 can further magnifi this optically magnified image. The output of the electronic zoom circuit 17, that is, the Y signal and the C signal are converted into R, G, and B color signals by the RGB color conversion circuit 21, and these signals are supplied to the blood vessel enhancement circuit 22.
[0019]
In this blood vessel enhancement circuit 22, the G signal is supplied to the edge detection circuit 30 of FIG. 1, and the down edge portion and the up edge portion of the blood vessel 3 are detected based on this G signal image. That is, as described with reference to FIG. 3A, the down edge signal S D and the up edge signal S U of the G signal blood vessel are extracted, and these signals S D and S U are extracted as the R coefficient selector 32 and the B coefficient selector 34. To be supplied. Then, the R coefficient selector 32 selects, for example, a down edge coefficient of 0.6 for the down edge part and an up edge coefficient of 1.6 for the up edge part as the coefficient Kr, and other parts. A factor of 1.0 is selected. Thereafter, the coefficient Kr is multiplied by the R signal by the multiplier 35A. As a result, as shown in FIG. 3C, an R blood vessel signal SR2 having a smaller down edge and a larger up edge is obtained.
[0020]
On the other hand, in the B coefficient selector 34, as the coefficient Kb, for example, a down edge coefficient of 0.8, for example, is selected for the down edge part, and an up edge coefficient of 1.4, for example, is selected for the up edge part. A coefficient of 0 is selected. Then, the coefficient Kb is multiplied to the B signal in a multiplier 35B, a result similar B vascular signals and signal S R2 shown in FIG. 3 (C) is obtained.
[0021]
The image signal output from the blood vessel enhancement circuit 22 is supplied to the monitor via the YC color conversion circuit 23, the character mixing circuit 24, and the like. In this monitor, the image signal is shown in the final image of FIG. As shown, the left end Bl in the blood vessel width direction is blackish and the right end Br is reddish so that both ends are emphasized, and the blood vessel 3 is clearly displayed with good contrast. Therefore, the running state and concentration state of the blood vessel 3 can be easily seen even in the mucous membrane 2, and the diagnosis of the lesion, the identification of the cancer tissue, etc. can be performed well with reference to the running state of the blood vessel 3.
[0022]
In the above embodiment, both ends of the blood vessel are detected based on the G signal image. However, the detection can also be performed based on the image such as the R signal. As shown in FIG. The luminance (Y) signal output from the DSP 16 may be supplied to the edge detection circuit 30 and the down edge portion and the up edge portion may be detected based on the Y signal. Further, in this example, the R signal and the B signal are multiplied by a predetermined coefficient, but this coefficient calculation may be performed only on the R signal. In addition, when edge detection is performed using the Y signal, coefficient calculation can also be performed on the color difference (C) signal.
[0023]
【The invention's effect】
As described above, according to the invention of claim 1, on the basis of the example G signal output from the color signal processing circuit detects a falling edge portion and the up edge portion of both ends in the width direction of the blood vessel, this Since a coefficient smaller than 1 is given to the down edge part and a coefficient larger than 1 is given to the other up edge part, and these coefficients are multiplied by at least the R signal, the left end part is dark and the right end part is dark. Both ends of the blood vessel are emphasized in a reddish form. As a result, blood vessels present in tissues such as mucous membranes can be clearly displayed on the monitor, and information useful for observation and diagnosis of the object to be observed can be provided.
[0024]
According to the invention of claim 3, the down edge portion and the up edge portion of the blood vessel are detected using the luminance signal formed by the color signal processing circuit, and the color difference signal of the down edge portion and the up edge portion is detected. The above effect can also be obtained by multiplying a predetermined coefficient.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration related to blood vessel enhancement of an electronic endoscope apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram illustrating a configuration of a scope and a processor device in the electronic endoscope apparatus according to the embodiment.
FIG. 3 is an explanatory diagram showing a state of blood vessel enhancement processing in the embodiment.
FIG. 4 is a view showing an enlarged image of an observation object displayed by a conventional apparatus.
[Explanation of symbols]
10 ... CCD, 16 ... DSP,
17 ... Electronic zoom circuit, 18 ... Microcomputer,
21, 26... RGB color conversion circuit,
22: Blood vessel enhancement circuit,
23 ... YC color conversion circuit, 30 ... Edge detection circuit,
31a, 31b, 33a, 33b ... coefficient generation circuit,
32 ... R coefficient selector, 34 ... B coefficient selector,
35A, 35B: Multipliers.

Claims (3)

撮像素子で得られた信号に基づきカラー表示のための所定の信号を形成するカラー信号処理回路を備えた電子内視鏡装置において、
上記カラー信号処理回路から出力された所定の信号を入力し、血管の幅方向の両端のダウンエッジ部とアップエッジ部を検出する血管エッジ検出回路を含み、この血管エッジ検出回路で得られた血管のダウンエッジ部に対し1よりも小さなダウンエッジ係数を選択し、上記アップエッジ部に対し1よりも大きなアップエッジ係数を選択し、これらのダウンエッジ係数及びアップエッジ係数を血管信号に乗算することにより、血管を強調する血管強調回路を設けたことを特徴とする電子内視鏡装置。
In an electronic endoscope apparatus provided with a color signal processing circuit that forms a predetermined signal for color display based on a signal obtained by an image sensor,
A blood vessel edge detection circuit that receives a predetermined signal output from the color signal processing circuit and detects a down edge portion and an up edge portion at both ends in the width direction of the blood vessel; A down-edge coefficient smaller than 1 is selected for the down-edge part, an up-edge coefficient larger than 1 is selected for the up-edge part, and the blood vessel signal is multiplied by the down-edge coefficient and the up-edge coefficient. Thus, an electronic endoscope apparatus comprising a blood vessel emphasizing circuit for emphasizing blood vessels.
上記カラー信号処理回路では、赤、緑、青の色信号を形成し、上記血管強調回路は、上記緑信号を用いて血管の上記ダウンエッジ部とアップエッジ部を検出し、これらダウンエッジ部とアップエッジ部に対し選択された係数を少なくとも赤信号に乗算することを特徴とする請求項1記載の電子内視鏡装置。 The color signal processing circuit forms red, green, and blue color signals, and the blood vessel enhancement circuit detects the down edge portion and the up edge portion of the blood vessel using the green signal, 2. The electronic endoscope apparatus according to claim 1 , wherein at least a red signal is multiplied by a coefficient selected for the up-edge portion . 上記カラー信号処理回路では、輝度信号を形成し、上記血管強調回路は、この輝度信号を用いて血管の上記ダウンエッジ部とアップエッジ部を検出し、これらダウンエッジ部とアップエッジ部に対し選択された係数を色差信号又は上記色信号に乗算することを特徴とする請求項1又は2記載の電子内視鏡装置。 In the color signal processing circuit, a luminance signal is formed, and the blood vessel enhancement circuit detects the down edge portion and the up edge portion of the blood vessel using the luminance signal, and selects the down edge portion and the up edge portion. The electronic endoscope apparatus according to claim 1, wherein the color difference signal or the color signal is multiplied by the calculated coefficient .
JP2002021076A 2001-09-27 2002-01-30 Electronic endoscope device Expired - Fee Related JP4159291B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002021076A JP4159291B2 (en) 2002-01-30 2002-01-30 Electronic endoscope device
US10/255,080 US7042488B2 (en) 2001-09-27 2002-09-26 Electronic endoscope for highlighting blood vessel
US10/255,079 US6956602B2 (en) 2001-09-27 2002-09-26 Electronic endoscope for highlighting blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021076A JP4159291B2 (en) 2002-01-30 2002-01-30 Electronic endoscope device

Publications (3)

Publication Number Publication Date
JP2003220025A JP2003220025A (en) 2003-08-05
JP2003220025A5 JP2003220025A5 (en) 2005-07-14
JP4159291B2 true JP4159291B2 (en) 2008-10-01

Family

ID=27744409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021076A Expired - Fee Related JP4159291B2 (en) 2001-09-27 2002-01-30 Electronic endoscope device

Country Status (1)

Country Link
JP (1) JP4159291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010019121A1 (en) * 2008-08-15 2010-02-18 Sti Medical Systems, Llc. Methods for enhancing vascular patterns in cervical imagery
JP5541914B2 (en) * 2009-12-28 2014-07-09 オリンパス株式会社 Image processing apparatus, electronic apparatus, program, and operation method of endoscope apparatus

Also Published As

Publication number Publication date
JP2003220025A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
US7042488B2 (en) Electronic endoscope for highlighting blood vessel
CN110663251B (en) Medical image processing apparatus
CN110325100B (en) Endoscope system and method of operating the same
JP3217343B2 (en) Image processing device
EP2517614B1 (en) Image processing device, endoscope system, program and image processing method
JP4009626B2 (en) Endoscope video signal processor
JP2017158670A (en) Blood vessel information acquisition device, endoscope system, and blood vessel information acquisition method
JP4895750B2 (en) Endoscope processor, autofluorescence image display program, and endoscope system
EP2328339A2 (en) Electronic endoscope system, processing apparatus for electronic endoscope, and image processing method
KR101050882B1 (en) Biometric observation system
JP4370008B2 (en) Endoscopic image processing device
JP2007075366A (en) Infrared observation system
US6956602B2 (en) Electronic endoscope for highlighting blood vessel
JP5308884B2 (en) Endoscopic processor device and method of operating the same
JP2010142547A (en) Apparatus, method and program for processing endoscope image
JP7389257B2 (en) Endoscope system and its operating method
JP2010142546A (en) Endoscope apparatus and control method therefor
JP4159291B2 (en) Electronic endoscope device
JP3886757B2 (en) Electronic endoscope device
WO2018073959A1 (en) Endoscope scope, endoscope processor, and endoscope adaptor
JP2010279526A (en) Endoscopic image processing apparatus, method and program
WO2020054255A1 (en) Endoscope device, endoscope processor, and endoscope device operation method
JPH03105483A (en) Endoscope device
JP2007306974A (en) Endoscope processor, endoscope program, image processing program, and endoscopic image recording and reproducing apparatus
JP3894762B2 (en) Electronic endoscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees