JP4159090B2 - Method for producing porous membrane - Google Patents

Method for producing porous membrane Download PDF

Info

Publication number
JP4159090B2
JP4159090B2 JP2003295151A JP2003295151A JP4159090B2 JP 4159090 B2 JP4159090 B2 JP 4159090B2 JP 2003295151 A JP2003295151 A JP 2003295151A JP 2003295151 A JP2003295151 A JP 2003295151A JP 4159090 B2 JP4159090 B2 JP 4159090B2
Authority
JP
Japan
Prior art keywords
porous membrane
porous film
moisture absorption
film
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003295151A
Other languages
Japanese (ja)
Other versions
JP2005060606A (en
Inventor
伸治 田原
敏行 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003295151A priority Critical patent/JP4159090B2/en
Publication of JP2005060606A publication Critical patent/JP2005060606A/en
Application granted granted Critical
Publication of JP4159090B2 publication Critical patent/JP4159090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、湿式凝固法を利用して、空孔率が高く内部孔径が比較的大きいポリイミド系樹脂の多孔質膜を得るための多孔質膜の製造方法に関するものである。   The present invention relates to a method for producing a porous film for obtaining a polyimide resin porous film having a high porosity and a relatively large internal pore diameter by utilizing a wet coagulation method.

近年の情報・通信機器における情報処理の高速化や通信電波の高周波数化などに伴い、電子部品等を実装する配線基板にも、高周波に対応できる性能が要求されている。例えば、配線基板の絶縁層には、優れた高周波伝送特性を発現すべく、高周波における誘電率及び誘電正接が小さいことなどが要求される。   With the recent increase in information processing speed and frequency of communication radio waves in information / communication devices, wiring boards on which electronic components and the like are mounted are also required to have high-frequency performance. For example, the insulating layer of the wiring board is required to have a low dielectric constant and dielectric loss tangent at high frequencies in order to exhibit excellent high-frequency transmission characteristics.

低誘電率、低誘電正接の絶縁層を形成する方法として、樹脂材料自体が低い誘電率等を有するものを使用する方法が従来は一般的であったが、更に低誘電率化する方法として、絶縁層を多孔質構造とする技術も存在する。   As a method of forming an insulating layer having a low dielectric constant and a low dielectric loss tangent, a method using a resin material itself having a low dielectric constant has been generally used, but as a method of further reducing the dielectric constant, There is also a technique in which the insulating layer has a porous structure.

例えば、微細な連続孔を有する多孔質構造を持ち、空孔率が15〜80%である高耐熱性樹脂フィルムからなる多孔質絶縁材料が知られている。この多孔質絶縁材料は、湿式凝固法によりポリアミド酸の多孔質膜を製膜した後、多孔質膜のイミド転化を行う方法で製造され、湿式凝固させる際に製膜溶液に多孔質フィルムを積層することで溶媒置換速度を調整して、空孔率の高い多孔質膜を得ている(例えば、特許文献1参照)。   For example, a porous insulating material made of a high heat-resistant resin film having a porous structure having fine continuous pores and a porosity of 15 to 80% is known. This porous insulating material is manufactured by a method in which a porous film of polyamic acid is formed by wet coagulation, followed by imide conversion of the porous film, and the porous film is laminated on the film forming solution when wet coagulating. By adjusting the solvent replacement speed, a porous film having a high porosity is obtained (for example, see Patent Document 1).

しかしながら、上記のように溶媒置換速度調整材として多孔質フィルムを積層する方法では、多孔質フィルムの積層工程や剥離工程が必要で工程が煩雑になり、また、製膜時に多孔質膜の収縮によって多孔質フィルムが凝固液中で剥離し易くなるため、スケールアップ(幅広化)が困難で、量産に適さないなどの問題があった。
の問題があった。
However, in the method of laminating a porous film as a solvent replacement rate adjusting material as described above, a porous film laminating step and a peeling step are necessary, and the process becomes complicated. Since the porous film is easily peeled in the coagulation liquid, there is a problem that it is difficult to scale up (widen) and is not suitable for mass production.
There was a problem.

一方、上記のような配線基板の絶縁層に限らず、ポリイミド多孔質膜に対して、低誘電率化のための空孔率向上の要求や、孔径制御の要求は、耐熱性エアフィルター、耐熱性防音材、耐熱性防振材等の用途で存在する。
特開2000−319442号公報(第1頁、図1)
On the other hand, not only the insulating layer of the wiring board as described above, but also for the polyimide porous film, the requirement for improving the porosity for lowering the dielectric constant and the requirement for controlling the hole diameter are the heat resistant air filter, It exists in applications such as heat-resistant soundproofing materials and heat-resistant vibration-proofing materials.
JP 2000-319442 A (first page, FIG. 1)

そこで、本発明の目的は、簡易な工程によって、空孔率が高く内部孔径が比較的大きい多孔質膜が得られ、しかもスケールアップに適する多孔質膜の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a porous membrane that can obtain a porous membrane having a high porosity and a relatively large internal pore diameter by a simple process and that is suitable for scale-up.

本発明者らは、上記目的を達成すべく、多孔質フィルムなどを使用せずに溶媒置換速度を調整できる製膜方法について鋭意研究したところ、特定組成のポリアミド酸溶液を用いて、流延した溶液の表面から特定条件で吸湿させた後に、水系凝固液に浸漬することで、空孔率が高く内部孔径が比較的大きい多孔質膜が得られることを見出し、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors diligently studied a film forming method capable of adjusting the solvent replacement rate without using a porous film or the like, and cast it using a polyamic acid solution having a specific composition. After absorbing moisture from the surface of the solution under specific conditions, it was found that a porous film having a high porosity and a relatively large internal pore diameter was obtained by immersing in an aqueous coagulation liquid, and the present invention was completed. .

即ち、本発明の多孔質膜の製造方法は、ビフェニルテトラカルボン酸二無水物、パラフェニレンジアミンPPD、およびジアミノジフェニルエーテルDDEを、PPD/DDEのモル比70/30〜100/0で重合して得られるポリアミド酸が溶媒に溶解した濃度16〜19重量%の溶液を基材に流延する流延工程と、流延した溶液を温度30〜45℃、相対湿度90%以上で絶対湿度30g/m3 以上の雰囲気に2〜4分間接触させる吸湿工程と、それを20〜70℃の水系凝固液に浸漬して多孔質膜を形成する凝固工程と、その多孔質膜のイミド転化を行うイミド化工程とを含むことを特徴とする。 That is, the method for producing a porous membrane of the present invention is obtained by polymerizing biphenyltetracarboxylic dianhydride, paraphenylenediamine PPD, and diaminodiphenyl ether DDE at a PPD / DDE molar ratio of 70/30 to 100/0. A casting step of casting a polyamic acid dissolved in a solvent in a concentration of 16 to 19% by weight on a substrate, and casting the solution at a temperature of 30 to 45 ° C. and a relative humidity of 90% or more and an absolute humidity of 30 g / m Moisture absorption process for 2 to 4 minutes in contact with 3 or more atmospheres, solidification process in which it is immersed in an aqueous coagulation liquid at 20 to 70 ° C. to form a porous film, and imidization for imide conversion of the porous film And a process.

本発明の多孔質膜の製造方法によると、実施例の結果が示すように、簡易な工程によって、空孔率が高く内部孔径が比較的大きい多孔質膜が得られ、その際、吸湿工程を付加するだけであるためスケールアップに適した製法となる。本発明において、空孔率が高く内部孔径が比較的大きい多孔質膜が得られる理由の詳細は明らかではないが、流延した溶液の表面から特定条件で吸湿させた際、相分離が表面に生じて開口率の小さい薄膜(図1の表面写真参照)が形成され、これが溶媒置換や溶剤拡散を適度に抑制するため、水系凝固液に浸漬した際に、内部での溶媒置換や相分離が好適な状態で進行するためと推定される。   According to the method for producing a porous membrane of the present invention, as shown in the results of Examples, a porous membrane having a high porosity and a relatively large internal pore diameter can be obtained by a simple process. Since it is only added, it is a production method suitable for scale-up. In the present invention, the details of the reason why a porous membrane having a high porosity and a relatively large internal pore diameter can be obtained is not clear, but when the moisture is absorbed from the surface of the cast solution under specific conditions, phase separation is caused on the surface. As a result, a thin film having a small aperture ratio (see the surface photograph in FIG. 1) is formed, and when this is immersed in an aqueous coagulating liquid, the solvent substitution or phase separation inside is reduced. This is presumed to proceed in a suitable state.

本発明において、前記吸湿工程は、流延した溶液を温度30〜40℃、相対湿度97%以上で絶対湿度30g/m3 以上の雰囲気に2分30秒〜3分30秒間接触させる工程であることが好ましい。このような吸湿条件では、表面付近での相分離がより好適に生じるため、空孔率が高く内部孔径が比較的大きい多孔質膜がより確実に得られるようになる。 In the present invention, the moisture absorption step is a step of bringing the cast solution into contact with an atmosphere having a temperature of 30 to 40 ° C., a relative humidity of 97% or more and an absolute humidity of 30 g / m 3 or more for 2 minutes 30 seconds to 3 minutes 30 seconds. It is preferable. Under such moisture absorption conditions, phase separation near the surface occurs more suitably, so that a porous membrane having a high porosity and a relatively large internal pore diameter can be obtained more reliably.

また、前記吸湿工程の終了時から5秒以内に、前記水系凝固液への浸漬を行うことが好ましい。この時間を超えてから浸漬を行うと、それまでに吸湿した水分が拡散して溶液の均一化やゲルの再溶解が生じ、上記の如き所望の溶媒置換が行いにくくなるため、空孔率が高く内部孔径が比較的大きい多孔質膜が得られにくくなる。   Moreover, it is preferable to perform immersion in the aqueous coagulating liquid within 5 seconds from the end of the moisture absorption step. If immersion is performed after this time has elapsed, moisture absorbed up to that time will diffuse, resulting in a uniform solution and re-dissolution of the gel, making it difficult to perform the desired solvent replacement as described above. It becomes difficult to obtain a porous membrane having a high internal pore size and a relatively large diameter.

以下、本発明の実施の形態について説明する。本発明の製造方法は、前記のような流延工程、吸湿工程、凝固工程、及びイミド化工程を含むものである。   Embodiments of the present invention will be described below. The production method of the present invention includes the casting process, the moisture absorption process, the coagulation process, and the imidization process as described above.

本発明における流延工程は、ビフェニルテトラカルボン酸二無水物、パラフェニレンジアミンPPD、およびジアミノジフェニルエーテルDDEを、PPD/DDEのモル比70/30〜100/0で重合して得られるポリアミド酸(ポリアミック酸)が溶媒に溶解した濃度16〜19重量%の溶液を基材に流延する工程である。   The casting step in the present invention comprises a polyamic acid (polyamic acid) obtained by polymerizing biphenyltetracarboxylic dianhydride, paraphenylenediamine PPD, and diaminodiphenyl ether DDE at a PPD / DDE molar ratio of 70/30 to 100/0. It is a step of casting a solution having a concentration of 16 to 19% by weight, in which an acid) is dissolved in a solvent, onto a substrate.

ポリアミド酸の製造方法としては、得られるポリアミド酸が上記のようなものであれば何れでもよく、例えば上記の酸成分とアミン成分とを略等しいモル比で、溶媒中で重合して得ることができる。酸成分としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などが使用され、アミン成分としては、4,4’−ジアミノジフェニルエーテル(DDE)、およびp−フェニレンジアミン(PDA)などが使用できる。   The polyamic acid can be produced by any method as long as the obtained polyamic acid is as described above. For example, the polyamic acid can be obtained by polymerizing the acid component and the amine component in a solvent at a substantially equal molar ratio. it can. 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and the like are used as the acid component, and 4,4′-diaminodiphenyl ether (DDE) and p-phenylenediamine (PDA) as the amine component. ) Etc. can be used.

上記のポリアミド酸において、PPD/DDEを構成するモル比は、70/30〜100/0であり、好ましくは、モル比80/20〜90/10である。この重合組成範囲内であると、本発明の吸湿条件を採用する場合に、凝固工程でスジが発生することなく、空孔率が高く内部孔径が比較的大きい多孔質膜が得られる。   In said polyamic acid, the molar ratio which comprises PPD / DDE is 70 / 30-100 / 0, Preferably, molar ratio is 80 / 20-90 / 10. Within this polymerization composition range, when the moisture absorption conditions of the present invention are employed, a porous film having a high porosity and a relatively large internal pore diameter can be obtained without generating streaks in the coagulation step.

上記の酸成分及びアミン成分は、予め重合してポリアミド酸にしたものを溶媒に溶解させて製膜溶液としてもよく、また、両者を溶液重合して得られる溶液をそのまま使用してもよい。なお、溶液重合の際にはできるだけ水分のない条件で重合を行うのが好ましい。また、製膜溶液中のポリアミド酸は、溶解性を損なわない範囲で、その一部がイミド化していてもよい。   The above acid component and amine component may be preliminarily polymerized into a polyamic acid and dissolved in a solvent to form a film-forming solution, or a solution obtained by solution polymerization of both may be used as it is. In the case of solution polymerization, it is preferable to carry out the polymerization under conditions with as little water as possible. Moreover, the polyamic acid in the film forming solution may be partially imidized within a range that does not impair the solubility.

ポリアミド酸の溶媒としては、溶解可能なものであれば特に限定されないが、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤が溶解性の面や、凝固溶剤との溶剤置換スピードの点で好ましく使用できる。   The polyamic acid solvent is not particularly limited as long as it is soluble, but aprotic polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and dimethyl sulfoxide. Can be preferably used in terms of solubility and the speed of solvent replacement with a coagulation solvent.

ポリアミド酸の濃度は、16〜19重量%であり、この濃度未満であると本発明の吸湿条件によっては、表面の相分離によって開口率の小さい薄膜が形成しにくく、最終的に空孔率が高く内部孔径が比較的大きい多孔質膜が得られない。また、この濃度を超えると、溶液の粘度が高くなりすぎて製膜する上で取り扱いが困難になる。   The concentration of the polyamic acid is 16 to 19% by weight, and if it is less than this concentration, depending on the moisture absorption conditions of the present invention, it is difficult to form a thin film having a small aperture ratio due to phase separation of the surface, and finally the porosity is low. A porous membrane having a high internal pore size and a relatively large diameter cannot be obtained. On the other hand, if the concentration is exceeded, the viscosity of the solution becomes so high that handling becomes difficult when forming a film.

溶液を基材に流延する際には、ブレードコータ、バーコータ、コンマコータなどの塗工装置が使用できる。なお、流延する際の溶液は、好ましくは−20〜80℃の温度範囲である。また、基材としては、ガラス板、ステンレス板、金属箔などの他、ポリエステル、ポリエチレンのシートのような高分子フィルムも使用できる。   When casting the solution onto the substrate, a coating device such as a blade coater, a bar coater, or a comma coater can be used. The solution for casting is preferably in the temperature range of -20 to 80 ° C. In addition to the glass plate, stainless steel plate, metal foil, and the like as the substrate, polymer films such as polyester and polyethylene sheets can also be used.

多孔質膜を配線基板の絶縁層として使用する場合、配線層となる金属箔に多孔質膜を製膜・付着させてもよい。金属箔としては、銅、ニッケル、金、銀など何れでも良いが、配線パターンとしての導電性、加工性等の点から、銅であることが好ましい。金属箔の表面には、多孔質膜との密着性を高めるために、粗面化処理、黒色処理などの物理的又は化学的な各種表面処理を行ってもよい。   When a porous film is used as an insulating layer of a wiring board, the porous film may be formed and attached to a metal foil that becomes the wiring layer. The metal foil may be any of copper, nickel, gold, silver, etc., but copper is preferable from the viewpoints of conductivity and workability as a wiring pattern. The surface of the metal foil may be subjected to various physical or chemical surface treatments such as roughening treatment and black treatment in order to improve the adhesion with the porous film.

製膜溶液を流延する際の厚さは特に限定されないが、あまり厚すぎると脱溶剤に時間がかかることなどの問題が発生する。また、多層配線基板の絶縁層を形成するための多孔質膜の厚さとしては5〜90μmが好ましい。   The thickness at the time of casting the film forming solution is not particularly limited, but if it is too thick, problems such as taking time for solvent removal occur. Further, the thickness of the porous film for forming the insulating layer of the multilayer wiring board is preferably 5 to 90 μm.

本発明の吸湿工程は、流延した溶液を温度30〜45℃、相対湿度90%以上で絶対湿度30g/m3 以上の雰囲気に2〜4分間接触させるものであり、好ましくは、流延した溶液を温度30〜40℃、相対湿度97%以上で絶対湿度30g/m3 以上の雰囲気に2分30秒〜3分30秒間接触させるものである。このような吸湿工程は、スポンジ構造が均一に広がった多孔質膜を得る方法としても有効である。 In the moisture absorption process of the present invention, the cast solution is brought into contact with an atmosphere having a temperature of 30 to 45 ° C. and a relative humidity of 90% or more and an absolute humidity of 30 g / m 3 or more for 2 to 4 minutes, preferably cast. The solution is brought into contact with an atmosphere having a temperature of 30 to 40 ° C., a relative humidity of 97% or more and an absolute humidity of 30 g / m 3 or more for 2 minutes 30 seconds to 3 minutes 30 seconds. Such a moisture absorption process is also effective as a method for obtaining a porous film having a sponge structure spread uniformly.

温度30℃未満、相対湿度90%未満、または絶対湿度30g/m3 未満では、吸湿速度や吸湿量が不十分となり、開口率の小さい薄膜が相分離により表面に形成されにくく、空孔率が高く内部孔径が比較的大きい多孔質膜が得られない。また、この雰囲気への接触が2分間未満の場合も、吸湿量が不十分となり、空孔率が高く内部孔径が比較的大きい多孔質膜が得られなくなる。 When the temperature is less than 30 ° C., the relative humidity is less than 90%, or the absolute humidity is less than 30 g / m 3 , the moisture absorption rate and the amount of moisture absorption are insufficient, and a thin film having a small aperture ratio is hardly formed on the surface by phase separation, and the porosity is low. A porous membrane having a high internal pore size and a relatively large diameter cannot be obtained. Further, even when the contact with the atmosphere is less than 2 minutes, the moisture absorption amount is insufficient, and a porous film having a high porosity and a relatively large internal pore diameter cannot be obtained.

吸湿工程は、連続ラインにおいて流延後の溶液が基材と共に通過する風洞や密閉室内を、上記雰囲気に湿度・温度制御しながら、所定の滞留時間でその雰囲気を通過させる方法や、同様の方法をバッチ処理で行う方法などにより行うことができる。   The moisture absorption process is a method of passing the atmosphere through a predetermined residence time while controlling the humidity and temperature in the wind tunnel or sealed chamber through which the solution after casting in the continuous line passes together with the base material, or a similar method. Can be performed by a method of performing batch processing.

本発明の凝固工程は、吸湿工程を経たものを20〜70℃、好ましくは50〜70℃の水系凝固液に浸漬して多孔質膜を形成するものである。水系凝固液としては、水を含み、メタノール、エタノール、イソプロピルアルコール等のアルコール類を必要に応じて含む混合液が用いられ、特に水が好適に用いられる。本発明は、特に凝固液が水を50重量%以上含有する場合に有効である。   In the solidification step of the present invention, the porous film is formed by immersing the material that has undergone the moisture absorption step in an aqueous solidification solution at 20 to 70 ° C., preferably 50 to 70 ° C. As the aqueous coagulation liquid, a mixed liquid containing water and optionally containing alcohols such as methanol, ethanol, isopropyl alcohol and the like is used, and water is particularly preferably used. The present invention is particularly effective when the coagulation liquid contains 50% by weight or more of water.

本発明では、前記吸湿工程の終了時から5秒以内に、水系凝固液への浸漬を行うのが好ましく、吸湿工程の終了時から0〜3秒がより好ましい。こうすることで吸湿した水分が拡散して溶液の均一化やゲルの再溶解が生じる前に、開口率の小さい薄膜が表面に形成された状態で水系凝固液に浸漬される(膜形態が固定される)ため、空孔率が高く内部孔径が比較的大きい多孔質膜が得られ易くなる。   In this invention, it is preferable to perform immersion in an aqueous coagulating liquid within 5 seconds from the end of the moisture absorption step, and more preferably 0 to 3 seconds from the end of the moisture absorption step. In this way, before the moisture that has absorbed moisture diffuses and the solution is homogenized and the gel is re-dissolved, a thin film with a small opening ratio is immersed in an aqueous coagulation solution with the surface formed (the membrane form is fixed). Therefore, it is easy to obtain a porous film having a high porosity and a relatively large internal pore diameter.

上記凝固工程(ゲル化)によりポリアミド酸の多孔質膜が形成されるが、本発明では更に得られた多孔質膜の水洗を行ってもよい。本発明における水洗工程は水を利用して溶剤等を除去するものであり、水洗液には水を90重量%以上含有するのが好ましい。なお、水洗温度としては、20〜70℃が好ましい。   A porous film of polyamic acid is formed by the above solidification step (gelation). In the present invention, the obtained porous film may be washed with water. The washing step in the present invention uses water to remove the solvent and the like, and the washing solution preferably contains 90% by weight or more of water. The washing temperature is preferably 20 to 70 ° C.

水洗後、多孔質膜を取り出した後、必要に応じて乾燥が行われるが、しわの寄らないように乾燥するのが好ましい。しわができるのは、部分的に収縮率が異なるためであり、しわがよらない乾燥方法としては、多孔質膜の両端にテンションをかけた状態で乾燥する方法やスペーサーの上に多孔質膜をのせ、片面より真空に引きながら乾燥させる方法などが好ましい。乾燥の温度は多孔質膜の細孔が閉塞しなければ特に制限されないが、取り扱いの面から200℃以下での乾燥が望ましい。乾燥に引き続いて、或いは乾燥と同時に後述するイミド化を行ってもよい。   After washing with water, the porous membrane is taken out and then dried as necessary. However, it is preferably dried so as not to wrinkle. Wrinkles can be generated because the shrinkage rate is partially different, and as a drying method that does not cause wrinkles, a method of drying with tension applied to both ends of the porous membrane or a porous membrane on the spacer is used. For example, a method of drying while drawing a vacuum from one side is preferable. The drying temperature is not particularly limited as long as the pores of the porous membrane are not blocked, but drying at 200 ° C. or lower is desirable from the viewpoint of handling. Subsequent to drying or simultaneously with drying, imidization described later may be performed.

本発明のイミド化工程は、多孔質膜のイミド転化を行うものである。本発明におけるイミド転化は、従来と同じ条件が採用でき、例えば加熱装置内で300〜500℃で1〜3時間保持するなどすればよい。また、閉環水を好適に除去する上で、熱風循環し、窒素雰囲気とするのが好ましい。   The imidization step of the present invention is to perform imide conversion of the porous membrane. For the imide conversion in the present invention, the same conditions as in the prior art can be adopted. For example, the imide conversion may be held at 300 to 500 ° C. for 1 to 3 hours in a heating apparatus. In order to suitably remove the ring-closing water, it is preferable to circulate hot air to make a nitrogen atmosphere.

以上のようにして得られる多孔質膜としては、空孔率60〜70%、内部の孔径1.0〜2.0μm、引張強度50〜80MPa、誘電率1.6〜1.8、誘電正接(tanδ)0.002〜0.003の多孔質膜が好ましい。   The porous film obtained as described above has a porosity of 60 to 70%, an internal pore diameter of 1.0 to 2.0 μm, a tensile strength of 50 to 80 MPa, a dielectric constant of 1.6 to 1.8, and a dielectric loss tangent. A porous film having (tan δ) of 0.002 to 0.003 is preferred.

また、吸湿工程で表面に形成される開口率の小さい薄膜は、凝固工程などを経てその形状が固定されるため、得られる多孔質膜の表面の開口率は、当該薄膜の開口率に相当する。   In addition, since the shape of the thin film with a small aperture ratio formed on the surface in the moisture absorption process is fixed through the solidification process or the like, the aperture ratio of the surface of the obtained porous film corresponds to the aperture ratio of the thin film. .

上記の多孔質膜は、配線基板の絶縁層の他、耐熱性エアフィルター、耐熱性防音材、耐熱性防振材等の用途に使用可能である。   The porous film can be used for applications such as a heat-resistant air filter, a heat-resistant soundproofing material, and a heat-resistant vibration-proofing material in addition to the insulating layer of the wiring board.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、多孔質膜の各評価値は、次のようにして測定した。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. Each evaluation value of the porous membrane was measured as follows.

(1)多孔質膜の空孔率
多孔質膜の容積と重量を測定し、多孔質膜の比重を求め、これと素材の比重より、下式:
空孔率(%)=(1−(多孔質膜の比重/素材比重))×100
により、空孔率を求めた。
(1) Porosity of porous membrane The volume and weight of the porous membrane are measured to determine the specific gravity of the porous membrane. From this and the specific gravity of the material, the following formula:
Porosity (%) = (1− (specific gravity of porous membrane / material specific gravity)) × 100
Thus, the porosity was determined.

(2)引張強度
幅10mm×長さ200mmのサンプルに切断し、このサンプルをJIS K7127に準拠して、つかみ幅100mm、引張速度50mm/分にて引張試験機で測定した。
(2) Tensile strength A sample having a width of 10 mm and a length of 200 mm was cut, and the sample was measured with a tensile tester at a grip width of 100 mm and a tensile speed of 50 mm / min in accordance with JIS K7127.

(3)多孔質膜の比誘電率(ε/ε0 )、誘電正接(tanδ)
10GHzの領域において、ベクトルネットワークアナライザー(HP87220)と空洞共振器(関東電子(株))を用いて、摂動法により測定し、各測定点10回の平均より求めた。
(3) The relative dielectric constant (ε / ε 0 ) and dielectric loss tangent (tan δ) of the porous film
In the 10 GHz region, measurement was performed by the perturbation method using a vector network analyzer (HP87220) and a cavity resonator (Kanto Electronics Co., Ltd.), and the average was obtained from 10 measurement points.

(4)多孔質膜の孔径と断面構造
多孔質膜の断面について、走査型電子顕微鏡(SEM)を用いて、写真撮影を行い、その写真から内部の孔径の範囲を求めた。また、断面写真から、断面構造がスポンジ構造かボイド構造かを判断した。
(4) Pore diameter and cross-sectional structure of porous membrane The cross section of the porous membrane was photographed using a scanning electron microscope (SEM), and the range of the internal pore diameter was determined from the photograph. Moreover, it was judged from the cross-sectional photograph whether the cross-sectional structure was a sponge structure or a void structure.

(5)多孔質膜の表面構造
多孔質膜の表面について、走査型電子顕微鏡(SEM)を用いて、写真撮影を行った。また、表面写真と上記(4)の断面写真から、開口を有する薄膜の有無を判断した。なお、薄膜の有無は、従来の緻密層より薄く、孔径が比較的大きい開口を有する層の有無で判断した。なお、図1は実施例1で得られた多孔質膜の表面写真を示している。
(5) Surface structure of porous membrane The surface of the porous membrane was photographed using a scanning electron microscope (SEM). Moreover, the presence or absence of the thin film which has an opening was judged from the surface photograph and the cross-sectional photograph of said (4). The presence or absence of a thin film was determined by the presence or absence of a layer that was thinner than a conventional dense layer and had a relatively large pore diameter. FIG. 1 shows a photograph of the surface of the porous membrane obtained in Example 1.

実施例1
BPDA(3,3’,4,4’−ビフェニルテトラカルボン酸二無水物)とジアミン混合物(p−フェニレンジアミン/4,4’−ジアミノジフェニルエーテル=85/15)を略等モル重合させて得られたポリアミド酸19重量部と、N−メチル−2−ピロリドン(NMP)81重量部からなる製膜溶液(ドープ)を、銅箔(厚み18μm)の表面上に、バーコートの要領にて100μmで均一な厚さに塗布した。塗布後に37℃×RH97%以上で180秒で吸湿させた後、直ちに60℃の純水中に浸漬し、ポリアミド酸を凝固させて多孔質膜とした。引き続き温度50℃の純水中で水洗を行い、その後、120℃で20分間乾燥させた。乾燥後、窒素雰囲気中にて430℃で30分間熱処理し、ポリアミド酸をイミド転化させ、銅箔上に形成されたポリイミド多孔質膜を得た。
Example 1
BPDA (3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride) and diamine mixture (p-phenylenediamine / 4,4′-diaminodiphenyl ether = 85/15) are obtained by polymerizing approximately equimolar amounts. A film-forming solution (dope) consisting of 19 parts by weight of polyamic acid and 81 parts by weight of N-methyl-2-pyrrolidone (NMP) was applied to the surface of a copper foil (thickness 18 μm) at 100 μm in the manner of bar coating. It was applied to a uniform thickness. After application, moisture was absorbed at 37 ° C. × RH 97% or more in 180 seconds, and then immediately immersed in pure water at 60 ° C. to solidify the polyamic acid to obtain a porous film. Subsequently, it was washed with pure water at a temperature of 50 ° C. and then dried at 120 ° C. for 20 minutes. After drying, heat treatment was performed at 430 ° C. for 30 minutes in a nitrogen atmosphere to convert the polyamic acid into an imide, thereby obtaining a polyimide porous film formed on the copper foil.

必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表1に示す。   The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 1.

比較例1
実施例1において、吸湿時間を45秒にすること以外は、実施例1と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表1に示す。
Comparative Example 1
In Example 1, the polyimide porous membrane formed on the copper foil was obtained on the completely same conditions as Example 1 except having made moisture absorption time into 45 second. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 1.

比較例2
実施例1において、吸湿時間を90秒にすること以外は、実施例1と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表1に示す。
Comparative Example 2
In Example 1, the polyimide porous membrane formed on the copper foil was obtained on the completely same conditions as Example 1 except having made moisture absorption time into 90 second. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 1.

比較例3
実施例1において、同じポリアミド酸15重量部とNMP85重量部からなる製膜溶液を用いて150μmで塗布したこと以外は、実施例1と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表1に示す。
Comparative Example 3
In Example 1, a porous polyimide film formed on a copper foil under exactly the same conditions as in Example 1 except that the same film forming solution consisting of 15 parts by weight of polyamic acid and 85 parts by weight of NMP was applied at 150 μm. A membrane was obtained. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 1.

比較例4
実施例1において、同じポリアミド酸15重量部とNMP85重量部からなる製膜溶液を用いて150μmで塗布し、吸湿時間を90秒にすること以外は、実施例1と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表1に示す。
Comparative Example 4
In Example 1, a copper foil was applied under exactly the same conditions as in Example 1 except that the same film forming solution consisting of 15 parts by weight of polyamic acid and 85 parts by weight of NMP was applied at 150 μm and the moisture absorption time was 90 seconds. The polyimide porous membrane formed on top was obtained. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 1.

比較例5
実施例1において、同じポリアミド酸15重量部とNMP85重量部からなる製膜溶液を用いて150μmで塗布し、吸湿時間を45秒にすること以外は、実施例1と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表1に示す。
Comparative Example 5
In Example 1, a copper foil was applied under exactly the same conditions as in Example 1 except that a film forming solution consisting of 15 parts by weight of the same polyamic acid and 85 parts by weight of NMP was applied at 150 μm and the moisture absorption time was 45 seconds. The polyimide porous membrane formed on top was obtained. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 1.

比較例6
実施例1において、吸湿時間を22秒にすること以外は、実施例1と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表1に示す。
Comparative Example 6
In Example 1, the polyimide porous membrane formed on the copper foil was obtained on the completely same conditions as Example 1 except having made moisture absorption time into 22 second. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 1.

実施例2
BPDA(3,3’,4,4’−ビフェニルテトラカルボン酸二無水物)とジアミン混合物(p−フェニレンジアミン/4,4’−ジアミノジフェニルエーテル=85/15)を略等モル重合させて得られたポリアミド酸19重量部と、N−メチル−2−ピロリドン(NMP)81重量部からなる製膜溶液(ドープ)を、銅箔(厚み18μm)の表面上に、バーコートの要領にて100μmで均一な厚さに塗布した。塗布後に38℃×RH97%以上で180秒で吸湿させた後、直ちに60℃の純水中に浸漬し、ポリアミド酸を凝固させて多孔質膜とした。引き続き温度50℃の純水中で水洗を行い、その後、120℃で20分間乾燥させた。乾燥後、窒素雰囲気中にて430℃で30分間熱処理し、ポリアミド酸をイミド転化させ、銅箔上に形成されたポリイミド多孔質膜を得た。
Example 2
BPDA (3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride) and diamine mixture (p-phenylenediamine / 4,4′-diaminodiphenyl ether = 85/15) are obtained by polymerizing approximately equimolar amounts. A film-forming solution (dope) consisting of 19 parts by weight of polyamic acid and 81 parts by weight of N-methyl-2-pyrrolidone (NMP) was applied to the surface of a copper foil (thickness 18 μm) at 100 μm in the manner of bar coating. It was applied to a uniform thickness. After the application, moisture was absorbed at 38 ° C. × RH 97% or more in 180 seconds, and then immediately immersed in pure water at 60 ° C. to solidify the polyamic acid to obtain a porous film. Subsequently, it was washed with pure water at a temperature of 50 ° C. and then dried at 120 ° C. for 20 minutes. After drying, heat treatment was performed at 430 ° C. for 30 minutes in a nitrogen atmosphere to convert the polyamic acid into an imide, thereby obtaining a polyimide porous film formed on the copper foil.

必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表2に示す。   The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 2.

実施例3
実施例2において、同じ製膜溶液を用いて75μmで塗布したこと以外は、実施例2と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表2に示す。
Example 3
In Example 2, a polyimide porous film formed on a copper foil was obtained under exactly the same conditions as in Example 2 except that the same film forming solution was used to apply at 75 μm. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 2.

実施例4
実施例2において、同じポリアミド酸18重量部とNMP82重量部からなる製膜溶液を用いて75μmで塗布したこと以外は、実施例2と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表2に示す。
Example 4
In Example 2, the polyimide porous film formed on the copper foil under exactly the same conditions as in Example 2 except that coating was performed at 75 μm using a film forming solution consisting of 18 parts by weight of the same polyamic acid and 82 parts by weight of NMP. A membrane was obtained. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 2.

実施例5
実施例2において、同じポリアミド酸17重量部とNMP83重量部からなる製膜溶液を用いたこと以外は、実施例2と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表2に示す。
Example 5
In Example 2, a polyimide porous film formed on a copper foil was obtained under exactly the same conditions as in Example 2 except that a film-forming solution consisting of 17 parts by weight of the same polyamic acid and 83 parts by weight of NMP was used. . The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 2.

実施例6
実施例2において、同じポリアミド酸16重量部とNMP84重量部からなる製膜溶液を用いたこと以外は、実施例2と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表2に示す。
Example 6
In Example 2, a polyimide porous film formed on a copper foil was obtained under exactly the same conditions as in Example 2 except that a film forming solution consisting of 16 parts by weight of the same polyamic acid and 84 parts by weight of NMP was used. . The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 2.

比較例7
実施例2において、BPDAとジアミン混合物(p−フェニレンジアミン/4,4’−ジアミノジフェニルエーテル=68/32)を略等モル重合させて得られたポリアミド酸19重量部とNMP81重量部からなる製膜溶液を用いたこと以外は、実施例2と全く同じ条件で、銅箔上に形成されたポリイミド多孔質膜を得た。必要に応じて銅箔をエッチングして除去した後、得られた多孔質膜を用いて上記の評価を行った。その結果を表2に示す。
Comparative Example 7
In Example 2, a film formed of 19 parts by weight of polyamic acid and 81 parts by weight of NMP obtained by polymerizing approximately equimolar amounts of BPDA and a diamine mixture (p-phenylenediamine / 4,4′-diaminodiphenyl ether = 68/32). A polyimide porous film formed on the copper foil was obtained under exactly the same conditions as in Example 2 except that the solution was used. The copper foil was etched and removed as necessary, and then the above evaluation was performed using the obtained porous film. The results are shown in Table 2.

比較例8
実施例2において、BPDAとジアミン混合物(p−フェニレンジアミン/4,4’−ジアミノジフェニルエーテル=0/100)を略等モル重合させて得られたポリアミド酸19重量部とNMP81重量部からなる製膜溶液を用いたこと以外は、実施例2と全く同じ条件で、銅箔上にポリイミド多孔質膜を形成しようとしたが、得られたものは多孔質構造を有しなかった。
Comparative Example 8
In Example 2, a film formed of 19 parts by weight of polyamic acid and 81 parts by weight of NMP obtained by polymerizing approximately equimolar amounts of BPDA and a diamine mixture (p-phenylenediamine / 4,4′-diaminodiphenyl ether = 0/100). An attempt was made to form a polyimide porous film on the copper foil under exactly the same conditions as in Example 2 except that the solution was used, but the resulting product did not have a porous structure.

Figure 0004159090
Figure 0004159090

Figure 0004159090
表1〜表2の結果が示すように、本発明の多孔質膜の製造方法によると、空孔率60〜70%、内部の孔径1.0〜2.0μm、引張強度50〜80MPa、誘電率1.6〜1.8、誘電正接0.002〜0.003の多孔質膜を製造することができる。このように空孔率が高く内部孔径が比較的大きい多孔質膜は、開口率の小さい薄膜が表面に形成される吸湿条件によって製造することができる。
Figure 0004159090
As shown in the results of Tables 1 and 2, according to the method for producing a porous membrane of the present invention, the porosity is 60 to 70%, the internal pore diameter is 1.0 to 2.0 μm, the tensile strength is 50 to 80 MPa, the dielectric is A porous film having a rate of 1.6 to 1.8 and a dielectric loss tangent of 0.002 to 0.003 can be manufactured. As described above, a porous film having a high porosity and a relatively large internal pore diameter can be produced under moisture absorption conditions in which a thin film having a small aperture ratio is formed on the surface.

これに対して、吸湿量(時間)が十分でない比較例1〜2では、空孔率が低下し、誘電率も大きく、孔径も小さくなる。また、樹脂濃度が低い比較例3でも、空孔率が低下し、誘電率も大きく、孔径も小さくなる。樹脂濃度が低く吸湿量(時間)が十分でない比較例4では、空孔率がやや低下し、誘電率も大きく、引張強度が低く、孔径も小さくなる。樹脂濃度が低く吸湿量(時間)より小さい比較例5では、ボイド構造となり、引張強度が低くなる。吸湿量(時間)がより小さい比較例6では、空孔率が更に低下し、誘電率も大きく、孔径も小さくなる。なお、樹脂組成が異なる比較例7では、膜面にスジが多く発生し、商品化が困難な膜しか得られなかった。   On the other hand, in Comparative Examples 1 and 2 in which the amount of moisture absorption (time) is not sufficient, the porosity is lowered, the dielectric constant is large, and the pore diameter is also small. Also in Comparative Example 3 where the resin concentration is low, the porosity decreases, the dielectric constant increases, and the pore diameter decreases. In Comparative Example 4 in which the resin concentration is low and the moisture absorption amount (time) is not sufficient, the porosity is slightly reduced, the dielectric constant is large, the tensile strength is low, and the pore diameter is also small. In Comparative Example 5 in which the resin concentration is low and smaller than the moisture absorption amount (time), a void structure is formed and the tensile strength is low. In Comparative Example 6 in which the amount of moisture absorption (time) is smaller, the porosity is further reduced, the dielectric constant is increased, and the pore diameter is also decreased. In Comparative Example 7 having a different resin composition, a lot of streaks occurred on the film surface, and only a film that was difficult to commercialize was obtained.

本発明の実施例1で得られた多孔質膜の表面の電子顕微鏡写真Electron micrograph of the surface of the porous membrane obtained in Example 1 of the present invention

Claims (3)

ビフェニルテトラカルボン酸二無水物、パラフェニレンジアミンPPD、およびジアミノジフェニルエーテルDDEを、PPD/DDEのモル比70/30〜100/0で重合して得られるポリアミド酸が溶媒に溶解した濃度16〜19重量%の溶液を基材に流延する流延工程と、流延した溶液を温度30〜45℃、相対湿度90%以上で絶対湿度30g/m3 以上の雰囲気に2〜4分間接触させる吸湿工程と、それを20〜70℃の水系凝固液に浸漬して多孔質膜を形成する凝固工程と、その多孔質膜のイミド転化を行うイミド化工程とを含む多孔質膜の製造方法。 A concentration of 16 to 19 weight in which polyamic acid obtained by polymerizing biphenyltetracarboxylic dianhydride, paraphenylenediamine PPD, and diaminodiphenyl ether DDE at a PPD / DDE molar ratio of 70/30 to 100/0 was dissolved in a solvent. % Casting process on a substrate, and a moisture absorption process for contacting the cast solution in an atmosphere having a temperature of 30 to 45 ° C., a relative humidity of 90% or more and an absolute humidity of 30 g / m 3 or more for 2 to 4 minutes. And a solidification step of immersing it in an aqueous coagulation solution at 20 to 70 ° C. to form a porous membrane, and an imidization step of performing imide conversion of the porous membrane. 前記吸湿工程は、流延した溶液を温度30〜40℃、相対湿度97%以上で絶対湿度30g/m3 以上の雰囲気に2分30秒〜3分30秒間接触させる工程である請求項1記載の多孔質膜の製造方法。 2. The moisture absorption step is a step of bringing the cast solution into contact with an atmosphere having a temperature of 30 to 40 ° C. and a relative humidity of 97% or more and an absolute humidity of 30 g / m 3 or more for 2 minutes 30 seconds to 3 minutes 30 seconds. A method for producing a porous membrane. 前記吸湿工程の終了時から5秒以内に、前記水系凝固液への浸漬を行う請求項1又は2に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 1 or 2, wherein the immersion in the aqueous coagulation liquid is performed within 5 seconds from the end of the moisture absorption step.
JP2003295151A 2003-08-19 2003-08-19 Method for producing porous membrane Expired - Fee Related JP4159090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295151A JP4159090B2 (en) 2003-08-19 2003-08-19 Method for producing porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295151A JP4159090B2 (en) 2003-08-19 2003-08-19 Method for producing porous membrane

Publications (2)

Publication Number Publication Date
JP2005060606A JP2005060606A (en) 2005-03-10
JP4159090B2 true JP4159090B2 (en) 2008-10-01

Family

ID=34371486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295151A Expired - Fee Related JP4159090B2 (en) 2003-08-19 2003-08-19 Method for producing porous membrane

Country Status (1)

Country Link
JP (1) JP4159090B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814225B1 (en) 2010-04-07 2018-01-02 우베 고산 가부시키가이샤 Porous polyimide membrane and process for production thereof
US10014504B2 (en) 2012-01-18 2018-07-03 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904794B2 (en) * 2005-12-05 2012-03-28 東洋紡績株式会社 Porous membrane and flexible printed circuit board using the same
JP5117150B2 (en) * 2007-09-21 2013-01-09 株式会社ダイセル Laminated body having porous layer and method for producing the same, and porous membrane and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814225B1 (en) 2010-04-07 2018-01-02 우베 고산 가부시키가이샤 Porous polyimide membrane and process for production thereof
US10014504B2 (en) 2012-01-18 2018-07-03 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Also Published As

Publication number Publication date
JP2005060606A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP7179912B2 (en) Film for millimeter wave antenna
CN107011512B (en) Polyimide resin precursor
JP6567590B2 (en) Film for millimeter wave antenna
US7311966B2 (en) Porous insulating film and its laminates
KR100665410B1 (en) Process for producing heat-resistant polymer foam, heat-resistant polymer foam produced therefrom, and foam substrate comprising the same
JP2003026850A (en) Method for manufacturing porous polyimide resin and porous polyimide resin
JP4132825B2 (en) Metal foil laminate and manufacturing method thereof
JP4159090B2 (en) Method for producing porous membrane
JP4794981B2 (en) Low dielectric polyimide film, method for producing the same, and laminate for wiring board
KR102605943B1 (en) Polyimide resin precursor, polyimide resin, metal laminate, laminate and flexible printed wiring board
CN113372591B (en) Method for rapidly preparing ultrathin polyimide film
JP2004082372A (en) Insulating material for high frequency wiring board and high frequency wiring board
JP2002337268A (en) Metal foil laminate and its manufacturing method
JP4131367B2 (en) Base film for flexible printed wiring board and method for producing the same
JP2001294704A (en) Porous polyimide film and its production method
JP2003201596A (en) Method of depositing metallic layer and metallic foil stacked matter
JP2002361661A (en) Method for manufacturing porous film for wiring substrate
JP2761655B2 (en) Manufacturing method of flexible printed circuit board
JPS61111182A (en) Manufacture of polyimide-metallic foil composite film
JP2005166828A (en) Laminated body for double sided wiring board and manufacturing method thereof
JP2004260038A (en) Method for forming compound insulation layer and method for manufacturing wiring board
JP2002043743A (en) Laminate for printed wiring board and its manufacturing method
JP2003258482A (en) Polyimide porous film composite material and electromagnetic wave absorber
JP2004207640A (en) Method for forming plated through hole
JP2004228435A (en) Method for manufacturing porous film for wiring substrate and method for manufacturing prepreg for wiring substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees