JP4157936B2 - Magnetic powder and method for producing the same - Google Patents

Magnetic powder and method for producing the same Download PDF

Info

Publication number
JP4157936B2
JP4157936B2 JP2003361215A JP2003361215A JP4157936B2 JP 4157936 B2 JP4157936 B2 JP 4157936B2 JP 2003361215 A JP2003361215 A JP 2003361215A JP 2003361215 A JP2003361215 A JP 2003361215A JP 4157936 B2 JP4157936 B2 JP 4157936B2
Authority
JP
Japan
Prior art keywords
magnetic powder
fept
range
powder according
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003361215A
Other languages
Japanese (ja)
Other versions
JP2005089856A (en
Inventor
和幸 田路
王高 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2003361215A priority Critical patent/JP4157936B2/en
Publication of JP2005089856A publication Critical patent/JP2005089856A/en
Application granted granted Critical
Publication of JP4157936B2 publication Critical patent/JP4157936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は,高密度磁気記録媒体,ナノスケール・エレクトロニクス,永久磁石材料,生体分子標識剤,薬剤キャリアなどに用いることのできる磁性粉およびその製造方法に関するものである。本発明の磁性粉は,厳密には後述の一般式によって表される成分組成をもつ粒子からなるが,T=Fe,M=Ptである場合のFePt系合金粒子がその代表例として挙げられるので,本明細書では該材料の粒子を単にFePt粒子,若しくはFePtナノ粒子と呼ぶことがある。  The present invention relates to a magnetic powder that can be used for a high-density magnetic recording medium, nanoscale electronics, a permanent magnet material, a biomolecule labeling agent, a drug carrier, and the like, and a method for producing the same. Strictly speaking, the magnetic powder of the present invention is composed of particles having a component composition represented by the general formula described later, but FePt-based alloy particles in the case where T = Fe and M = Pt are mentioned as typical examples. In the present specification, the particles of the material may be simply referred to as FePt particles or FePt nanoparticles.

高密度磁気記録媒体では,記録密度の上昇のために記録単位のサイズ低下が必要であるが,従来のスパッタ薄膜を用いた媒体では,熱ゆらぎや結晶粒子サイズの微細化やバラツキ等の問題から高記録密度化の限界に近づいている。このようなことから,最近,高密度磁気記録媒体として,熱ゆらぎの問題がなく,高い異方性を有し且つ大きな保磁力を示すFePt系の磁性金属ナノ粒子が注目されている。  In high-density magnetic recording media, it is necessary to reduce the size of the recording unit in order to increase the recording density. However, in conventional media using sputtered thin films, there are problems such as thermal fluctuations, crystal grain size miniaturization, and variations. The limit of high recording density is approaching. Therefore, recently, as a high-density magnetic recording medium, FePt-based magnetic metal nanoparticles that have no problem of thermal fluctuation, have high anisotropy, and exhibit a large coercive force have attracted attention.

このような磁性金属ナノ粒子に関して,特許文献1には,鉄ペンタカルボニルの熱分解反応と,白金(II)アセチルアセトナートの多価アルコール(本明細書中,多価アルコールをポリオールまたはポリアルコールと表現している場合があるが,多価アルコール,ポリオール,ポリアルコールは同義である)による還元作用を同時に行わせることにより,単分散状態のFePt合金粒子を生成する方法が記載されている。非特許文献1には,オクタンを油相,CTAB(cetyl trimethyl ammonium bromide)を界面活性剤とした,油中水滴型(W/0 type)逆ミセルを反応場として,水素化ホウ素を用いて金属イオンを還元する方法が記載されている。  Regarding such magnetic metal nanoparticles, Patent Document 1 discloses a thermal decomposition reaction of iron pentacarbonyl and a polyhydric alcohol of platinum (II) acetylacetonate (in this specification, polyhydric alcohol is converted to polyol or polyalcohol. (Although sometimes expressed, polyhydric alcohol, polyol, and polyalcohol have the same meaning), a method of generating monodispersed FePt alloy particles by simultaneously performing a reducing action is described. Non-Patent Document 1 discloses that metal is formed using boron hydride using water-in-oil type (W / 0 type) reverse micelles with octane as the oil phase and CTAB (cetyl trimethyl ammonium bromide) as the surfactant as the reaction field. A method for reducing ions is described.

これらの方法で得られるFePt粒子の結晶構造は,不規則相であるfcc(面心立方晶)構造であるため,ナノオーダーの粒子では常温において超常磁性を示す。したがって強磁性粒子として使用する場合は,熱処理によってL10規則相(fct(面心正方晶)構造)に結晶構造転移させる必要がある。Since the crystal structure of FePt particles obtained by these methods is an fcc (face centered cubic) structure which is an irregular phase, nano-order particles exhibit superparamagnetism at room temperature. Therefore, when used as the ferromagnetic particles, it is necessary to crystal structure transition in L 10 ordered phase by heat treatment (fct (face-centered tetragonal) structure).

この熱処理は,不規則相から規則相への結晶構造転移温度(Tt)以上で処理する必要があるが,一般に450℃以上の高温で行う。この熱処理の際,熱により粒子同士の合体による巨大化が起こるために粒度分布の分布幅が広がり,粒子は単磁区と多磁区構造に混在するようになって高密度磁気記録媒体には適さなくなる。したがって,粒子合成直後の粒径を保存したまま,強磁性を有するFePt粒子を得るためには,粒子同士の合体を防止する保護剤で粒子を被覆することや,何らかの方法によりTtを低下させ,熱処理温度がより低温で実施できるようにすることが有効である。  This heat treatment needs to be performed at a crystal structure transition temperature (Tt) from the disordered phase to the ordered phase, but is generally performed at a high temperature of 450 ° C. or higher. During this heat treatment, the enlarging due to the coalescence of the particles occurs due to the heat, so the distribution range of the particle size distribution is widened, and the particles are mixed in a single magnetic domain and a multi-domain structure, making them unsuitable for high-density magnetic recording media. . Therefore, in order to obtain FePt particles having ferromagnetism while preserving the particle size immediately after particle synthesis, the particles are coated with a protective agent that prevents coalescence of the particles, or Tt is reduced by some method, It is effective to be able to carry out the heat treatment at a lower temperature.

非特許文献2には,ポリオール法によるFePt粒子合成の際に,Ag,Cu,Sb,Bi,Pbなどの元素を添加すると,fcc構造からfct構造への結晶構造転移温度(Tt)を低下できる旨が記載されている。  In Non-Patent Document 2, when elements such as Ag, Cu, Sb, Bi, and Pb are added during the synthesis of FePt particles by the polyol method, the crystal structure transition temperature (Tt) from the fcc structure to the fct structure can be lowered. The effect is described.

非特許文献3には,ポリオール法によるFePt粒子合成の際に,ポリオールとしてテトラエチレングリコール(TEG)を使用し,白金及び鉄アセチルアセトネートを300℃で還元すると,合成されたままで,fct構造を有するFePtナノ粒子が得られたと記載されている。
特許第3258295号公報(特開2000−54012号公報) Journal of Applied Physics,Vol.87,No.9,1 May 2000,p.5615−5617 電子材料2002年1月,p61−67 Japanese Journal of Applied Physics,Vol.42,No.4A,1 April2003,p.L350−352
In Non-Patent Document 3, when FePt particles are synthesized by the polyol method, tetraethylene glycol (TEG) is used as a polyol, and when platinum and iron acetylacetonate are reduced at 300 ° C., the fct structure remains as synthesized. It is described that FePt nanoparticles having the same were obtained.
Japanese Patent No. 3258295 (Japanese Patent Laid-Open No. 2000-54012) Journal of Applied Physics, Vol. 87, no. 9, 1 May 2000, p. 5615-5617 Electronic Materials January 2002, p61-67 Japan Journal of Applied Physics, Vol. 42, no. 4A, 1 April 2003, p. L350-352

特許文献1,非特許文献1および2の方法で得られるFePt粒子は,反応直後のものは磁性を持たないfcc(面心立方晶)構造であり,そのままでは磁気記録媒体用途の磁性粒子として利用することはできない。このため,fct結晶構造転移温度(Tt)以上に加熱処理することにより,強磁性を発現するfct(面心正方晶)構造に転移させる必要がある。  The FePt particles obtained by the methods of Patent Document 1 and Non-Patent Documents 1 and 2 have an fcc (face-centered cubic) structure that does not have magnetism immediately after the reaction, and are used as magnetic particles for magnetic recording media as they are. I can't do it. For this reason, it is necessary to transfer to an fct (face-centered tetragonal) structure that exhibits ferromagnetism by heat treatment at or above the fct crystal structure transition temperature (Tt).

しかし,該方法で得られるFePt粒子の結晶構造転移温度は450℃程度である。このため,fct構造に転移するには450℃以上の温度での熱処理が必要である。したがって,このFePt粒子からなる集合体(粉体)をそのまま450℃以上の温度に加熱すると,金属粒子同士が合体して巨大化してしまい,fct構造が得られたとしても,高密度記録媒体の用途に適したナノ粒子形態とはならないし,粒子同士の合体が一様に進行しないのが普通であるから,粒径分布が発生し,これに伴って磁気特性に大きな分布を生じて,実用上の問題となる。  However, the crystal structure transition temperature of FePt particles obtained by this method is about 450 ° C. For this reason, a heat treatment at a temperature of 450 ° C. or higher is required for transition to the fct structure. Therefore, when the aggregate (powder) made of FePt particles is heated to a temperature of 450 ° C. or more as it is, the metal particles coalesce and become enormous, and even if an fct structure is obtained, the high-density recording medium It is not a nanoparticle form suitable for the application, and it is normal that the coalescence of the particles does not proceed uniformly. Therefore, a particle size distribution occurs, and this causes a large distribution in the magnetic properties. It becomes the problem above.

加熱によって粒子同士が合体して巨大化するのを防止するには,各粒子が互いに所定の間隔をあけて位置決めされた状態で,例えば基板上に各粒子を所定位置に固定した状態で,あるいは粒子同士の焼結を防止するための何等かの障壁を設けた状態で,該熱処理を行うことが必要である。しかし,このような熱処理を実現するには,粒子の規則的な配置を行うための精密技術が必要である。それが技術的に可能であるとしても,反応直後に得られたFePt粒子が既にfct構造を有していれば,このような熱処理が省略もしくは簡略(例えば熱処理温度の低下)になるので,そのメリットは甚大である。  In order to prevent the particles from being combined and enlarged by heating, each particle is positioned at a predetermined interval, for example, with each particle fixed at a predetermined position on the substrate, or It is necessary to perform the heat treatment in a state where some kind of barrier is provided to prevent the particles from being sintered. However, in order to realize such a heat treatment, a precision technique for regularly arranging particles is necessary. Even if it is technically possible, if the FePt particles obtained immediately after the reaction already have an fct structure, such a heat treatment is omitted or simplified (for example, a decrease in the heat treatment temperature). The benefits are enormous.

非特許文献3には,その可能性が示された。すなわち,合成されたまま状態でfct構造をもつFePtナノ粒子が得られる可能性が示された。しかし,該文献に記載された方法で得られたFePtナノ粒子粉末は,テトラエチレングリコール(TEG)を用いて300℃で合成する方法のものでも,室温における保磁力Hcは370エルステッド(Oe)に過ぎない。このFePtナノ粒子粉末は,同じくTEG(テトラエチレングリコール)を用いて260℃で合成したものに比べると,fct構造を有する点で区別できる。しかし,室温での保磁力Hcが370Oe程度では,実際の磁気記録用に適用するには難がある。  Non-patent document 3 shows the possibility. That is, it was shown that FePt nanoparticles having an fct structure can be obtained as synthesized. However, even if the FePt nanoparticle powder obtained by the method described in the document is synthesized at 300 ° C. using tetraethylene glycol (TEG), the coercive force Hc at room temperature is 370 Oersted (Oe). Not too much. This FePt nanoparticle powder can be distinguished in that it has an fct structure as compared to that synthesized at 260 ° C. using TEG (tetraethylene glycol). However, when the coercive force Hc at room temperature is about 370 Oe, it is difficult to apply to actual magnetic recording.

したがって,本発明の課題は,前記の非特許文献3に示されたFePtナノ粒子の製法をさらに改善して,実際の磁気記録用材料に適した高い保磁力を有するfct構造のFePtナノ粒子粉体を直接合成することにある。  Therefore, an object of the present invention is to further improve the method for producing FePt nanoparticles shown in Non-Patent Document 3 above, and to provide a FePt nanoparticle powder having a high coercive force suitable for an actual magnetic recording material. It is to synthesize the body directly.

本発明者らは,合成反応終了の時点でfct構造を有し,室温での保磁力Hcが500Oe以上,場合によっては1000Oe以上,さらには1500Oe以上を示すことができるFePtナノ粒子粉体を得ることに成功した。  The present inventors obtain a FePt nanoparticle powder having an fct structure at the end of the synthesis reaction and having a coercive force Hc at room temperature of 500 Oe or more, in some cases 1000 Oe or more, and even 1500 Oe or more. Succeeded.

すなわち本発明によれば,一般式〔T1−X1−Y(ただし,TはFeまたはCoの1種または2種,MはPtまたはPdの1種または2種,ZはAg,Cu,Bi,Sb,PbおよびSnからなる群から選ばれる少なくとも1種,Xは0.3〜0.7の範囲,Yは0.7〜1.0の範囲である)で表され,面心正方晶(fct)の割合が10〜100%の範囲にある磁性体であって,室温での保磁力が500Oe以上,好ましくは1000Oe以上,さらに好ましくは1500Oe以上,室温での飽和磁化量σsが20emu/g以上,平均粒径が50nm以下,好ましくは20nm以下である流動性を有する磁性粉を提供する。That is, according to the present invention, the general formula [T X M 1-X ] Y Z 1-Y (where T is one or two of Fe or Co, M is one or two of Pt or Pd, Z Is at least one selected from the group consisting of Ag, Cu, Bi, Sb, Pb and Sn, X is in the range of 0.3 to 0.7, and Y is in the range of 0.7 to 1.0. A magnetic material having a face-centered tetragonal (fct) ratio in the range of 10 to 100%, and has a coercive force at room temperature of 500 Oe or more, preferably 1000 Oe or more, more preferably 1500 Oe or more, and saturation at room temperature. Provided is a magnetic powder having fluidity with a magnetization amount σs of 20 emu / g or more and an average particle size of 50 nm or less, preferably 20 nm or less.

さらに本発明によれば,一般式〔T1−X1−Y(ただし,TはFeまたはCoの1種または2種,MはPtまたはPdの1種または2種,ZはAg,Cu,Bi,Sb,PbおよびSnからなる群から選ばれる少なくとも1種,Xは0.3〜0.7の範囲,Yは0.7〜1.0の範囲である)で表される磁性粉を製造するにあたり,
前記のTおよびM,さらに必要に応じてZの成分を含む金属塩を,沸点が270℃以上の多価アルコールおよび/またはこれらの誘導体からなる液に,固形分が残存しない状態にまで溶解したあと,その溶液を不活性ガス雰囲気下で270℃以上の温度で且つ大気圧を超える圧力に保持して該金属塩を該多価アルコールおよび/またはこれらの誘導体で還元し,この還元によって該磁性粉を合成すること,
そのさい,この合成された粒子粉末が,合成された状態において,面心正方晶の割合が10〜100%の範囲にあり,室温での保磁力が500Oe以上,室温での飽和磁化σsが20emu/g以上,平均粒径が50nm以下であること,
を特徴とする磁性粉の製造法を提供する。
Further, according to the present invention, the general formula [T X M 1-X ] Y Z 1-Y (where T is one or two of Fe or Co, M is one or two of Pt or Pd, Z Is at least one selected from the group consisting of Ag, Cu, Bi, Sb, Pb and Sn, X is in the range of 0.3 to 0.7, and Y is in the range of 0.7 to 1.0. In producing magnetic powder
The metal salt containing the components T and M, and optionally Z, was dissolved in a liquid composed of a polyhydric alcohol having a boiling point of 270 ° C. or higher and / or a derivative thereof so that no solid content remained. Then, the metal salt is reduced with the polyhydric alcohol and / or derivative thereof while maintaining the solution at a temperature of 270 ° C. or higher and a pressure exceeding atmospheric pressure in an inert gas atmosphere, and the reduction causes the magnetic property to be reduced. Synthesizing the powder,
At this time, in the synthesized state, the ratio of the face-centered tetragonal crystal is in the range of 10 to 100%, the coercive force at room temperature is 500 Oe or more, and the saturation magnetization σs at room temperature is 20 emu. / G or more and the average particle size is 50 nm or less,
A method for producing a magnetic powder characterized by the following:

前記の多価アルコールとしては,トリエチレングリコールまたはテトラエチレングリコールの1種または2種であることができ,T,MおよびZ成分の塩としては,これらの成分のアセチルアセトナートであることができる。  The polyhydric alcohol may be one or two of triethylene glycol or tetraethylene glycol, and the salt of T, M and Z components may be acetylacetonate of these components. .

非特許文献3に記載されているように,ポリオール法によるFePt粒子合成の際に,テトラエチレングリコール(TEG)を用いて白金及び鉄アセチルアセトネートを260℃で還元しても,fct構造をもつFePtナノ粒子を合成することは困難であるが,テトラエチレングリコール(TEG)を使用して該アセチルアセトネートを300℃で還元すると,合成されたままでfct構造を有するFePtナノ粒子を得ることができる。  As described in Non-Patent Document 3, when FePt particles are synthesized by the polyol method, even if platinum and iron acetylacetonate are reduced at 260 ° C. using tetraethylene glycol (TEG), it has an fct structure. Although it is difficult to synthesize FePt nanoparticles, when the acetylacetonate is reduced at 300 ° C. using tetraethylene glycol (TEG), FePt nanoparticles having an fct structure can be obtained as synthesized. .

本発明者らは,この高沸点のポリアルコールを用いるポリオール法を実施するさいに,その還元反応を加圧下で実施すると,合成されたfct構造のFePtナノ粒子粉末は高い保磁力を安定して有することを見い出した。すなわち,本発明者らは出来るだけ沸点の高い多価アルコール類を還元剤として使用して,FePtナノ粒子を合成する実験を繰り返してきたが,沸点が270℃以上の多価アルコール類を使用し,不活性ガス雰囲気下で反応温度を270℃以上として,該多価アルコール中のFeイオンおよびPtイオンを還流下で還元するさいに,還元反応中の雰囲気圧力を大気圧を超える圧力に保持した状態で還元を進行させると(すなわち加圧下で還元反応を進行させると),保磁力の高いfct構造のFePtナノ粒子粉末を直接的に合成できることがわかった。  When the present inventors performed the reduction reaction under pressure when carrying out the polyol method using this high-boiling polyalcohol, the synthesized fct-structured FePt nanoparticle powder stably exhibited high coercive force. Found to have. That is, the present inventors have repeated experiments to synthesize FePt nanoparticles using polyhydric alcohols having a boiling point as high as possible as a reducing agent, but using polyhydric alcohols having a boiling point of 270 ° C. or higher. In the inert gas atmosphere, the reaction temperature was set to 270 ° C. or higher, and the atmospheric pressure during the reduction reaction was maintained at a pressure exceeding atmospheric pressure when reducing Fe ions and Pt ions in the polyhydric alcohol under reflux. It was found that the FePt nanoparticle powder having the high coercive force and having the fct structure can be directly synthesized when the reduction proceeds in a state (that is, when the reduction reaction proceeds under pressure).

以下に本発明で特定する事項について説明する。  The matters specified by the present invention will be described below.

〔磁性体の成分組成と組織〕
本発明の磁性粉は,一般式〔T1−X1−Yで表される成分組成を有し,面心正方晶の割合が10〜100%の範囲にある金属組織を有する磁性体からなる。ただし,該一般式のTはFeまたはCoの1種または2種,MはPtまたはPdの1種または2種を表し,ZはAg,Cu,Bi,Sb,PbおよびSnからなる群から選ばれる少なくとも1種である。TとMは代表的にはFeとPtである。面心正方晶を形成する組成としてはX=0.5が理想的であるが,X:0.3〜0.7の範囲でも,面心正方晶が10〜100%の金属組織を得ることができる。Z成分は ポリオール法によるFePt粒子合成の際にfcc構造からfct構造への結晶構造転移温度(Tt)を低下させることができるが,場合によっては含有しなくてもよい。すなわち,Yの値は,Zの種類によって最適値は異なるが0.7〜1.0の範囲であればよい。Yが0.7未満の場合にはZが多くなりすぎてfct構造の発現を阻害するため,磁気特性の急激な悪化が起きるので好ましくない。本発明に従う磁性粒子の組成分析はEDX測定で行うことができる。本発明の磁性粉は,前記の一般式で表される成分組成の磁性体を主成分とするが,この磁性体中に製造上不可避的に混入する不純物等が存在しても,特性に大きな影響を与えない限り,そのような不純物の存在は許容される。
[Component composition and structure of magnetic material]
The magnetic powder of the present invention has a component composition represented by the general formula [T X M 1-X ] Y Z 1-Y , and has a metal structure having a face-centered tetragonal ratio in the range of 10 to 100%. It consists of a magnetic material. However, T in the general formula represents one or two of Fe or Co, M represents one or two of Pt or Pd, and Z is selected from the group consisting of Ag, Cu, Bi, Sb, Pb and Sn. At least one kind. T and M are typically Fe and Pt. X = 0.5 is ideal as a composition for forming a face-centered tetragonal crystal, but a metal structure with a face-centered tetragonal crystal of 10 to 100% can be obtained even in the range of X: 0.3 to 0.7. Can do. The Z component can lower the crystal structure transition temperature (Tt) from the fcc structure to the fct structure during the synthesis of FePt particles by the polyol method, but may not be contained in some cases. That is, the value of Y may be in the range of 0.7 to 1.0 although the optimum value differs depending on the type of Z. When Y is less than 0.7, Z is too much to inhibit the expression of the fct structure, which is not preferable because the magnetic characteristics are rapidly deteriorated. The composition analysis of the magnetic particles according to the present invention can be performed by EDX measurement. The magnetic powder of the present invention is mainly composed of a magnetic material having the component composition represented by the above general formula. However, even if there are impurities inevitably mixed in the production of the magnetic material, the magnetic powder has great characteristics. The presence of such impurities is permissible as long as it has no effect.

本発明に従う磁性粉は,前記のようにFePtの粒子粉末が代表的である。このため,以下に主としてFePt粒子粉末を例として説明するが,本明細書において,FePt粒子粉末と言えば,実際には前記の一般式の金属粒子粉末を意味するものとする。  The magnetic powder according to the present invention is typically FePt particle powder as described above. Therefore, the FePt particle powder will be mainly described below as an example. However, in this specification, the term “FePt particle powder” actually means the metal particle powder of the above general formula.

〔面心正方晶の割合〕
本発明に従うFePt粒子粉末は,メスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100%の範囲にある。一般に,金属組織中における或る金属相の割合(その結晶構造の割合)は,X線回折のピーク強度の比較によって行われる場合が多い。しかし,本発明が対象とするFePt合金などでは,fcc構造(面心立方晶)とfct構造(面心正方晶)のX線回折パターンが殆ど同じであり,またfct構造のみから得られる(001)と(110)の反射は強度が非常に弱いので,これらのピークだけで定量化を行うことは困難である。
[Percentage of face-centered tetragonal crystals]
In the FePt particle powder according to the present invention, the volume ratio (ratio of face-centered tetragonal crystal) of the ferromagnetic structure measured by Mossbauer spectroscopy is in the range of 10 to 100%. In general, the proportion of a certain metal phase in the metal structure (the proportion of the crystal structure) is often determined by comparing the peak intensities of X-ray diffraction. However, in the FePt alloy and the like targeted by the present invention, the X-ray diffraction patterns of the fcc structure (face-centered cubic) and the fct structure (face-centered tetragonal) are almost the same, and can be obtained only from the fct structure (001). ) And (110) reflections are so weak that it is difficult to quantify only these peaks.

しかし,メスバウワー分光法で計測されるFePt合金についての強磁性構造の体積割合を解析することによって,そのfct構造の体積割合を算出することができる。そこで本発明においては,FePt粒子のfct構造の体積割合については,Fe原子のメスバウアー分光測定による強磁性構造の体積割合の解析によって,すなわち,Fe原子のメスバウアー分光測定による磁気秩序下にあるFe原子の個数割合を求めることによって,これをfct構造の体積割合とする。  However, the volume fraction of the fct structure can be calculated by analyzing the volume fraction of the ferromagnetic structure of the FePt alloy measured by Mossbauer spectroscopy. Therefore, in the present invention, the volume fraction of the fct structure of FePt particles is in the magnetic order by the analysis of the volume fraction of the ferromagnetic structure by Fe atom Mossbauer spectroscopy measurement, that is, Fe atom Mossbauer spectroscopy measurement. By determining the number ratio of Fe atoms, this is the volume ratio of the fct structure.

fct構造すなわち面心正方晶の体積割合(容積%)が10vol.%未満では磁気異方性が小さくなり,磁気記録材料として必要な保持力,および熱安定性が得られなくなる。磁気異方性が大き過ぎる場合には保磁力が大きくなりすぎるため,磁気記録媒体用途に用いることが困難になることもあるが,強力な永久磁石用途にはむしろ好適である。したがって,本発明の金属磁性粒子の面心正方晶(fct)の割合は,体積割合で10〜100%とする。  The volume ratio (volume%) of the fct structure, that is, the face-centered tetragonal crystal is 10 vol. If it is less than%, the magnetic anisotropy becomes small, and the necessary holding power and thermal stability as a magnetic recording material cannot be obtained. If the magnetic anisotropy is too large, the coercive force becomes too large, which may make it difficult to use the magnetic recording medium, but it is more suitable for a powerful permanent magnet. Therefore, the ratio of the face-centered tetragonal crystal (fct) of the metal magnetic particles of the present invention is 10 to 100% by volume.

〔粒径〕
本発明に従うFePt粒子粉末は,透過電子顕微鏡(TEM)観察による1次粒子の平均値が50nm以下,好ましくは30nm以下,さらに好ましくは20nm以下である。1次粒子はそれ以上には分けられない最小単位の粒子を言う。本発明に従って合成されたfct構造をもつFePt粒子粉末は,その合成された段階では,1次粒子の粒子間に静磁場作用が働くことから,多数の1次粒子が群をなして存在することが多い。すなわち,多数の1次粒子が集まって一つの群をなし,この群の多数が分散した状態に成りやすい。多数の1次粒子からなる一つの群を2次粒子と言う。この2次粒子の粒径は合成反応の条件によって様々であるが,後記の実施例のものでは約100μm程度である。いずれにしても,このような2次粒子が形成されていても,全体としてこの流動性を有する粉体を構成している。
〔Particle size〕
In the FePt particle powder according to the present invention, the average value of primary particles by transmission electron microscope (TEM) observation is 50 nm or less, preferably 30 nm or less, more preferably 20 nm or less. Primary particles are the smallest unit particles that cannot be further divided. The FePt particle powder having the fct structure synthesized according to the present invention has a large number of primary particles in a group because a static magnetic field action acts between the primary particles at the synthesis stage. There are many. That is, a large number of primary particles gather to form one group, and the majority of the group tends to be dispersed. One group consisting of a large number of primary particles is called secondary particles. The particle size of the secondary particles varies depending on the conditions of the synthesis reaction, but is about 100 μm in the examples described later. In any case, even if such secondary particles are formed, the powder having the fluidity as a whole is constituted.

〔磁気特性〕
本発明に従うFePt粒子粉末は,合成されたままの状態で(熱処理を施さない状態で)fct構造を有することから,室温での保磁力Hcが500Oe以上,好ましくは1000Oe以上,さらに好ましくは1500Oe以上を有する。本発明に従う磁性粉の角形比SQ(残留磁化/飽和磁化)は0.30以上,好ましくは0.40以上である。また本発明に従う磁性粉のSFDは1.1以下,好ましくは1.0以下である。
[Magnetic properties]
Since the FePt particle powder according to the present invention has an fct structure as it is synthesized (without heat treatment), the coercive force Hc at room temperature is 500 Oe or more, preferably 1000 Oe or more, more preferably 1500 Oe or more. Have The squareness SQ (residual magnetization / saturation magnetization) of the magnetic powder according to the present invention is 0.30 or more, preferably 0.40 or more. The SFD of the magnetic powder according to the present invention is 1.1 or less, preferably 1.0 or less.

図1は,後記の実施例で得られた本発明に従うFePt粒子粉末のヒステレシスループを示したものである。非特許文献3に示されたFePt粒子粉末のヒステレシスループと対比すると,本発明に従うFePt粒子粉末は,室温における保磁力Hcが非常に高く(図1の例では1966Oe),且つ角形比およびSFDが良好である。参考までに,非特許文献3に示されたFePt粒子粉末のヒステレシスループをそのまま図2に示した。  FIG. 1 shows a hysteresis loop of FePt particle powder according to the present invention obtained in the examples described later. Compared with the hysteresis loop of FePt particle powder shown in Non-Patent Document 3, the FePt particle powder according to the present invention has a very high coercive force Hc at room temperature (1966 Oe in the example of FIG. 1), and has a squareness ratio and SFD. It is good. For reference, the hysteresis loop of FePt particle powder shown in Non-Patent Document 3 is shown in FIG.

本発明に従うFePt粒子粉末の飽和磁化量σsは20emu/g以上,好ましくは30emu/g以上である。図1の磁性粉の飽和磁化量σsは52emu/gである。図1の磁性粉は後記の実施例で得られたものであるが,その磁気特性の測定は次のようにして行ったものである。まず、反応終了後の液に3倍量のメタノールを添加したあと遠心分離器にかけ,上澄み液を取り除く。上澄み液を除いたあとの残留分(粒子粉末)にメタノール100mLを添加して超音波洗浄槽に装填し,この超音波洗浄槽で該粒子粉末を分散させ,得られた分散液を遠心分離器にかけたあと上澄み液を取り除く。得られた残留分(粒子粉末)を同じくメタノールを加えて超音波洗浄槽および遠心分離器で処理する洗浄操作を,さらに2回繰り返す。最後に上澄み液を分別して得られたFePtナノ粒子粉末含有物を真空乾燥機で十分に乾燥する。この乾燥粉をカプセルに詰め,測定中サンプルが動かないように、接着剤で十分に固定し,振動試料型磁力計(VSM)を用いて測定する。試料をカプセルに詰めるときには磁化方向を配向させる操作等は実施しなかった。  The saturation magnetization σs of the FePt particle powder according to the present invention is 20 emu / g or more, preferably 30 emu / g or more. The saturation magnetization amount σs of the magnetic powder in FIG. 1 is 52 emu / g. The magnetic powder in FIG. 1 was obtained in the examples described later, and the magnetic properties were measured as follows. First, 3 times the amount of methanol is added to the liquid after completion of the reaction, and then centrifuged to remove the supernatant. 100 mL of methanol is added to the residue (particle powder) after removing the supernatant, and the mixture is loaded into an ultrasonic cleaning tank. The particle powder is dispersed in this ultrasonic cleaning tank, and the resulting dispersion is centrifuged. Remove the supernatant after applying. The washing operation in which the obtained residue (particle powder) is similarly treated with methanol and treated with an ultrasonic washing tank and a centrifuge is repeated twice more. Finally, the FePt nanoparticle powder-containing material obtained by separating the supernatant is sufficiently dried with a vacuum dryer. The dried powder is packed into a capsule, and fixed with an adhesive so that the sample does not move during measurement, and measured using a vibrating sample magnetometer (VSM). When the sample was packed into the capsule, no operation for orienting the magnetization direction was performed.

本発明の磁性粉は前記のように合成されたままの状態で優れた磁気特性を有するので,このまま磁気記録媒体用の磁性粉として適用が可能である。また,熱処理を施す場合にあってもその簡略化ができる。そのため,流動性を有する粉末の状態として回収することが可能である。  Since the magnetic powder of the present invention has excellent magnetic properties as synthesized as described above, it can be applied as it is as a magnetic powder for a magnetic recording medium. In addition, the heat treatment can be simplified. For this reason, it can be recovered as a powder having fluidity.

〔結晶構造転移開始温度〕
本発明に従うFePt粒子粉末はfct構造が10〜100vol.%であり,fcc構造はその残部である。この残りのfcc構造をfct構造に転移するための転移開始温度は,特許文献1や非特許文献1のように全てfcc構造のFePt粒子をfct構造に転移するための転移開始温度(450℃以上)より低くなる。後記の実施例1のものではfct構造が殆どを占めるので,転移開始温度は観測できなかった。この転移開始温度は,示差走査熱量計の測定による発熱ピークから決定することができる。
[Crystal structure transition start temperature]
The FePt particle powder according to the present invention has an fct structure of 10 to 100 vol. % And the fcc structure is the balance. The transition start temperature for transferring the remaining fcc structure to the fct structure is the same as that for transferring the fcc structure FePt particles to the fct structure as in Patent Document 1 and Non-patent Document 1 (450 ° C. or higher). ) Lower. In Example 1 described later, since the fct structure occupies most, the transition start temperature could not be observed. This transition start temperature can be determined from an exothermic peak measured by a differential scanning calorimeter.

〔製造法〕
非特許文献3の製法では保磁力Hc=370Oeのfct構造のFePt粒子粉末が得られている。本発明によれば,その限界を超えて,高い保磁力を有するfct構造のFePt粒子を直接的に合成することができる。本発明法の要旨は,前記の一般式のTおよびM,さらに必要に応じてZの成分を含む金属塩を,沸点が270℃以上の多価アルコールおよび/またはこれらの誘導体からなる液に,固形分が残存しない状態にまで溶解したあと,その溶液を不活性ガス雰囲気下で270℃以上の温度で且つ大気圧を超える圧力に保持して該金属塩を該多価アルコールおよび/またはこれらの誘導体で還元し,この加圧下での還元によって該磁性粉を合成する点にある。
[Production method]
In the manufacturing method of Non-Patent Document 3, an FePt particle powder having an fct structure with a coercive force Hc = 370 Oe is obtained. According to the present invention, it is possible to directly synthesize FePt particles having an fct structure having a high coercive force beyond the limit. The gist of the present invention is that a metal salt containing T and M in the above general formula, and further, if necessary, a component of Z is converted into a liquid comprising a polyhydric alcohol having a boiling point of 270 ° C. or higher and / or a derivative thereof. After dissolution to a state where no solid content remains, the solution is maintained at a temperature of 270 ° C. or higher and a pressure exceeding atmospheric pressure in an inert gas atmosphere to allow the metal salt and the polyhydric alcohol and / or these The magnetic powder is synthesized by reduction with a derivative and reduction under pressure.

ここで,大気圧を超える圧力とは,大気圧よりも5Pa以上高い圧力である。好ましくは大気圧よりも10Pa以上,さらに好ましくは100Pa以上の圧力である。大気圧より高くしても,その差圧が5Pa未満では500Oe以上の保磁力を有するFePt粒子粉末を安定して得ることが困難でなる。他方,あまり高圧にして,例えば大気圧より10000Pa以上高い圧力にすると,保磁力の向上効果が飽和に近づく共に反応装置の耐圧構造を厳重にしなければならなくなり,経済的ではない。したがって,大気圧との差圧が10000Pa以内,好ましくは5000Pa以内の圧力に収めるのがよい。反応温度は270℃以上とする必要がある。270℃未満ではfct構造を10vol.%以上有するFePt粒子粉末を安定して得ることが困難となる。しかし,あまり高い温度では溶媒の蒸発が激しくなるので,400℃以下,好ましくは350℃以下とするのがよい。  Here, the pressure exceeding the atmospheric pressure is a pressure higher by 5 Pa or more than the atmospheric pressure. The pressure is preferably 10 Pa or more, more preferably 100 Pa or more than atmospheric pressure. Even if the pressure is higher than the atmospheric pressure, it is difficult to stably obtain FePt particle powder having a coercive force of 500 Oe or more if the differential pressure is less than 5 Pa. On the other hand, if the pressure is set too high, for example, 10000 Pa or more higher than the atmospheric pressure, the coercive force improving effect approaches saturation and the pressure-resistant structure of the reactor must be tightened, which is not economical. Therefore, the pressure difference from the atmospheric pressure should be within 10,000 Pa, preferably within 5000 Pa. The reaction temperature needs to be 270 ° C. or higher. Below 270 ° C., the fct structure is 10 vol. It is difficult to stably obtain FePt particle powder having at least%. However, if the temperature is too high, the evaporation of the solvent becomes violent, so the temperature should be 400 ° C. or lower, preferably 350 ° C. or lower.

本発明法で使用する多価アルコールとしては,トリエチレングリコールまたはテトラエチレングリコールが好ましい。しかし,これに限らず,沸点が270℃以上の多価アルコールまたはその誘導体であれば,本発明で使用できる。また,沸点が270℃以上の多価アルコールまたはその誘導体は1種のみならず2種以上を混合して使用することもできる。エチレングリコールは沸点が197℃と低いので好ましくない。該多価アルコール中に溶存させるFeおよびPtは,代表的には,鉄(III)アセチルアセトナートおよび白金(II)アセチルアセトナートによって供給するのがよい。これらの鉄(III)アセチルアセトナートおよび白金(II)アセチルアセトナートを多価アルコールに完全に溶解したあと,すなわち,これらの固形分が残存しない状態にまで溶解したあと,昇温し加圧下で還元反応を進行させるのがよい。固形分が残存していると,合成されるFePt粒子粉末には個々の粒子内においても,また粒子相互の間でも,組成のバラツキが発生し,高い保磁力をもつFePt粒子粉末を得ることが困難になる。  The polyhydric alcohol used in the method of the present invention is preferably triethylene glycol or tetraethylene glycol. However, the present invention is not limited to this, and any polyhydric alcohol having a boiling point of 270 ° C. or higher or a derivative thereof can be used in the present invention. Moreover, the polyhydric alcohol whose boiling point is 270 degreeC or more or its derivative (s) can also be used in mixture of 2 or more types. Ethylene glycol is not preferred because it has a boiling point as low as 197 ° C. The Fe and Pt dissolved in the polyhydric alcohol are typically supplied by iron (III) acetylacetonate and platinum (II) acetylacetonate. After these iron (III) acetylacetonate and platinum (II) acetylacetonate are completely dissolved in polyhydric alcohol, that is, until these solids are dissolved, the temperature is raised and the pressure is increased. The reduction reaction should proceed. If the solid content remains, the synthesized FePt particle powder will vary in composition both within the individual particles and between particles, and an FePt particle powder having a high coercive force can be obtained. It becomes difficult.

このようにして,アセチルアセトナート錯体からFeとPtの双方を高沸点ポリオールで加圧下で還元すると,合成されるFePt粒子粉末は,合成されたままの状態においてメスバウワー分光法で計測される強磁性構造の体積割合(面心正方晶の割合)が10〜100%の範囲,室温での保磁力が500Oe以上,室温での飽和磁化σsが20emu/g以上,透過電子顕微鏡(TEM)観察による1次粒径の平均値が50nm以下の流動性を有するFePt粒子粉末を得ることができる。  In this way, when both Fe and Pt are reduced under pressure with a high-boiling point polyol from an acetylacetonate complex, the synthesized FePt particle powder is ferromagnetic as measured by Mossbauer spectroscopy in the as-synthesized state. The volume ratio of the structure (ratio of the face-centered tetragonal crystal) is in the range of 10 to 100%, the coercive force at room temperature is 500 Oe or more, the saturation magnetization σs at room temperature is 20 emu / g or more, 1 by transmission electron microscope (TEM) observation FePt particle powder having fluidity with an average value of the next particle size of 50 nm or less can be obtained.

この合成反応において,反応溶液に分散剤を含有させておくこともできる。分散剤は粒子表面に吸着して粒子同士の凝集を抑制するのに有効である。また,分散剤の種類と添加量を適切にすることによって,合成されるFePt粒子の粒径を制御することも可能である。使用できる分散剤としては,FePt粒子粉末表面に吸着しやすいN原子を有するアミン基,アミド基,およびアゾ基を有する界面活性剤か,またチオール基,およびカルボキシル基のいずれかを構造中に含有する有機分子が好適である。  In this synthesis reaction, a dispersant may be contained in the reaction solution. The dispersant is effective in adsorbing to the particle surface and suppressing aggregation of the particles. It is also possible to control the particle size of the synthesized FePt particles by making the type and addition amount of the dispersant appropriate. Dispersing agents that can be used include surfactants having amine groups, amide groups, and azo groups having N atoms that are easily adsorbed on the FePt particle powder surface, and also contain either thiol groups or carboxyl groups in the structure. Organic molecules that are suitable are preferred.

この合成反応においては,その反応速度を適正に制御することが重要である。そのための方法として溶媒中の金属濃度を制御することも重要である。すなわち金属原料の濃度を抑えることにより,生成する金属の過飽和度を低下させ,核発生および粒子成長の速度を低下させることができる。ポリオールと金属塩中に含まれる全ての金属イオンのモル比,すなわち,ポリオール/全金属イオンのモル比が1000以上であれば,本発明に従うFePt粒子を有利に製造することができる。  In this synthesis reaction, it is important to appropriately control the reaction rate. For this purpose, it is also important to control the metal concentration in the solvent. That is, by suppressing the concentration of the metal raw material, it is possible to reduce the supersaturation degree of the metal to be generated, and to reduce the speed of nucleation and particle growth. If the molar ratio of all metal ions contained in the polyol and the metal salt, that is, the molar ratio of polyol / total metal ions is 1000 or more, the FePt particles according to the present invention can be advantageously produced.

当該合成反応で得られるFePt粒子の異方性磁界Hkは,反応時間によっても変化する。一般に,反応時間の増加に伴ってHkが増加する。このため,充分大きなHkを得るためには反応時間は1時間以上,好ましくは2時間以上,さらに好ましくは3.5時間以上とするのがよい。  The anisotropic magnetic field Hk of FePt particles obtained by the synthesis reaction also changes depending on the reaction time. In general, Hk increases with increasing reaction time. Therefore, in order to obtain a sufficiently large Hk, the reaction time should be 1 hour or longer, preferably 2 hours or longer, more preferably 3.5 hours or longer.

以下に実施例を挙げて,本発明をさらに説明する。  The following examples further illustrate the invention.

〔実施例1〕
テトラエチレングリコール(沸点:327℃)100mLに,鉄(III)アセチルアセトナートと白金(II)アセチルアセトナートをそれぞれ1.30mmol/L添加し,鉄(III)アセチルアセトナートと白金(II)アセチルアセトナートの固形分が存在しなくなるまで溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ,容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら,該溶液を160rpmの回転速度で撹拌しつつ加熱し,320℃の温度で3時間半の還流を行って,反応を終了した。そのさい,該容器のガス排出口にチューブを連結し,そのチューブの先端に圧力調節弁付きの排気管を取付けておき,その調節弁の開度を調節することによって,容器内の圧力を大気圧よりも980Paだけ高い圧力に反応のあいだ一定に維持した。
[Example 1]
To 100 mL of tetraethylene glycol (boiling point: 327 ° C.), 1.30 mmol / L of iron (III) acetylacetonate and platinum (II) acetylacetonate were added, respectively, and iron (III) acetylacetonate and platinum (II) acetyl were added. Dissolved until no solids of acetonate were present. This solution is transferred to a container equipped with a refluxer and placed in an oil bath. While blowing nitrogen gas as an inert gas at a flow rate of 400 mL / min into the container, the solution is heated while being stirred at a rotation speed of 160 rpm. The reaction was terminated by refluxing at a temperature of 320 ° C. for 3.5 hours. At that time, connect a tube to the gas outlet of the container, attach an exhaust pipe with a pressure control valve to the end of the tube, and adjust the opening of the control valve to increase the pressure in the container. The pressure was kept constant during the reaction by 980 Pa above the atmospheric pressure.

反応終了後の液に3倍量のメタノールを添加したあと,遠心分離器にかけたあと,上澄み液を取り除いた。上澄み液を除いたあとの残留分(粒子粉末)にメタノール100mLを添加して超音波洗浄槽に装填し,この超音波洗浄槽で該粒子粉末を分散させ,得られた分散液を遠心分離器にかけたあと上澄み液を取り除いた。得られた残留分(粒子粉末)を同じくメタノールを加えて超音波洗浄槽および遠心分離器で処理する洗浄操作を,さらに2回繰り返した。最後に上澄み液を分別して得られたFePtナノ粒子粉末含有物を,透過電子顕微鏡(TEM),組成分析,X線回折(XRD)および磁気測定(VSM)に供した。  After adding 3 times the amount of methanol to the liquid after completion of the reaction, the supernatant was removed after centrifuging. 100 mL of methanol is added to the residue (particle powder) after removing the supernatant, and the mixture is loaded into an ultrasonic cleaning tank. The particle powder is dispersed in this ultrasonic cleaning tank, and the resulting dispersion is centrifuged. And the supernatant was removed. The washing operation in which the obtained residue (particle powder) was similarly treated with methanol and treated with an ultrasonic washing tank and a centrifuge was further repeated twice. Finally, the FePt nanoparticle powder-containing material obtained by separating the supernatant was subjected to transmission electron microscope (TEM), composition analysis, X-ray diffraction (XRD), and magnetic measurement (VSM).

その結果,透過電子顕微鏡(TEM)から観測された1次粒子の平均粒径は約5.1nmであった。また,1次粒子は集合して2次粒子を形成しており,その2次粒子の平均粒径は約100nmであったが,全体として,流動性を有する磁性粉であった。組成分析の結果は,原子比でFe:Pt=52:48であった。X線回折の結果,超格子反射(001)と(110)に対応する回折ピークが現れ,面心正方晶の存在が確認された。  As a result, the average particle diameter of primary particles observed from a transmission electron microscope (TEM) was about 5.1 nm. The primary particles aggregated to form secondary particles, and the average particle size of the secondary particles was about 100 nm, but as a whole, it was a magnetic powder having fluidity. The result of the composition analysis was Fe: Pt = 52: 48 in atomic ratio. As a result of X-ray diffraction, diffraction peaks corresponding to superlattice reflections (001) and (110) appeared, and the presence of face-centered tetragonal crystals was confirmed.

図1に,本例で得られたFePtナノ粒子粉末のヒステレシスループを示したが,図1に見られるように,保磁力Hc=1966Oe,飽和磁化量σs=52emu/g,残留磁化量Mr=30emu/g,角形比=0.577,SFD=0.889であった。  FIG. 1 shows the hysteresis loop of the FePt nanoparticle powder obtained in this example. As shown in FIG. 1, the coercive force Hc = 1966 Oe, the saturation magnetization σs = 52 emu / g, the residual magnetization Mr = 30 emu / g, squareness ratio = 0.577, SFD = 0.889.

〔比較例1〕
容器のガス排出口に連結したチューブから圧力調節弁付きの排気管を外し,該チューブの端を大気に開放した以外は,実施例1を繰り返した。この方法は非特許文献3に記載された製法にほぼ対応している。その結果,TEM観察による1次粒子の平均粒径は5.2nm,組成分析では原子比でFe:Pt=59:41のFePtナノ粒子からなり,X線回折でも超格子反射(001)と(110)に対応する回折ピークが存在し,面心正方晶の存在が確認された。しかし,磁気特性の結果は,図2にほぼ相当するヒステレシテループが得られ,保磁力Hcは375Oeであった。また飽和磁化量σs=39.1emu/g,残留磁化量Mr=6.95emu/g,角形比=0.177,SFD=0.979であった。
[Comparative Example 1]
Example 1 was repeated except that the exhaust pipe with the pressure control valve was removed from the tube connected to the gas outlet of the container and the end of the tube was opened to the atmosphere. This method substantially corresponds to the manufacturing method described in Non-Patent Document 3. As a result, the average particle size of primary particles by TEM observation was 5.2 nm, and composition analysis was made of FePt nanoparticles with an atomic ratio of Fe: Pt = 59: 41. Superlattice reflection (001) and ( 110), and the presence of face-centered tetragonal crystals was confirmed. However, as a result of the magnetic characteristics, a hysteresis loop substantially corresponding to FIG. 2 was obtained, and the coercive force Hc was 375 Oe. The saturation magnetization amount σs = 39.1 emu / g, the residual magnetization amount Mr = 6.95 emu / g, the squareness ratio = 0.177, and the SFD = 0.799.

本発明に従う磁性粉のヒステレシスループを示す図である。It is a figure which shows the hysteresis loop of the magnetic powder according to this invention. 比較例の磁性粉のヒステレシスループを示す図である。It is a figure which shows the hysteresis loop of the magnetic powder of a comparative example.

Claims (9)

一般式〔TX1-XY1-Y(ただし、TはFeまたはCoの1種または2種、MはPt、ZはAg、Cu、Bi、Sb、PbおよびSnからなる群から選ばれる少なくとも1種、Xは0.3〜0.7の範囲、Yは0.7〜1.0の範囲である)で表され、面心正方晶の割合が10〜100%の範囲にある磁性体であって、室温での保磁力Hcが500 Oe以上、室温での飽和磁化量σsが30 emu/g以上、平均粒径が50 nm以下である流動性を有する磁性粉。 General formula [T X M 1-X ] Y Z 1-Y (where T is one or two of Fe or Co, M is Pt , Z is a group consisting of Ag, Cu, Bi, Sb, Pb and Sn) At least one selected from the group consisting of: X is in the range of 0.3-0.7, Y is in the range of 0.7-1.0), and the ratio of the face-centered tetragonal crystal is in the range of 10-100% A magnetic powder having a fluidity with a coercive force Hc at room temperature of 500 Oe or more, a saturation magnetization σs at room temperature of 30 emu / g or more , and an average particle size of 50 nm or less. 室温での保磁力が1000 Oe以上である請求項1に記載の磁性粉。   The magnetic powder according to claim 1, wherein the coercive force at room temperature is 1000 Oe or more. 平均粒径が20 nm以下である請求項1または2に記載の磁性粉。   The magnetic powder according to claim 1 or 2, wherein the average particle size is 20 nm or less. 角形比(残留磁化/飽和磁化)の値が0.3以上である請求項1、2または3に記載の磁性粉。   The magnetic powder according to claim 1, 2 or 3, wherein the squareness ratio (residual magnetization / saturation magnetization) is 0.3 or more. SFD値が1.1以下である請求項1、2、3または4に記載の磁性粉。   The magnetic powder according to claim 1, 2, 3, or 4, having an SFD value of 1.1 or less. 一般式〔TX1-XY1-Y(ただし、TはFeまたはCoの1種または2種、MはPtまたはPdの1種または2種、ZはAg、Cu、Bi、Sb、PbおよびSnからなる群から選ばれる少なくとも1種、Xは0.3〜0.7の範囲、Yは0.7〜1.0の範囲である)で表される磁性粉を製造するにあたり、
前記のTおよびM、さらに必要に応じてZの成分を含む金属塩を、沸点が270℃以上の多価アルコールおよび/またはこれらの誘導体からなる液に、固形分が残存しない状態にまで溶解したあと、その溶液を不活性ガス雰囲気下で270℃以上の温度で且つ1気圧より5Pa以上高い圧力に保持して該金属塩を該多価アルコールおよび/またはこれらの誘導体で還元し、この還元によって該磁性粉を合成すること、
そのさい、この合成された粒子粉末が、合成された状態において、面心正方晶の割合が10〜100%の範囲にあり、室温での保磁力が500 Oe以上、室温での飽和磁化量σsが30 emu/g以上、平均粒径が50 nm以下であること、
を特徴とする磁性粉の製造法。
[T X M 1-X ] Y Z 1-Y (where T is one or two of Fe or Co, M is one or two of Pt or Pd, Z is Ag, Cu, Bi, At least one selected from the group consisting of Sb, Pb and Sn, wherein X is in the range of 0.3 to 0.7 and Y is in the range of 0.7 to 1.0. Hits the,
The metal salt containing the components T and M, and optionally Z, was dissolved in a liquid composed of a polyhydric alcohol having a boiling point of 270 ° C. or higher and / or a derivative thereof until no solid content remained. After that, the metal salt is reduced with the polyhydric alcohol and / or a derivative thereof by maintaining the solution at a temperature of 270 ° C. or higher under an inert gas atmosphere and a pressure of 5 Pa or higher than 1 atm . Synthesizing the magnetic powder;
At that time, in the synthesized state, the synthesized particle powder has a face-centered tetragonal ratio in the range of 10 to 100%, a coercive force at room temperature of 500 Oe or more, and a saturation magnetization σs at room temperature. Is 30 emu / g or more and the average particle size is 50 nm or less,
A method for producing magnetic powder characterized by
多価アルコールが、トリエチレングリコールまたはテトラエチレングリコールの1種または2種である請求項6に記載の金属磁性粉末の製造法。   The method for producing a metal magnetic powder according to claim 6, wherein the polyhydric alcohol is one or two of triethylene glycol or tetraethylene glycol. T、MおよびZ成分の塩がこれらの成分のアセチルアセトナートである請求項6または7に記載の金属磁性粉末を製造する方法。   The method for producing a metal magnetic powder according to claim 6 or 7, wherein the salt of the T, M and Z components is acetylacetonate of these components. 反応温度270℃以上で且つ1気圧より5Pa以上高い圧力に保持する時間が1時間以上である請求項6ないし8のいずれかに記載の金属磁性粉末の製造法。 The method for producing a metal magnetic powder according to any one of claims 6 to 8, wherein the reaction temperature is maintained at 270 ° C or higher and the pressure is maintained at a pressure higher than 1 atm by 5 Pa or more for 1 hour or more.
JP2003361215A 2003-09-14 2003-09-14 Magnetic powder and method for producing the same Expired - Lifetime JP4157936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361215A JP4157936B2 (en) 2003-09-14 2003-09-14 Magnetic powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361215A JP4157936B2 (en) 2003-09-14 2003-09-14 Magnetic powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005089856A JP2005089856A (en) 2005-04-07
JP4157936B2 true JP4157936B2 (en) 2008-10-01

Family

ID=34463454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361215A Expired - Lifetime JP4157936B2 (en) 2003-09-14 2003-09-14 Magnetic powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4157936B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661837B2 (en) * 2006-08-01 2011-03-30 株式会社豊田中央研究所 Method for synthesizing FePt nanoparticles
JP5785001B2 (en) * 2011-06-23 2015-09-24 新日鉄住金化学株式会社 Continuous production apparatus and continuous production method for metal nanoparticles

Also Published As

Publication number Publication date
JP2005089856A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4625980B2 (en) Method for producing alloy particle powder for magnetic recording medium having fcc structure
US7569115B2 (en) Assemblages of magnetic alloy nanoparticles
Sun Recent advances in chemical synthesis, self‐assembly, and applications of FePt nanoparticles
JP3258295B2 (en) Method for producing transition metal nanoparticles
Murray et al. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly intonanoparticle superlattices
US6302940B2 (en) Chemical synthesis of monodisperse and magnetic alloy nanocrystal containing thin films
US6676729B2 (en) Metal salt reduction to form alloy nanoparticles
Takahashi et al. Direct synthesis of Pt based L1 structured nanoparticles
US7964013B2 (en) FeRh-FePt core shell nanostructure for ultra-high density storage media
Zhao et al. A simple method to prepare uniform Co nanoparticles
JP4221484B2 (en) Metallic magnetic powder and method for producing the same
Tzitzios et al. Direct chemical synthesis of L1 FePt nanoparticles
JP4729682B2 (en) Manufacturing method of metal magnetic powder
JP4157936B2 (en) Magnetic powder and method for producing the same
JP4452847B2 (en) Manufacturing method of metal magnetic powder
JP2007250824A (en) Hard magnetic nanoparticles, manufacturing method therefor, magnetic fluid, and magnetic recording medium
JP4541068B2 (en) Magnetic alloy particle dispersion
Hyun et al. Sintering effect of annealed FePt nanocrystal films observed by magnetic force microscopy
JP3957176B2 (en) Method for producing multi-component alloy nanoparticles
Jayadevan et al. Solution Synthesis of Nanocrystalline Core-Shell Structured NiCo Particles
Mason Preparation and study of magnetic fluids
Reed Use of silicate shells to prevent sintering during thermally induced chemical ordering of iron platinum nanoparticles
Nikles et al. Magnetic Nanoparticles: Granular Recording Media
Kitamoto et al. Direct Synthesis of Ferromagnetic Fe-Pt Nanoparticles By Using a High-Pressure Chemical Solution Route with Microwave Irradiation
Sun et al. Synthesis and magnetic properties of CoPt (Ag) nanoparticles assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term