JP4155902B2 - electrical plug - Google Patents

electrical plug Download PDF

Info

Publication number
JP4155902B2
JP4155902B2 JP2003336046A JP2003336046A JP4155902B2 JP 4155902 B2 JP4155902 B2 JP 4155902B2 JP 2003336046 A JP2003336046 A JP 2003336046A JP 2003336046 A JP2003336046 A JP 2003336046A JP 4155902 B2 JP4155902 B2 JP 4155902B2
Authority
JP
Japan
Prior art keywords
plug
electrode
electrical
outlet
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003336046A
Other languages
Japanese (ja)
Other versions
JP2005108451A (en
Inventor
雅人 丸山
満 工藤
靖史 平岡
朗 中澤
章 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003336046A priority Critical patent/JP4155902B2/en
Publication of JP2005108451A publication Critical patent/JP2005108451A/en
Application granted granted Critical
Publication of JP4155902B2 publication Critical patent/JP4155902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Description

本発明は、電源プラグに関し、詳しくは、商用電源、高周波電源、直流電源など任意種別の電源から電気コンセントを介して供給される電力を、誘導性負荷を構成する電気機器に伝達するための電源プラグに係わる。   The present invention relates to a power plug, and more specifically, a power source for transmitting power supplied from an arbitrary type of power source such as a commercial power source, a high frequency power source, and a DC power source to an electrical device constituting an inductive load. Related to plug.

一般に、誘導性負荷を構成する電気機器の電源プラグを、当該電気機器が動作状態にあるまま電気コンセントから引き抜いた場合、その電気プラグのプラグ電極が電気コンセントのコンセント電極から離脱する瞬間に導通電流が急激に減少するため、その電気機器の誘導性負荷が誘導起電力(逆起電力)を生じて適正な電流遮断を妨げるよう作用し、この結果、コンセント電極とプラグ電極との間にアーク火花が発生する。このアーク火花は、電気機器の取扱者に危険を及ぼすだけでなく、双方の電極の劣化を早める原因にもなる。   Generally, when a power plug of an electrical device that constitutes an inductive load is pulled out of an electrical outlet while the electrical device is in an operating state, the conduction current is instantly released from the outlet electrode of the electrical outlet. As a result, the inductive load of the electrical device generates an induced electromotive force (counterelectromotive force) and prevents proper current interruption, resulting in an arc spark between the outlet electrode and the plug electrode. Occurs. This arc spark not only poses a danger to the operator of the electrical equipment, but also accelerates the deterioration of both electrodes.

このため、従来にあっては、上記アーク火花の発生を抑制することを目的として、例えば、下記特許文献1に開示されるように、商用電源用の電気コンセントからの電気プラグの離脱を自動化して、プラグ電極の先端部がコンセント電極から離脱するタイミングを当該商用電源のゼロクロス点に合致させる技術や、或いは、下記特許文献2に開示されるように、直流電源用の電気コンセントに内蔵させた半導体スイッチを所定のタイミングで作動させて、上記誘導起電力が生じる前の段階で導通電流を遮断する技術などが提案されている。
特開2002−75525 特開2003−203721
For this reason, in the past, for the purpose of suppressing the occurrence of the arc spark, for example, as disclosed in Patent Document 1 below, the removal of the electric plug from the commercial power outlet is automated. Thus, the timing at which the tip of the plug electrode is detached from the outlet electrode matches the zero cross point of the commercial power supply, or as disclosed in Patent Document 2 below, the plug electrode is built in an electric outlet for DC power supply. A technique has been proposed in which a semiconductor switch is operated at a predetermined timing to cut off a conduction current at a stage before the induced electromotive force is generated.
JP 2002-75525 A JP2003-203721

しかしながら、前者の技術では、電気プラグの構造が非常に複雑となるだけでなく、直流電源用の電気コンセントに対しては適用すらできない。また、同技術は、電気プラグを手動で引き抜く場合には全く意味をなさない。   However, the former technique not only makes the structure of the electric plug very complicated, but also cannot be applied to an electric outlet for a DC power source. In addition, this technique makes no sense when the electric plug is manually pulled out.

これに対し、後者の技術では、半導体スイッチの短絡故障時にあっては導通電流の遮断が不可能となるため、結局、コンセント電極からのプラグ電極離脱時に誘導起電力が生じてアーク火花が発生してしまう。   On the other hand, in the latter technique, the conduction current cannot be interrupted in the event of a short-circuit failure of the semiconductor switch. As a result, an induced electromotive force is generated when the plug electrode is detached from the outlet electrode, and an arc spark is generated. End up.

ここにおいて、本発明の解決すべき主要な目的は、次のとおりである。   Here, the main objects to be solved by the present invention are as follows.

即ち、本発明の第1の目的は、簡易な構成を採用しながらも、プラグ電極離脱時におけるアーク火花の発生を確実に抑制することの可能な電源プラグを提供せんとするものである。   That is, the first object of the present invention is to provide a power plug that can reliably suppress the occurrence of arc sparks when the plug electrode is detached while adopting a simple configuration.

本発明の第2の目的は、電源の種別によらず常に発生するアーク火花の問題に広く対応することの可能な電源プラグを提供せんとするものである。   The second object of the present invention is to provide a power plug that can widely cope with the problem of arc sparks that always occur regardless of the type of power source.

本発明の他の目的は、明細書、図面、特に特許請求の範囲の各請求項の記載から、自ずと明らかとなろう。   Other objects of the present invention will become apparent from the specification, drawings, and particularly the description of each claim.

本発明装置においては、電源プラグを電気コンセントから離脱させる過程で、その電源プラグに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を具備させる、という特徴的構成手段を講じる。   In the device of the present invention, there is provided path resistance variable means capable of changing the electrical resistance value on the current path configured in the power plug from the low resistance to the high resistance in the process of removing the power plug from the electrical outlet. The characteristic constitution means of providing is taken.

さらに、具体的詳細に述べると、当該課題の解決では、本発明が次に列挙する上位概念から下位概念に亙る新規な特徴的構成手段を採用することにより、前記目的を達成するよう為される。   More specifically, in order to solve the problem, the present invention achieves the above-mentioned object by adopting a new characteristic configuration means ranging from the superordinate concept listed below to the subordinate concept. .

即ち、本発明装置の第1の特徴は、任意種別の電源から電気コンセントを介して供給される電流を、誘導性負荷を構成する電気機器に伝達するための電源プラグであって、当該電源プラグを前記電気コンセントから離脱させる過程で、その電源プラグに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を有してなる、電源プラグの構成採用にある。   That is, the first feature of the device of the present invention is a power plug for transmitting a current supplied from an arbitrary type of power source via an electrical outlet to an electrical device constituting the inductive load, the power plug A power plug comprising path resistance variable means capable of changing the electrical resistance value on the current path configured in the power plug from a low resistance to a high resistance in the process of disconnecting from the electrical outlet. The configuration is adopted.

本発明装置の第2の特徴は、上記本発明装置の第1の特徴における前記経路抵抗可変手段が、前記電源プラグにおいて前記電流経路を構成する一対のプラグ電極の少なくとも何れか一方に形成され、当該プラグ電極の長手方向に沿う電気抵抗値が、その基端部から先端部にかけ低抵抗から高抵抗へと連続的に変化する分布をもつ抵抗体組成物からなる、電源プラグの構成採用にある。   According to a second feature of the device of the present invention, the path resistance variable means in the first feature of the device of the present invention is formed on at least one of a pair of plug electrodes constituting the current path in the power plug, The power plug is composed of a resistor composition having a distribution in which the electrical resistance value along the longitudinal direction of the plug electrode continuously varies from a low resistance to a high resistance from the base end portion to the tip end portion. .

本発明装置の第3の特徴は、上記本発明装置の第2の特徴における前記抵抗体組成物が、前記電気コンセントにおけるコンセント電極との電気的接触を得る前記プラグ電極の有効接触面上に、当該プラグ電極の長手方向に沿って所要の前記電気抵抗値の連続分布が得られるよう形成された薄膜半導体部材からなる、電源プラグの構成採用にある。   A third feature of the device according to the present invention is that the resistor composition according to the second feature of the device according to the present invention is provided on an effective contact surface of the plug electrode to obtain electrical contact with the outlet electrode in the electrical outlet. The power plug is composed of a thin film semiconductor member formed so as to obtain a required continuous distribution of the electric resistance value along the longitudinal direction of the plug electrode.

本発明装置の第4の特徴は、上記本発明装置の第1の特徴における前記経路抵抗可変手段が、前記電源プラグにおいて前記電流経路を構成する一対のプラグ電極の少なくとも何れか一方に形成され、当該プラグ電極の長手方向に沿う電気抵抗値が、その基端部から先端部にかけ低抵抗から高抵抗へと段階的に変化する分布をもつ抵抗体組成物からなる、電源プラグの構成採用にある。   According to a fourth feature of the device of the present invention, the path resistance variable means in the first feature of the device of the present invention is formed on at least one of a pair of plug electrodes constituting the current path in the power plug, The power plug is composed of a resistor composition having a distribution in which the electrical resistance value along the longitudinal direction of the plug electrode gradually changes from a low resistance to a high resistance from the base end portion to the tip end portion. .

本発明装置の第5の特徴は、上記本発明装置の第4の特徴における前記抵抗体組成物が、前記電気コンセントにおけるコンセント電極との電気的接触を得る前記プラグ電極の有効接触面上に、当該プラグ電極の長手方向に沿って所要の前記電気抵抗値の段階分布が得られるよう形成された複数の薄膜抵抗体部材からなる、電源プラグの構成採用にある。   According to a fifth feature of the device of the present invention, the resistor composition according to the fourth feature of the device of the present invention is provided on the effective contact surface of the plug electrode to obtain electrical contact with the outlet electrode in the electrical outlet. The power plug is composed of a plurality of thin film resistor members formed so as to obtain a required stepwise distribution of the electric resistance value along the longitudinal direction of the plug electrode.

本発明装置の第6の特徴は、上記本発明装置の第4の特徴における前記プラグ電極が、その前記基端部における導体領域から前記先端部の方向に延在されて、当該プラグ電極の中心軸を形作る棒状絶縁体部材を有し、前記抵抗体組成物が、当該棒状絶縁体部材に、当該プラグ電極の長手方向に沿って所要の前記電気抵抗値の段階分布が得られるよう交互に分割挿通された複数の環状抵抗体部材と複数の環状導体部材との組み合せからなる、電源プラグの構成採用にある。   A sixth feature of the device according to the present invention is that the plug electrode according to the fourth feature of the device according to the present invention extends from the conductor region at the base end portion in the direction of the distal end portion, and is centered on the plug electrode. A rod-like insulator member that forms an axis, and the resistor composition is alternately divided into the rod-like insulator member so that a step distribution of the required electric resistance value is obtained along the longitudinal direction of the plug electrode. The configuration of the power plug is a combination of a plurality of annular resistor members inserted and a plurality of annular conductor members.

本発明装置の第7の特徴は、上記本発明装置の第1の特徴における前記経路抵抗可変手段が、前記電源プラグの内部において前記電流経路を構成し、当該電源プラグにおける一対のプラグ電極の少なくとも何れか一方に接続された電源コードの金属配線上に介在させた可変抵抗器と、前記可変抵抗器の電気抵抗値を手動により任意値に設定可能とする調整器とを有してなる、電源プラグの構成採用にある。   According to a seventh feature of the device of the present invention, the path resistance varying means in the first feature of the device of the present invention constitutes the current path inside the power plug, and at least of a pair of plug electrodes in the power plug. A power supply comprising: a variable resistor interposed on a metal wiring of a power cord connected to either one; and an adjuster capable of manually setting an electric resistance value of the variable resistor to an arbitrary value. The plug configuration is adopted.

本発明装置の第8の特徴は、上記本発明装置の第1の特徴における前記経路抵抗可変手段が、前記電源プラグの内部において前記電流経路を構成し、当該電源プラグにおける一対のプラグ電極の少なくとも何れか一方に接続された電源コードの金属配線上に介在させた可変抵抗器と、前記電気コンセントに対する前記電源プラグの位置関係に応じて弾性出没自在に構成され、前記電気コンセントのコンセント電極との電気的接触が、該当する前記プラグ電極の基端部で得られているときには前記可変抵抗器の電気抵抗値を最小値に、当該プラグ電極の先端部のみで得られているときには当該電気抵抗値を最高値に設定可能とするプランジャーとを有してなる、電源プラグの構成採用にある。   An eighth feature of the device of the present invention is that the path resistance varying means in the first feature of the device of the present invention constitutes the current path inside the power plug, and at least of a pair of plug electrodes in the power plug. A variable resistor interposed on the metal wiring of the power cord connected to either one, and is configured to be elastically retractable according to the positional relationship of the power plug with respect to the electrical outlet, and the outlet electrode of the electrical outlet When the electrical contact is obtained at the base end portion of the corresponding plug electrode, the electrical resistance value of the variable resistor is minimized, and when the electrical contact is obtained only at the distal end portion of the plug electrode, the electrical resistance value is obtained. The power plug is configured to have a plunger that can set the maximum value to the maximum value.

本発明装置の第9の特徴は、上記本発明装置の第1の特徴における前記経路抵抗可変手段が、前記電源プラグの内部において前記電流経路を構成し、当該電源プラグにおける一対のプラグ電極の少なくとも何れか一方に接続された電源コードの金属配線上に介在させた正特性サーミスタと、該当する前記プラグ電極と前記正特性サーミスタとの直列回路と並列に前記金属配線に接続され、前記電気コンセントを介して供給される前記電流を、当該プラグ電極の先端部が前記電気コンセントのコンセント電極から離脱する直前まで前記金属配線に側路するバイパス電極とを有してなる、電源プラグの構成採用にある。   According to a ninth feature of the device of the present invention, the path resistance varying means in the first feature of the device of the present invention constitutes the current path inside the power plug, and at least of a pair of plug electrodes in the power plug. A positive temperature coefficient thermistor interposed on the metal wiring of a power cord connected to either one of the plugs and the positive temperature coefficient thermistor is connected in parallel to the metal wiring, and the electrical outlet The power supply plug is configured to include a bypass electrode that bypasses the metal wiring until the tip of the plug electrode is released from the outlet electrode of the electrical outlet. .

本発明装置の第10の特徴は、上記本発明装置の第9の特徴における前記バイパス電極が、その長手方向の有効長を前記プラグ電極のそれよりも短く設定され、前記正特性サーミスタが、当該バイパス電極の先端部が前記コンセント電極から離脱して、当該コンセント電極との電気的接触が前記プラグ電極の先端周辺領域のみを介して得られたときに、自身への前記電流の急激な流入に伴うジュール熱の増加により自身の電気抵抗値を所定値まで増加させる機能手段を具備してなる、電源プラグの構成採用にある。   According to a tenth feature of the device of the present invention, the bypass electrode according to the ninth feature of the device of the present invention has an effective length in the longitudinal direction set shorter than that of the plug electrode, and the positive temperature coefficient thermistor When the tip of the bypass electrode is detached from the outlet electrode and electrical contact with the outlet electrode is obtained only through the peripheral region of the tip of the plug electrode, the current flows into itself suddenly. The power plug is configured to include functional means for increasing its own electrical resistance value to a predetermined value due to the accompanying increase in Joule heat.

上記解決手段を採用することにより、本発明によれば、簡易な構成を採用しながらも、電源の種別によらずプラグ電極離脱時に常に発生するアーク火花を確実に抑制することが可能となる。   By adopting the above solution, according to the present invention, it is possible to reliably suppress the arc spark that always occurs when the plug electrode is detached, regardless of the type of the power supply, while adopting a simple configuration.

以下、本発明の実施の形態につき、添付図面を参照しつつ、その第1〜第6装置例を挙げて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the first to sixth device examples with reference to the accompanying drawings.

(第1装置例)
図1は、本発明の第1装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。
(First device example)
FIG. 1 is a diagram schematically showing an external appearance and an internal configuration of a power plug according to a first device example of the present invention.

同図に示すように、本第1装置例に係る電源プラグαは、従来の一般的な電気プラグの構成と同様、商用電源、高周波電源、直流電源など任意種別の電源に接続された電気コンセント(図示せず)の一対のコンセント電極(図示せず)の配置に対応して、プラグ本体1に一対のプラグ電極2,2を配置し、かつ、これら一対のプラグ電極2,2を、誘導性負荷を構成する電気機器(図示せず)の電源コード3の端部から延伸する金属配線4,4にそれぞれ電気的に接続した構成を有する。   As shown in the figure, the power plug α according to the first device example is an electrical outlet connected to an arbitrary type of power source such as a commercial power source, a high-frequency power source, and a DC power source, as in the configuration of a conventional general electrical plug. Corresponding to the arrangement of a pair of outlet electrodes (not shown) of the plug (not shown), a pair of plug electrodes 2 and 2 are arranged on the plug body 1, and the pair of plug electrodes 2 and 2 are guided. The electric wires (4, 4) extending from the end portion of the power cord 3 of an electric device (not shown) constituting the sexual load are respectively electrically connected.

上記一対のプラグ電極2,2は、上記電源から電気コンセントを介して供給される電流を電気機器に伝達するために、電源プラグαを電気コンセントから離脱させる過程で、当該電源プラグαに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を構成する。本装置例では、当該経路抵抗可変手段として、各プラグ電極2,2の長手方向に沿う電気抵抗値が、その基端部(プラグ本体1側)から先端部にかけ低抵抗から高抵抗へと連続的に変化する分布をもつ抵抗体組成物を採用する。   The pair of plug electrodes 2 and 2 are configured in the power plug α in the process of detaching the power plug α from the electrical outlet in order to transmit the current supplied from the power source through the electrical outlet to the electric device. The path resistance variable means can change the electrical resistance value on the current path from low resistance to high resistance. In the present apparatus example, as the path resistance varying means, the electrical resistance value along the longitudinal direction of each plug electrode 2, 2 is continuously from low resistance to high resistance from the base end portion (plug main body 1 side) to the tip end portion. A resistor composition having a distribution that changes with time is employed.

即ち、本装置例では、上記抵抗体組成物として、各コンセント電極との電気的接触を得る各プラグ電極2,2の有効接触面上(各コンセント電極の内面とそれぞれ接触する各プラグ電極2,2の上面及び下面上)に、その長手方向に沿って所要の電気抵抗値の連続分布が得られるよう、当該各プラグ電極2,2の基材をなす金属材料などからなる導電性の支持体5,5上にそれぞれ形成された薄膜半導体部材6,6,…を採用する。   That is, in this device example, as the resistor composition, on the effective contact surface of each plug electrode 2, 2 that obtains electrical contact with each outlet electrode (each plug electrode 2 that makes contact with the inner surface of each outlet electrode, respectively) 2 on the upper surface and the lower surface of 2), and a conductive support made of a metal material or the like that forms the base material of each plug electrode 2, 2 so that a continuous distribution of the required electric resistance value is obtained along the longitudinal direction thereof. The thin film semiconductor members 6, 6,.

上記各薄膜半導体部材6,6,…は、所要の電気抵抗値の連続分布が得られるよう、例えば、p型又はn型不純物を、その基端部から先端部にかけ1×1020cm-3から1×1014cm-3へと連続的に変化する濃度でドーピングすることにより得られる。この結果、各薄膜半導体部材6,6,…の電気抵抗値は、その基端部から先端部にかけ低抵抗(高不純物濃度)から高抵抗(低不純物濃度)へと連続的に変化する分布をもつようになり、これに伴い、各プラグ電極2,2の長手方向に沿う電気抵抗値が上記連続分布を得るようになる。 Each of the thin film semiconductor members 6, 6,... Is applied with, for example, p-type or n-type impurities from the base end portion to the tip end portion so as to obtain a required continuous distribution of electric resistance value, 1 × 10 20 cm −3. To 1 × 10 14 cm −3 at a continuously varying concentration. As a result, the electric resistance value of each thin film semiconductor member 6, 6,... Has a distribution that continuously changes from a low resistance (high impurity concentration) to a high resistance (low impurity concentration) from the base end portion to the tip end portion. Accordingly, the electrical resistance value along the longitudinal direction of each plug electrode 2 and 2 has the above continuous distribution.

なお、各支持体5,5に対する各薄膜半導体部材6,6,…の形成に際しては、例えば、高純度精製された半導体材料を各支持体5,5の所要面に高温不活性雰囲気中で一旦蒸着した後に、その蒸着された半導体薄膜に対して不純物ドーピングを施す手法や、或いは、当該不純物ドーピングにより既に所要の連続濃度分布を得た対応形状の半導体薄膜を各支持体5,5の所要面に溶着する手法などを採用することができる。   In forming the thin film semiconductor members 6, 6,... On the supports 5, 5, for example, a highly purified semiconductor material is temporarily applied to the required surfaces of the supports 5, 5 in a high-temperature inert atmosphere. After vapor deposition, a method of performing impurity doping on the deposited semiconductor thin film, or a semiconductor thin film having a corresponding shape that has already obtained a required continuous concentration distribution by the impurity doping, a required surface of each support 5, 5. It is possible to employ a technique of welding to the surface.

以上のように構成された電源プラグαにおいては、電気コンセントに対する当該電気プラグαの差込み深さに応じて、各コンセント電極から各プラグ電極2,2への電流経路が変化し、その際の導通電流は、各プラグ電極2,2と各コンセント電極の開口端との接触限界点付近を流れる。   In the power plug α configured as described above, the current path from each outlet electrode to each plug electrode 2 and 2 changes according to the insertion depth of the electric plug α with respect to the electric outlet, and conduction at that time The current flows in the vicinity of the contact limit point between each plug electrode 2, 2 and the open end of each outlet electrode.

即ち、各プラグ電極2,2を各コンセント電極に完全に差し込んだ状態では、導通電流は各プラグ電極2,2の基端部付近を流れる。この状態から、各プラグ電極2,2を各コンセント電極から徐々に引き抜いていくと、上記接触限界点が各プラグ電極2,2の先端部方向へ移動するため、電流経路も当該各プラグ電極2,2の先端部へと移動し、この移動に伴い、電源プラグαの各プラグ電極2,2に構成される電流経路の電気抵抗値が次第に高くなっていく。   That is, when the plug electrodes 2 and 2 are completely inserted into the outlet electrodes, the conduction current flows in the vicinity of the base end portions of the plug electrodes 2 and 2. From this state, when the plug electrodes 2 and 2 are gradually pulled out from the outlet electrodes, the contact limit point moves toward the tip of each plug electrode 2 and 2, so that the current path also corresponds to each plug electrode 2. , 2, and the electrical resistance value of the current path formed in each plug electrode 2, 2 of the power plug α gradually increases with this movement.

そして、各プラグ電極2,2が各コンセント電極から離脱する直前に、上記電流経路の電気抵抗値が十分に高い値(最大値)となって、これに伴う導通電流が十分に小さい値(最小値)となる。この結果、プラグ電極離脱時における導通電流の急激な減少が回避されて、アーク火花の発生が抑制されるようになる。   Immediately before the plug electrodes 2 and 2 are detached from the outlet electrodes, the electric resistance value of the current path becomes a sufficiently high value (maximum value), and the conduction current associated therewith is a sufficiently small value (minimum value). Value). As a result, a sudden decrease in conduction current when the plug electrode is detached is avoided, and the occurrence of arc spark is suppressed.

以上、本発明の第1装置例につき説明したが、各支持体5,5は、十分な導電性と強度を具備するものであれば、例示した金属材料以外の素材として、例えば、導電性セラミックスや高分子導体なども採用することができる。   The first apparatus example of the present invention has been described above. As long as the supports 5 and 5 have sufficient conductivity and strength, as materials other than the exemplified metal materials, for example, conductive ceramics. Or polymer conductors can also be used.

また、本装置例では、所要の経路抵抗可変手段(抵抗体組成物)をなす各薄膜半導体部材6,6,…を、一対のプラグ電極2,2の双方に形成した例を挙げて説明したが、当該各薄膜半導体部材6,6を何れか一方のプラグ電極2のみに形成しても、例示した本装置例と同等な効果を得ることができる。   Further, in the present apparatus example, the thin film semiconductor members 6, 6,... Constituting the required path resistance varying means (resistor composition) have been described as examples formed on both the pair of plug electrodes 2, 2. However, even if each of the thin film semiconductor members 6 and 6 is formed only on one of the plug electrodes 2, an effect equivalent to that of the illustrated example of the apparatus can be obtained.

(第2装置例)
図2(a)〜(c)は、本発明の第2装置例に係る電源プラグの構成図であり、(a)は、同電源プラグの外観構成を示す斜視図、(b)は、同電源プラグに採用されるプラグ電極の外観構成を示す分解斜視図、(c)は、当該プラグ電極の支持体の外観構成を示す斜視図である。なお、本図に示される各構成要素には、既に説明した図面に示される要素と同一又は同等のものにつき、それと同じ符号を付すものとする。
(Second device example)
FIGS. 2A to 2C are configuration diagrams of a power plug according to a second device example of the present invention. FIG. 2A is a perspective view showing an external configuration of the power plug, and FIG. FIG. 5C is an exploded perspective view showing an external configuration of a plug electrode employed in a power plug, and FIG. 5C is a perspective view showing an external configuration of a support body for the plug electrode. It should be noted that the same reference numerals are given to the same or equivalent elements as those shown in the already described drawings to the respective components shown in this figure.

同図に示すように、本第2装置例に係る電源プラグβは、従来の一般的な電気プラグの構成と同様、商用電源、高周波電源、直流電源など任意種別の電源に接続された電気コンセント(図示せず)の一対のコンセント電極(図示せず)の配置に対応して、プラグ本体1に一対のプラグ電極7,7を配置し、かつ、これら一対のプラグ電極7,7を、誘導性負荷を構成する電気機器(図示せず)の電源コード3の端部から延伸する金属配線(図示せず)にそれぞれ電気的に接続した構成を有する。   As shown in the figure, the power plug β according to the second apparatus example is an electrical outlet connected to an arbitrary type of power source such as a commercial power source, a high frequency power source, a DC power source, etc., as in the configuration of a conventional general electric plug. Corresponding to the arrangement of a pair of outlet electrodes (not shown) (not shown), a pair of plug electrodes 7, 7 are arranged on the plug body 1, and the pair of plug electrodes 7, 7 are guided. Each of which is electrically connected to a metal wiring (not shown) extending from the end of the power cord 3 of an electrical device (not shown) constituting the sexual load.

上記一対のプラグ電極7,7は、上記電源から電気コンセントを介して供給される電流を電気機器に伝達するために、電源プラグβを電気コンセントから離脱させる過程で、当該電源プラグβに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を構成する。本装置例では、当該経路抵抗可変手段として、各プラグ電極7,7の長手方向に沿う電気抵抗値が、その基端部(プラグ本体1側)から先端部にかけ低抵抗から高抵抗へと段階的に変化する分布をもつ抵抗体組成物を採用する。   The pair of plug electrodes 7 and 7 are configured in the power plug β in the process of detaching the power plug β from the electrical outlet in order to transmit the current supplied from the power source through the electrical outlet to the electrical equipment. The path resistance variable means can change the electrical resistance value on the current path from low resistance to high resistance. In this device example, as the path resistance varying means, the electrical resistance value along the longitudinal direction of each plug electrode 7, 7 is gradually increased from a low resistance to a high resistance from the base end (plug body 1 side) to the tip. A resistor composition having a distribution that changes with time is employed.

即ち、本装置例では、上記抵抗体組成物として、各コンセント電極との電気的接触を得る各プラグ電極7,7の有効接触面上(各コンセント電極の内面とそれぞれ接触する各プラグ電極7,7の上面及び下面上)に、その長手方向に沿って所要の電気抵抗値の段階分布が得られるよう、当該各プラグ電極7,7の基材をなす金属材料などからなる導電性の支持体8,8上にそれぞれ形成された複数の薄膜抵抗体部材9,9,…を採用する。   That is, in this apparatus example, as the resistor composition, on the effective contact surface of each plug electrode 7, 7 that obtains electrical contact with each outlet electrode (each plug electrode 7 that makes contact with the inner surface of each outlet electrode, 7 on the upper surface and the lower surface of the electrode 7, and a conductive support made of a metal material or the like that forms the base material of the plug electrodes 7, 7 so as to obtain a stepwise distribution of the required electric resistance value along the longitudinal direction. A plurality of thin film resistor members 9, 9,.

上記各薄膜抵抗体部材9,9,…は、所要の電気抵抗値の段階分布が得られるよう、その電気抵抗値が段階的に相違する薄膜抵抗体を、プラグ本体1から露出する部分において略T字状をなす各支持体8,8の基端部から先端部にかけ、当該電気抵抗値の小さいものから順次隣接配置することにより得られる。この結果、各薄膜抵抗体部材9,9,…の電気抵抗値は、その基端部から先端部にかけ低抵抗から高抵抗へと段階的に変化する分布をもつようになり、これに伴い、各プラグ電極7,7の長手方向に沿う電気抵抗値が上記段階分布を得るようになる。   Each of the thin film resistor members 9, 9,... Is substantially in a portion where the thin film resistors whose electric resistance values are different in stages are exposed from the plug body 1 so that a required stepwise distribution of electric resistance values is obtained. It is obtained by placing the support bodies 8, 8 each having a T-shape from the base end portion to the tip end portion and sequentially arranging them in descending order of the electric resistance value. As a result, the electric resistance value of each thin film resistor member 9, 9,... Has a distribution that gradually changes from a low resistance to a high resistance from the base end portion to the tip end portion. The electrical resistance value along the longitudinal direction of each plug electrode 7, 7 has the above-mentioned step distribution.

なお、各支持体8,8に対する各薄膜抵抗体部材9,9,…の形成に際しては、例えば、電気抵抗値が段階的に相違する複数の抵抗体材料を各支持体8,8の所要面に高温不活性雰囲気中で段階的に蒸着する手法や、或いは、既にそれぞれ所要の電気抵抗値を得た対応形状の複数の抵抗体薄膜を各支持体8,8の所要面に溶着する手法などを採用することができる。   In forming each thin film resistor member 9, 9,... On each support 8, 8, for example, a plurality of resistor materials having different electrical resistance values in stages are required for each support 8, 8. A stepwise deposition method in a high-temperature inert atmosphere, or a method of welding a plurality of resistor thin films having a corresponding shape, each of which has already obtained a required electric resistance value, to a required surface of each of the supports 8, 8, etc. Can be adopted.

以上のように構成された電源プラグβにおいては、電気コンセントに対する当該電気プラグβの差込み深さに応じて、各コンセント電極から各プラグ電極7,7への電流経路の形成に寄与する各薄膜抵抗体部材9,9,…の種類が変化し、その際の導通電流は、各プラグ電極7,7と各コンセント電極の開口端との接触限界点に位置する所定の薄膜抵抗体部材9,9,…を流れる。   In the power plug β configured as described above, each thin film resistor contributing to the formation of a current path from each outlet electrode to each plug electrode 7 or 7 in accordance with the depth of insertion of the electric plug β into the electric outlet. The type of the body members 9, 9,... Changes, and the conduction current at that time is a predetermined thin film resistor member 9, 9 located at the contact limit point between each plug electrode 7, 7 and the open end of each outlet electrode. Flowing through ...

即ち、各プラグ電極7,7を各コンセント電極に完全に差し込んだ状態では、導通電流は各プラグ電極7,7の基端部付近(各支持体8,8の基端部における導体領域)を流れる。この状態から、各プラグ電極7,7を各コンセント電極から徐々に引き抜いていくと、上記接触限界点が各プラグ電極7,7の先端部方向へ移動して、電流経路の形成に寄与する各薄膜抵抗体部材9,9,…の種類が低抵抗のものから高抵抗のものに変化するため、この変化に伴い、電源プラグβの各プラグ電極7,7に構成される電流経路の電気抵抗値が段階的に高くなっていく。   That is, in the state where the plug electrodes 7 and 7 are completely inserted into the outlet electrodes, the conduction current flows in the vicinity of the base end portions of the plug electrodes 7 and 7 (conductor regions at the base end portions of the support bodies 8 and 8). Flowing. From this state, when the plug electrodes 7 and 7 are gradually pulled out from the outlet electrodes, the contact limit point moves toward the tip of each plug electrode 7 and 7 and contributes to the formation of a current path. Since the type of the thin-film resistor members 9, 9,... Changes from low resistance to high resistance, the electrical resistance of the current path formed in each plug electrode 7, 7 of the power plug β is associated with this change. The value becomes higher step by step.

そして、各プラグ電極7,7が各コンセント電極から離脱する直前に、上記電流経路の電気抵抗値が十分に高い値(最大値)となって(主として先端部における電気抵抗値最大の薄膜抵抗体部材9が電流経路の形成に寄与するようになって)、これに伴う導通電流が十分に小さい値(最小値)となる。この結果、プラグ電極離脱時における導通電流の急激な減少が回避されて、アーク火花の発生が抑制されるようになる。   Immediately before the plug electrodes 7 and 7 are detached from the outlet electrodes, the electric resistance value of the current path becomes a sufficiently high value (maximum value) (a thin film resistor having a maximum electric resistance value mainly at the tip portion). When the member 9 contributes to the formation of a current path), the conduction current associated therewith becomes a sufficiently small value (minimum value). As a result, a sudden decrease in conduction current when the plug electrode is detached is avoided, and the occurrence of arc spark is suppressed.

以上、本発明の第2装置例につき説明したが、各支持体8,8は、十分な導電性と強度を具備するものであれば、例示した金属材料以外の素材として、例えば、導電性セラミックスや高分子導体なども採用することができる。   As described above, the second device example of the present invention has been described. As long as each of the supports 8 and 8 has sufficient conductivity and strength, as a material other than the exemplified metal material, for example, conductive ceramics. Or polymer conductors can also be used.

また、本装置例では、所要の電気抵抗値の段階分布を得るために、電気抵抗値が段階的に相違する抵抗体材料(又は抵抗体薄膜)により各薄膜抵抗体部材9,9,…を形成する例を挙げたが、この手法以外にも、例えば、各薄膜抵抗体部材9,9,…の厚さを各支持体8,8の基端部から先端部にかけ段階的に変化させる(厚くする)ことも可能である。但し、この場合、各プラグ電極7,7の表面をフラットな状態に保つ必要性から、各支持体8,8としては、図示のものに代えて、得ようとする各薄膜抵抗体部材9,9,…の厚さに応じてその側面形状を階段状に形成したものを採用する必要がある。   Further, in this apparatus example, in order to obtain a required stepwise distribution of electric resistance values, the thin film resistor members 9, 9,... Are made of resistor materials (or resistor thin films) having different electric resistance values in stages. In addition to this method, for example, the thickness of each thin film resistor member 9, 9,... Is gradually changed from the base end portion to the tip end portion of each support body 8, 8 ( It is also possible to increase the thickness. However, in this case, since it is necessary to keep the surfaces of the plug electrodes 7 and 7 flat, the support bodies 8 and 8 are replaced with the thin film resistor members 9 and 9 to be obtained instead of the illustrated ones. Depending on the thickness of 9,..., It is necessary to adopt a stepped shape of the side surface.

さらに、上記各支持体8,8に配置形成される薄膜抵抗体部材9,9,…の数は、図示の例に限るものではなく、これより多くても少なくても良い。但し、隣接する各薄膜抵抗体部材9,9,…間の電気抵抗値の差が大きすぎる場合、電源プラグβの引抜きに伴って、各プラグ電極7,7と各コンセント電極の開口端との接触限界点が、一の薄膜抵抗体部材9からこれと隣接する他の薄膜抵抗体部材9に移動した瞬間に、導通電流が急激に減少して、ここにアーク火花の発生を招く可能性がある。このため、好ましくは、薄膜抵抗体部材9,9,…の数を多くして、隣接する各薄膜抵抗体部材9,9,…間の電気抵抗値の差を小さくする方が、上記各薄膜抵抗体部材9,9,…上の接触限界点の移動に伴う導通電流の急激な減少が抑制されて、所要の効果が確実に得られるようになる。   Further, the number of thin film resistor members 9, 9,... Arranged on the respective supports 8, 8 is not limited to the illustrated example, and may be more or less than this. However, when the difference in electrical resistance value between the adjacent thin film resistor members 9, 9,... Is too large, the plug electrodes 7, 7 and the open ends of the outlet electrodes are connected as the power plug β is pulled out. At the moment when the contact limit point moves from one thin film resistor member 9 to another thin film resistor member 9 adjacent thereto, there is a possibility that the conduction current rapidly decreases, and arc sparks are generated here. is there. Therefore, it is preferable to increase the number of thin film resistor members 9, 9,... To reduce the difference in electrical resistance value between the adjacent thin film resistor members 9, 9,. A sudden decrease in conduction current accompanying the movement of the contact limit point on the resistor members 9, 9,... Is suppressed, and the required effect can be reliably obtained.

さらにまた、本装置例では、所要の経路抵抗可変手段(抵抗体組成物)をなす各薄膜抵抗体部材9,9,…を、一対のプラグ電極7,7の双方に形成した例を挙げて説明したが、当該各薄膜抵抗体部材9,9,…を何れか一方のプラグ電極7のみに形成しても、例示した本装置例と同等な効果を得ることができる。   Furthermore, in this example of the apparatus, an example in which the respective thin film resistor members 9, 9,... Constituting the required path resistance varying means (resistor composition) are formed on both of the pair of plug electrodes 7,7 is given. As described above, even if each of the thin film resistor members 9, 9,... Is formed only on one of the plug electrodes 7, an effect equivalent to that of the illustrated example of the apparatus can be obtained.

(第3装置例)
図3(a)及び(b)は、本発明の第3装置例に係る電源プラグの構成図であり、(a)は、同電源プラグの外観構成を示す斜視図、(b)は、同電源プラグに採用されるプラグ電極の外観構成を示す分解斜視図である。なお、本図に示される各構成要素には、既に説明した図面に示される要素と同一又は同等のものにつき、それと同じ符号を付すものとする。
(Third device example)
3A and 3B are configuration diagrams of a power plug according to a third device example of the present invention. FIG. 3A is a perspective view showing an external configuration of the power plug, and FIG. It is a disassembled perspective view which shows the external appearance structure of the plug electrode employ | adopted as a power plug. It should be noted that the same reference numerals are given to the same or equivalent elements as those shown in the already described drawings to the respective components shown in this figure.

同図に示すように、本第3装置例に係る電源プラグγは、従来の一般的な電気プラグの構成と同様、商用電源、高周波電源、直流電源など任意種別の電源に接続された電気コンセント(図示せず)の一対のコンセント電極(図示せず)の配置に対応して、プラグ本体1に一対のプラグ電極10,10を配置し、かつ、これら一対のプラグ電極10,10を、誘導性負荷を構成する電気機器(図示せず)の電源コード3の端部から延伸する金属配線(図示せず)にそれぞれ電気的に接続した構成を有する。   As shown in the figure, the power plug γ according to the third device example is an electrical outlet connected to an arbitrary type of power source such as a commercial power source, a high-frequency power source, and a DC power source, as in the configuration of a conventional general electrical plug. Corresponding to the arrangement of a pair of outlet electrodes (not shown) (not shown), a pair of plug electrodes 10, 10 are arranged on the plug body 1, and the pair of plug electrodes 10, 10 are guided. Each of which is electrically connected to a metal wiring (not shown) extending from the end of the power cord 3 of an electrical device (not shown) constituting the sexual load.

上記一対のプラグ電極10,10は、上記電源から電気コンセントを介して供給される電流を電気機器に伝達するために、電源プラグγを電気コンセントから離脱させる過程で、当該電源プラグγに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を構成する。本装置例では、当該経路抵抗可変手段として、各プラグ電極10,10の長手方向に沿う電気抵抗値が、その基端部(プラグ本体1側)から先端部にかけ低抵抗から高抵抗へと段階的に変化する分布をもつ抵抗体組成物を採用する。   The pair of plug electrodes 10 and 10 are configured in the power plug γ in the process of detaching the power plug γ from the electrical outlet in order to transmit the current supplied from the power source through the electrical outlet to the electrical equipment. The path resistance variable means can change the electrical resistance value on the current path from low resistance to high resistance. In this apparatus example, as the path resistance varying means, the electrical resistance value along the longitudinal direction of each plug electrode 10, 10 is gradually changed from low resistance to high resistance from the base end (plug body 1 side) to the tip. A resistor composition having a distribution that changes with time is employed.

即ち、本装置例では、上記抵抗体組成物として、各コンセント電極との電気的接触を得る各プラグ電極10,10の有効接触面上(各コンセント電極の内面とそれぞれ接触する各プラグ電極10,10の円筒面上)に、その長手方向に沿って所要の電気抵抗値の段階分布が得られるよう、当該各プラグ電極10,10の基端部における導体領域からその先端部の方向に延在されて、当該各プラグ電極10,10の中心軸を形作る棒状絶縁体部材11,11にそれぞれ交互に挿通された、複数の環状抵抗体部材12,12,…と複数の環状導体部材13,13,…との組み合せを採用する。   That is, in this device example, as the resistor composition, on the effective contact surface of each plug electrode 10, 10 that obtains electrical contact with each outlet electrode (each plug electrode 10 that makes contact with the inner surface of each outlet electrode, 10 on the cylindrical surface), extending from the conductor region at the base end of each plug electrode 10, 10 in the direction of the tip so that a step distribution of the required electrical resistance value is obtained along the longitudinal direction. .. And a plurality of annular conductor members 13, 13 inserted alternately into rod-like insulator members 11, 11 forming the central axis of each plug electrode 10, 10. Use a combination with.

上記各環状抵抗体部材12,12,…と各環状導体部材13,13,…との組み合せは、所要の電気抵抗値の段階分布が得られるよう、その電気抵抗値が厚みに応じて段階的に相違するドーナツ状の各環状抵抗体部材12,12,…を、同じくドーナツ状の各環状導体部材13,13,…を交互に介在させながら、各棒状絶縁体部材11,11の基端部から先端部にかけ、当該電気抵抗値の小さいものから順次配置することにより得られる。この結果、各環状抵抗体部材12,12,…と各環状導体部材13,13,…との組み合せの電気抵抗値は、その基端部から先端部にかけ低抵抗から高抵抗へと段階的に変化する分布をもつようになり、これに伴い、各プラグ電極10,10の長手方向に沿う電気抵抗値が上記段階分布を得るようになる。   The combination of each of the annular resistor members 12, 12,... And each of the annular conductor members 13, 13,... Has a stepwise electrical resistance value depending on the thickness so that a required stepwise distribution of electrical resistance values can be obtained. The donut-shaped annular resistor members 12, 12,..., Which are different from each other, are interleaved with the donut-shaped annular conductor members 13, 13,. To the tip, and are sequentially arranged from the one with the smallest electrical resistance value. As a result, the electrical resistance value of the combination of each annular resistor member 12, 12,... And each annular conductor member 13, 13,. Accordingly, the electrical resistance value along the longitudinal direction of each plug electrode 10, 10 has the above-mentioned step distribution.

なお、各棒状絶縁体部材11,11に対する各環状抵抗体部材12,12,…と各環状導体部材13,13,…との組み合せの形成に際しては、例えば、各環状抵抗体部材12,12,…と各環状導体部材13,13,…とを、各棒状絶縁体部材11,11を中心に介しながら、各プラグ電極10,10の基端部における導体領域を基体として溶着する手法などを採用することができる。   In forming the combination of each annular resistor member 12, 12,... And each annular conductor member 13, 13,... With respect to each rod-like insulator member 11, 11, for example, each annular resistor member 12, 12,. .. And the annular conductor members 13, 13,... Are welded with the conductor region at the base end portion of each plug electrode 10, 10 as the base while the rod-like insulator members 11, 11 are centered. can do.

以上のように構成された電源プラグγにおいては、電気コンセントに対する当該電気プラグγの差込み深さに応じて、各コンセント電極から各プラグ電極10,10への電流経路の形成に寄与する各環状抵抗体部材12,12,…の数が変化し、その際の導通電流は、各プラグ電極10,10と各コンセント電極の開口端との接触限界点よりも基端部側に位置する所定の環状抵抗体部材12,12,…及び環状導体部材13,13,…を流れる。   In the power plug γ configured as described above, each annular resistor contributing to the formation of a current path from each outlet electrode to each plug electrode 10, 10 according to the insertion depth of the electric plug γ with respect to the electric outlet. The number of body members 12, 12,... Changes, and the conduction current at that time is a predetermined annular position located on the base end side of the contact limit point between each plug electrode 10, 10 and the open end of each outlet electrode. The resistor members 12, 12,... And the annular conductor members 13, 13,.

即ち、各プラグ電極10,10を各コンセント電極に完全に差し込んだ状態では、導通電流は各プラグ電極10,10の基端部付近(基端部における導体領域)を流れる。この状態から、各プラグ電極10,10を各コンセント電極から徐々に引き抜いていくと、上記接触限界点が各プラグ電極10,10の先端部方向へ移動して、電流経路の形成に寄与する各環状抵抗体部材12,12,…の数が、低抵抗のものから高抵抗のものを段階的に含むよう変化するため、この変化に伴い、電源プラグγの各プラグ電極10,10に構成される電流経路の電気抵抗値が段階的に高くなっていく。   That is, in a state where the plug electrodes 10 and 10 are completely inserted into the outlet electrodes, the conduction current flows in the vicinity of the base end portions of the plug electrodes 10 and 10 (conductor regions at the base end portions). From this state, when each plug electrode 10, 10 is gradually pulled out from each outlet electrode, the contact limit point moves toward the tip of each plug electrode 10, 10 and contributes to the formation of a current path. Since the number of annular resistor members 12, 12,... Changes from low resistance to high resistance in a stepwise manner, the plug electrodes 10, 10 of the power plug γ are configured with this change. The electrical resistance value of the current path increases gradually.

そして、各プラグ電極10,10が各コンセント電極から離脱する直前に、上記電流経路の電気抵抗値が十分に高い値(最大値)となって(全ての環状抵抗体部材12,12,…が電流経路の形成に寄与するようになって)、これに伴う導通電流が十分に小さい値(最小値)となる。この結果、プラグ電極離脱時における導通電流の急激な減少が回避されて、アーク火花の発生が抑制されるようになる。   Immediately before the plug electrodes 10 and 10 are detached from the outlet electrodes, the electric resistance value of the current path becomes a sufficiently high value (maximum value) (all annular resistor members 12, 12,... This contributes to the formation of a current path), and the conduction current associated therewith becomes a sufficiently small value (minimum value). As a result, a sudden decrease in conduction current when the plug electrode is detached is avoided, and the occurrence of arc spark is suppressed.

ここで、図4は、図3に示される電源プラグγを用いて構成した誘導負荷回路の一例を示す図であり、図5は、図4に示される誘導負荷回路の適用時における各プラグ電極10,10の引抜き長さに対する導通電流の変化の形態を示す図である。   Here, FIG. 4 is a diagram showing an example of the inductive load circuit configured using the power plug γ shown in FIG. 3, and FIG. 5 shows each plug electrode when the inductive load circuit shown in FIG. 4 is applied. It is a figure which shows the form of the change of the conduction | electrical_current with respect to the drawing length of 10,10.

まず、図4に示すように、ここでは、所要の経路抵抗可変手段(抵抗体組成物)をなす各環状抵抗体部材12,12,…と各環状導体部材13,13,…との組み合せが、何れか一方のプラグ電極10のみに形成され、かつ、各環状抵抗体部材12,12,…の電気抵抗値が、その基端部側から順に、25Ω、42Ω、83Ω、250Ω、9500Ωに設定されているものとする。また、図示の誘導性負荷14の電気抵抗値は100Ω、直流電源15の電圧は100Vであるとし、さらに、各プラグ電極10,10がプラグ本体1から露出する部分の長さをL、当該各プラグ電極10,10が図示の各コンセント電極16,16に完全に差し込まれた状態からの引抜き長さをXとする(従って、X=Lにおいて、各プラグ電極10,10は各コンセント電極16,16から離脱する)。   First, as shown in FIG. 4, here, the combination of the respective annular resistor members 12, 12,... And the respective annular conductor members 13, 13,. Are formed only on one of the plug electrodes 10, and the electrical resistance values of the annular resistor members 12, 12,... Are set to 25Ω, 42Ω, 83Ω, 250Ω, and 9500Ω in order from the base end side. It is assumed that In addition, the illustrated inductive load 14 has an electric resistance value of 100Ω and a DC power supply 15 voltage of 100V. Further, the length of the portion where the plug electrodes 10 and 10 are exposed from the plug body 1 is L, The pull-out length from the state in which the plug electrodes 10 and 10 are completely inserted into the illustrated outlet electrodes 16 and 16 is X (therefore, when X = L, the plug electrodes 10 and 10 are connected to the outlet electrodes 16 and 16, respectively). 16)

上記の各回路定数の設定において、電源プラグγの各プラグ電極10,10を各コンセント電極16,16から引き抜いていくときの誘導負荷回路全体の電気抵抗値は、当初の100Ω(誘導性負荷14の電気抵抗値)から、125Ω→167Ω→250Ω→500Ω→10000Ωの如く変化する。   In the setting of each circuit constant described above, the electrical resistance value of the entire inductive load circuit when the plug electrodes 10 and 10 of the power plug γ are pulled out from the outlet electrodes 16 and 16 is initially 100Ω (inductive load 14 From 125 Ω → 167 Ω → 250 Ω → 500 Ω → 10000 Ω.

ここで、図5の実線に示すように、各プラグ電極10,10の引抜き長さLに対する導通電流Iは、上記誘導負荷回路全体の電気抵抗値の変化に応じて、当初の1.0A(誘導性負荷14の定常電流値)から、0.8A→0.6A→0.4A→0.2A→0.01Aの如く変化する。即ち、各プラグ電極10,10が各コンセント電極16,16から離脱する直前における導通電流は、「0.01A」と極めて小さな値となり、これにより、プラグ電極離脱時における導通電流の急激な減少(同図の破線に示す従来の電源プラグにおける導通電流の急激な減少(1.0A→0A))が回避されて、アーク火花の発生が抑制されるようになる。   Here, as shown by the solid line in FIG. 5, the conduction current I with respect to the drawing length L of each plug electrode 10, 10 depends on the initial 1.0 A ( It changes from 0.8 A → 0.6 A → 0.4 A → 0.2 A → 0.01 A from the steady current value of the inductive load 14. That is, the conduction current immediately before the plug electrodes 10 and 10 are detached from the outlet electrodes 16 and 16 becomes an extremely small value of “0.01 A”. The sudden decrease in conduction current (1.0 A → 0 A)) in the conventional power plug shown by the broken line in FIG. 8 is avoided, and the occurrence of arc spark is suppressed.

なお、上記の例では、各環状抵抗体部材12,12,…毎に最大で0.2Aの導通電流の減少が生じるが、各プラグ電極10,10と各コンセント電極16,16の開口端との接触限界点が、一の環状導体部材13からこれと隣接する一の環状抵抗体部材12に移動した瞬間における導通電流の減少の傾きは、最終的なプラグ電極離脱時における傾きよりもはるかに小さいため、ここにアーク火花が発生する可能性は極めて低いものである(導通電流の減少の傾きを小さくするには、各環状抵抗体部材12,12,…として電気低効率のできるだけ低い物質を用い、その長さを調整することで所望の電気抵抗値を得る方が効率的である)。   In the above example, the conduction current decreases by 0.2 A at the maximum for each annular resistor member 12, 12,..., But the open ends of the plug electrodes 10, 10 and the outlet electrodes 16, 16 The slope of the decrease in the conduction current at the moment when the contact limit point is moved from one annular conductor member 13 to one annular resistor member 12 adjacent thereto is much larger than the slope at the final plug electrode separation. Since it is small, the possibility of occurrence of arc sparks is extremely low (in order to reduce the slope of decrease in conduction current, each annular resistor member 12, 12,. It is more efficient to obtain a desired electrical resistance value by using and adjusting the length).

以上、本発明の第3装置例につき説明したが、所要の抵抗体組成物を構成する環状抵抗体部材12,12,…の数は、図示の例に限るものではなく、これより多くても少なくても良い。但し、上記抵抗体組成物を少数の環状抵抗体部材12,12,…を用いて構成する場合、必然的に、各環状抵抗体部材12,12,…の電気抵抗値をそれぞれ大きめに設定する必要があるため、電源プラグγの引抜きに伴って、各プラグ電極10,10と各コンセント電極(16,16)の開口端との接触限界点が、上記一の環状導体部材13からこれと隣接する一の環状抵抗体部材12に移動した瞬間に、導通電流が急激に減少して、ここにアーク火花の発生を招く可能性がある。このため、好ましくは、電気抵抗値がそれぞれ小さめに設定された環状抵抗体部材12,12,…を多数用いて上記抵抗体組成物を構成する方が、上記各環状抵抗体部材12,12,…及び各環状導体部材13,13,…上の接触限界点の移動に伴う導通電流の急激な減少が抑制されて、所要の効果が確実に得られるようになる。   As described above, the third device example of the present invention has been described. However, the number of the annular resistor members 12, 12,... Constituting the required resistor composition is not limited to the illustrated example, and may be larger than this. It may be less. However, when the resistor composition is configured using a small number of annular resistor members 12, 12,..., The electrical resistance values of the respective annular resistor members 12, 12,. As the power plug γ is pulled out, the contact limit point between each plug electrode 10, 10 and the open end of each outlet electrode (16, 16) is adjacent to this from the one annular conductor member 13. At the moment of moving to the one annular resistor member 12, the conduction current rapidly decreases, and there is a possibility of causing an arc spark here. For this reason, it is preferable that the annular resistor members 12, 12,... Are configured by using a large number of annular resistor members 12, 12,. .. And a sudden decrease in conduction current accompanying the movement of the contact limit point on each of the annular conductor members 13, 13,... Is suppressed, and the required effect can be reliably obtained.

また、各環状抵抗体部材12,12,…及び各環状導体部材13,13,…の形状は、図示の例のように必ずしもドーナツ状である必要性はなく、対応する各コンセント電極(16,16)の形状に応じ、例えば、矩形状のものを採用することなども可能である。   Further, the shape of each annular resistor member 12, 12,... And each annular conductor member 13, 13,... Does not necessarily have a donut shape as in the illustrated example, and the corresponding outlet electrode (16, According to the shape of 16), for example, a rectangular shape can be adopted.

(第4装置例)
図6は、本発明の第4装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。なお、本図に示される各構成要素には、既に説明した図面に示される要素と同一又は同等のものにつき、それと同じ符号を付すものとする。
(Fourth device example)
FIG. 6 is a diagram schematically showing the external appearance and the internal configuration of the power plug according to the fourth device example of the present invention. It should be noted that the same reference numerals are given to the same or equivalent elements as those shown in the already described drawings to the respective components shown in this figure.

同図に示すように、本第4装置例に係る電源プラグδは、従来の一般的な電気プラグの構成と同様、商用電源、高周波電源、直流電源など任意種別の電源に接続された電気コンセント(図示せず)の一対のコンセント電極(図示せず)の配置に対応して、プラグ本体1に通常の形態をなす一対のプラグ電極17,17を配置し、かつ、これら一対のプラグ電極17,17の何れか一方に接続された電源コード3の金属配線4上に介在させた可変抵抗器18と、この可変抵抗器18の電気抵抗値を手動により任意値に設定可能とするスライド式の調整器19と、この調整器19に接続された摺動接点18aを可変抵抗器18の低抵抗端接点の側に弾性復帰させるバネ20とを採用した構成を有する。   As shown in the figure, the power plug δ according to the fourth device example is an electrical outlet connected to an arbitrary type of power source such as a commercial power source, a high frequency power source, a DC power source, etc., as in the configuration of the conventional general electrical plug. Corresponding to the arrangement of a pair of outlet electrodes (not shown) (not shown), a pair of plug electrodes 17, 17 having a normal configuration is arranged on the plug body 1, and the pair of plug electrodes 17 is arranged. , 17 and a variable resistor 18 interposed on the metal wiring 4 of the power cord 3 connected to any one of the power cord 3, and a slide type that allows the electric resistance value of the variable resistor 18 to be manually set to an arbitrary value. The adjusting device 19 and a spring 20 that elastically returns the sliding contact 18a connected to the adjusting device 19 to the low resistance end contact side of the variable resistor 18 are employed.

即ち、上記可変抵抗器18、調整器19及びバネ20は、上記電源から電気コンセントを介して供給される電流を電気機器に伝達するために、電源プラグδを電気コンセントから離脱させる過程で、その取扱者(図示せず)の手動操作に応じ、当該電源プラグδの内部に構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと随意に変化させることの可能な経路抵抗随意可変装置21(本発明にいう「経路抵抗可変手段」の一形態)を構成する。   That is, the variable resistor 18, the regulator 19 and the spring 20 are used in the process of removing the power plug δ from the electrical outlet in order to transmit the current supplied from the power source through the electrical outlet to the electrical equipment. The path resistance can be changed arbitrarily from low resistance to high resistance according to the manual operation of the operator (not shown). The apparatus 21 (one form of the "path resistance variable means" referred to in the present invention) is configured.

以上のように構成された電源プラグδにあっては、各プラグ電極17,17を各コンセント電極に完全に差し込んだ状態で何も操作をしなければ、経路抵抗随意可変装置21におけるバネ20の弾性復帰力により、調整器19上の摺動接点18aは可変抵抗器18の低抵抗端接点の側にあり、これにより所要の導通電流が確保される。   In the power plug δ configured as described above, if no operation is performed with the plug electrodes 17 and 17 completely inserted into the outlet electrodes, the spring 20 in the path resistance voluntary variable device 21 is not affected. Due to the elastic restoring force, the sliding contact 18a on the regulator 19 is on the low resistance end contact side of the variable resistor 18, thereby ensuring the required conduction current.

ここで、電源プラグδの取扱者が、当該電源プラグδを電気コンセントから引き抜くのに先立ち、上記調整器19(摺動接点18a)を可変変抵抗器18の高抵抗端接点の側に完全にスライドさせると、当該電源プラグδの内部に構成される電流経路上の電気抵抗値が低抵抗から高抵抗へと変化し、上記電流経路の電気抵抗値が十分に高い値(最大値)となって、これに伴う導通電流が十分に小さい値(最小値)となる。この結果、プラグ電極離脱時における導通電流の急激な減少が回避されて、アーク火花の発生が抑制されるようになる。   Here, prior to the operator of the power plug δ pulling out the power plug δ from the electrical outlet, the adjuster 19 (sliding contact 18a) is completely placed on the high resistance end contact side of the variable variable resistor 18. When it is slid, the electrical resistance value on the current path configured inside the power plug δ changes from low resistance to high resistance, and the electrical resistance value of the current path becomes a sufficiently high value (maximum value). Thus, the conduction current associated therewith becomes a sufficiently small value (minimum value). As a result, a sudden decrease in conduction current when the plug electrode is detached is avoided, and the occurrence of arc spark is suppressed.

以上、本発明の第4装置例につき、所要の経路抵抗随意可変装置21における可変抵抗器18を一方の金属配線4上のみに介在させた例を挙げて説明したが、これに代えて、例えば、同一構成をなす2つの可変抵抗器(18,18)を双方の金属配線4,4上に並列に介在させる構成としても、例示した本装置例と同等な効果を得ることができる。   As described above, the fourth device example of the present invention has been described with reference to the example in which the variable resistor 18 in the required path resistance voluntary variable device 21 is interposed only on one metal wiring 4, but instead, for example, Even if two variable resistors (18, 18) having the same configuration are arranged in parallel on both metal wirings 4, 4, the same effect as that of the illustrated apparatus example can be obtained.

また、経路抵抗随意可変装置21における調整器19のスライド方向は、図示の例に限るものではなく、他の方向へスライドさせる形態であっても何ら差し支えない。さらに、当該調整器19自身の形態も、図示の例のスライド式に限るものではなく、これに代えて、例えば、回転式のものや押込み式のものなどを採用することができる。   In addition, the slide direction of the adjuster 19 in the path resistance voluntary variable device 21 is not limited to the example shown in the figure, and any configuration may be adopted in which the slide is performed in another direction. Further, the form of the adjuster 19 itself is not limited to the slide type in the illustrated example. Instead, for example, a rotary type or a push-in type can be adopted.

(第5装置例)
図7は、本発明の第5装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。なお、本図に示される各構成要素には、既に説明した図面に示される要素と同一又は同等のものにつき、それと同じ符号を付すものとする。
(Fifth device example)
FIG. 7 is a diagram schematically showing the external appearance and the internal configuration of the power plug according to the fifth device example of the present invention. It should be noted that the same reference numerals are given to the same or equivalent elements as those shown in the already described drawings to the respective components shown in this figure.

同図に示すように、本第5装置例に係る電源プラグεは、従来の一般的な電気プラグの構成と同様、商用電源、高周波電源、直流電源など任意種別の電源に接続された電気コンセント(図示せず)の一対のコンセント電極(図示せず)の配置に対応して、プラグ本体1に通常の形態をなす一対のプラグ電極17,17を配置し、かつ、これら一対のプラグ電極17,17の何れか一方に接続された電源コード3の金属配線4上に介在させた可変抵抗器18と、電気コンセントに対する電源プラグεの位置関係に応じて弾性出没自在に構成され、コンセント電極との電気的接触が、該当するプラグ電極17の基端部で得られているときには可変抵抗器18の電気抵抗値を最小値に、当該プラグ電極17の先端部のみで得られているときには当該電気抵抗値を最高値に設定可能とするプランジャー22と、このプランジャー22に接続された摺動接点18aを可変抵抗器18の高抵抗端接点の側に弾性復帰させるバネ20とを採用した構成を有する。   As shown in the figure, the power plug ε according to the fifth device example is an electrical outlet connected to an arbitrary type of power source such as a commercial power source, a high frequency power source, or a DC power source, as in the configuration of the conventional general electric plug. Corresponding to the arrangement of a pair of outlet electrodes (not shown) (not shown), a pair of plug electrodes 17, 17 having a normal configuration is arranged on the plug body 1, and the pair of plug electrodes 17 is arranged. , 17 is configured to be elastically movable in accordance with the positional relationship of the power plug ε with respect to the electrical outlet and the variable resistor 18 interposed on the metal wiring 4 of the power cord 3 connected to any one of the power cord 3 and the outlet electrode. Is obtained at the base end portion of the corresponding plug electrode 17, the electric resistance value of the variable resistor 18 is minimized, and when it is obtained only at the distal end portion of the plug electrode 17, the electric contact value is obtained. A plunger 22 that can set the air resistance value to the maximum value and a spring 20 that elastically returns the sliding contact 18a connected to the plunger 22 to the high resistance end contact side of the variable resistor 18 are adopted. It has a configuration.

即ち、上記可変抵抗器18、プランジャー22及びバネ20は、上記電源から電気コンセントを介して供給される電流を電気機器に伝達するために、電源プラグεを電気コンセントから離脱させる過程で、当該電源プラグεの内部に構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと自動的に変化させることの可能な経路抵抗自動可変装置23(本発明にいう「経路抵抗可変手段」の一形態)を構成する。   That is, the variable resistor 18, the plunger 22, and the spring 20 are used in the process of detaching the power plug ε from the electrical outlet in order to transmit the current supplied from the power source through the electrical outlet to the electrical device. A path resistance automatic variable device 23 capable of automatically changing the electrical resistance value on the current path configured in the power plug ε from a low resistance to a high resistance (“path resistance variable means” according to the present invention) 1 form).

以上のように構成された電源プラグεにあっては、各プラグ電極17,17を各コンセント電極に完全に差し込むと、プランジャー22の先端部が電気コンセント前面の化粧版(図示せず)に突き当たって、当該プランジャー22の本体がプラグ本体1の内部に完全に没入し、同プランジャー22上の摺動接点18aが可変抵抗器18の低抵抗端接点の側に位置させられ、これにより所要の導通電流が確保される。   In the power plug ε configured as described above, when the plug electrodes 17 and 17 are completely inserted into the outlet electrodes, the distal end portion of the plunger 22 becomes a decorative plate (not shown) on the front surface of the electric outlet. The main body of the plunger 22 is completely immersed in the plug main body 1, and the sliding contact 18a on the plunger 22 is positioned on the low resistance end contact side of the variable resistor 18, The required conduction current is ensured.

ここで、電源プラグεを電気コンセントから徐々に引き抜いていくと、経路抵抗自動可変装置23におけるバネ20の弾性復帰力により、その引抜きの度合いに応じて上記プランジャー22がプラグ本体1の内部から次第に露出する。これに伴い、同プランジャー22上の摺動接点18aが可変抵抗器18上をスライドして、当該電源プラグεの内部に構成される電流経路上の電気抵抗値が次第に高くなっていく。   Here, when the power plug ε is gradually pulled out from the electrical outlet, the plunger 22 is moved from the inside of the plug main body 1 according to the degree of pulling out due to the elastic restoring force of the spring 20 in the path resistance automatic variable device 23. Gradually exposed. Along with this, the sliding contact 18a on the plunger 22 slides on the variable resistor 18, and the electrical resistance value on the current path formed inside the power plug ε gradually increases.

そして、各プラグ電極17,17が各コンセント電極から離脱する直前に、プランジャー22上の摺動接点18aが可変抵抗器18の高抵抗端接点の側に位置させられるようになり、上記電流経路の電気抵抗値が十分に高い値(最大値)となって、これに伴う導通電流が十分に小さい値(最小値)となる。この結果、プラグ電極離脱時における導通電流の急激な減少が回避されて、アーク火花の発生が抑制されるようになる。   Then, immediately before each plug electrode 17, 17 is detached from each outlet electrode, the sliding contact 18 a on the plunger 22 is positioned on the high resistance end contact side of the variable resistor 18, and the current path The electrical resistance value becomes a sufficiently high value (maximum value), and the conduction current associated therewith becomes a sufficiently small value (minimum value). As a result, a sudden decrease in conduction current when the plug electrode is detached is avoided, and the occurrence of arc spark is suppressed.

以上、本発明の第5装置例につき、所要の経路抵抗自動可変装置23における可変抵抗器18を一方の金属配線4上のみに介在させた例を挙げて説明したが、これに代えて、例えば、同一構成をなす2つの可変抵抗器(18,18)を双方の金属配線4,4上に並列に介在させる構成としても、例示した本装置例と同等な効果を得ることができる。   In the above, the fifth device example of the present invention has been described by taking the example in which the variable resistor 18 in the required automatic path resistance variable device 23 is interposed only on one metal wiring 4, but instead, for example, Even if two variable resistors (18, 18) having the same configuration are arranged in parallel on both metal wirings 4, 4, the same effect as that of the illustrated apparatus example can be obtained.

(第6装置例)
図8は、本発明の第6装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。なお、本図に示される各構成要素には、既に説明した図面に示される要素と同一又は同等のものにつき、それと同じ符号を付すものとする。
(Sixth device example)
FIG. 8 is a diagram schematically showing the external appearance and the internal configuration of the power plug according to the sixth device example of the present invention. It should be noted that the same reference numerals are given to the same or equivalent elements as those shown in the already described drawings to the respective components shown in this figure.

同図に示すように、本第6装置例に係る電源プラグζは、従来の一般的な電気プラグの構成と同様、商用電源、高周波電源、直流電源など任意種別の電源に接続された電気コンセント(図示せず)の一対のコンセント電極(図示せず)の配置に対応して、プラグ本体1に通常の形態をなす一対のプラグ電極17,17を配置し、かつ、これら一対のプラグ電極17,17の何れか一方に接続された電源コード3の金属配線4上に介在させた正特性サーミスタ24と、該当するプラグ電極17と正特性サーミスタ24との直列回路と並列に金属配線4に接続され、電気コンセントを介して供給される電流を、当該プラグ電極17の先端部が電気コンセントのコンセント電極から離脱する直前まで金属配線4に側路するバイパス電極25とを採用した構成を有する。   As shown in the figure, the power plug ζ according to the sixth device example is an electrical outlet connected to an arbitrary type of power source such as a commercial power source, a high-frequency power source, a DC power source, etc., as in the configuration of a conventional general electrical plug. Corresponding to the arrangement of a pair of outlet electrodes (not shown) (not shown), a pair of plug electrodes 17, 17 having a normal configuration is arranged on the plug body 1, and the pair of plug electrodes 17 is arranged. , 17 is connected to the metal wiring 4 in parallel with the series circuit of the corresponding plug electrode 17 and the positive temperature coefficient thermistor 24 and the positive characteristic thermistor 24 interposed on the metal wiring 4 of the power cord 3 connected to any one of the power cord 3. The bypass electrode 25 bypasses the current supplied through the electrical outlet until the tip of the plug electrode 17 is released from the outlet electrode of the electrical outlet. I was having the configuration.

即ち、上記正特性サーミスタ24及びバイパス電極25は、上記電源から電気コンセントを介して供給される電流を電気機器に伝達するために、電源プラグζを電気コンセントから離脱させる過程で、当該電源プラグζの内部に構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと自動的に変化させることの可能な機能手段(本発明にいう「経路抵抗可変手段」の一形態)を構成する。   That is, the positive temperature coefficient thermistor 24 and the bypass electrode 25 are connected to the power plug ζ in the process of detaching the power plug ζ from the electrical outlet in order to transmit the current supplied from the power source through the electrical outlet to the electrical equipment. The functional means (one form of “path resistance variable means” according to the present invention) capable of automatically changing the electrical resistance value on the current path configured in the circuit from low resistance to high resistance is configured. .

以上の機能手段を実現するため、上記バイパス電極25は、その長手方向の有効長を対応するプラグ電極17のそれよりも短く設定され、上記正特性サーミスタ24は、当該バイパス電極25の先端部が対応するコンセント電極から離脱して、当該コンセント電極との電気的接触がプラグ電極17の先端周辺領域のみを介して得られたときに、自身への電流の急激な流入に伴うジュール熱の増加により自身の電気抵抗値を所定値(定格値)まで増加させるよう機能する。   In order to realize the above functional means, the bypass electrode 25 is set to have an effective length in the longitudinal direction shorter than that of the corresponding plug electrode 17, and the positive characteristic thermistor 24 has a tip portion of the bypass electrode 25. When an electrical contact with the outlet electrode is obtained only through the region around the tip end of the plug electrode 17 due to separation from the corresponding outlet electrode, due to an increase in Joule heat accompanying a rapid inflow of current to itself It functions to increase its own electrical resistance value to a predetermined value (rated value).

以上のように構成された電源プラグζにあっては、各プラグ電極17,17及びバイパス電極25を各コンセント電極に完全に差し込むと(バイパス電極25を対応するプラグ電極17と同一極のコンセント電極に差し込むと)、初期状態において所定の低い電気抵抗値に設定されている正特性サーミスタ24の存在により、導通電流の大半はバイパス電極25の側を流れるようになる(このときの正特性サーミスタ24の導通電流は、ホールド電流以下である)。   In the power supply plug ζ configured as described above, when the plug electrodes 17 and 17 and the bypass electrode 25 are completely inserted into the outlet electrodes (the outlet electrode having the same polarity as the corresponding plug electrode 17). In the initial state, the presence of the positive characteristic thermistor 24 set to a predetermined low electric resistance value causes most of the conduction current to flow through the bypass electrode 25 (the positive characteristic thermistor 24 at this time). Is less than the hold current).

ここで、電源プラグζを電気コンセントから徐々に引き抜いていくと、ある時点で、バイパス電極25の先端部が対応するコンセント電極から先に離脱して、当該コンセント電極との電気的接触が対応するプラグ電極17の先端周辺領域のみを介して得られるようになる。すると、当該プラグ電極17に接続された正特性サーミスタ24に電流の急激な流入(トリップ電流)が生じてジュール熱が増加し、短時間のうちに当該正特性サーミスタ24の電気抵抗値が所定の定格値にまで高められる。   Here, when the power plug ζ is gradually pulled out from the electrical outlet, at a certain point, the tip of the bypass electrode 25 is first detached from the corresponding outlet electrode, and the electrical contact with the outlet electrode corresponds. The plug electrode 17 can be obtained only through the peripheral region of the tip. Then, an abrupt inflow of current (trip current) occurs in the positive temperature coefficient thermistor 24 connected to the plug electrode 17 to increase Joule heat, and the electrical resistance value of the positive temperature coefficient thermistor 24 becomes a predetermined value within a short time. Increased to the rated value.

そして、各プラグ電極17,17が各コンセント電極から離脱する直前に、上記正特性サーミスタ24の電気抵抗値が十分に高い値(定格値)となって、これに伴う導通電流が十分に小さい値(最小値)となる。この結果、プラグ電極離脱時における導通電流の急激な減少が回避されて、アーク火花の発生が抑制されるようになる。   Immediately before the plug electrodes 17 and 17 are detached from the outlet electrodes, the electrical resistance value of the positive temperature coefficient thermistor 24 becomes a sufficiently high value (rated value), and the conduction current associated therewith is sufficiently small. (Minimum value). As a result, a sudden decrease in conduction current when the plug electrode is detached is avoided, and the occurrence of arc spark is suppressed.

以上、本発明の第6装置例につき、正特性サーミスタ24を一方の金属配線4上のみに介在させ、これに対応するバイパス電極25を1つのみ用いる例を挙げて説明したが、これに代えて、例えば、同一構成をなす2つの正特性サーミスタ(24,24)を双方の金属配線4,4上に並列に介在させ、これらに対応するバイパス電極(25,25)を2つ用いる構成としても、例示した本装置例と同等な効果を得ることができる。   In the above, the sixth device example of the present invention has been described with an example in which the positive temperature coefficient thermistor 24 is interposed only on one metal wiring 4 and only one bypass electrode 25 corresponding to this is used. For example, two positive temperature coefficient thermistors (24, 24) having the same configuration are interposed in parallel on both metal wirings 4, 4, and two bypass electrodes (25, 25) corresponding to these are used. In addition, it is possible to obtain the same effect as that of the illustrated example of the apparatus.

以上、本発明の実施の形態につき、その第1〜第6装置例を挙げて説明したが、本発明は、必ずしも上述した手段にのみ限定されるものではなく、前述した効果を有する範囲内において、適宜、変更実施することが可能なものである。   As described above, the first to sixth device examples have been described with respect to the embodiments of the present invention. However, the present invention is not necessarily limited only to the above-described means, and within the scope having the above-described effects. It is possible to implement changes as appropriate.

本発明の第1装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。It is a figure which shows typically the external appearance and internal structure of the power plug which concerns on the 1st apparatus example of this invention. 本発明の第2装置例に係る電源プラグの構成図であり、(a)は、同電源プラグの外観構成を示す斜視図、(b)は、同電源プラグに採用されるプラグ電極の外観構成を示す分解斜視図、(c)は、当該プラグ電極の支持体の外観構成を示す斜視図である。It is a block diagram of the power plug which concerns on the 2nd apparatus example of this invention, (a) is a perspective view which shows the external appearance structure of the power plug, (b) is the external structure of the plug electrode employ | adopted for the power plug. (C) is a perspective view which shows the external appearance structure of the support body of the said plug electrode. 本発明の第3装置例に係る電源プラグの構成図であり、(a)は、同電源プラグの外観構成を示す斜視図、(b)は、同電源プラグに採用されるプラグ電極の外観構成を示す分解斜視図である。It is a block diagram of the power plug which concerns on the 3rd apparatus example of this invention, (a) is a perspective view which shows the external appearance structure of the power plug, (b) is the external structure of the plug electrode employ | adopted for the power plug. FIG. 図3に示される電源プラグを用いて構成した誘導負荷回路の一例を示す図である。It is a figure which shows an example of the inductive load circuit comprised using the power plug shown by FIG. 図4に示される誘導負荷回路の適用時における各プラグ電極の引抜き長さに対する導通電流の変化の形態を示す図である。It is a figure which shows the form of the change of the conduction current with respect to the extraction length of each plug electrode at the time of application of the inductive load circuit shown by FIG. 本発明の第4装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。It is a figure which shows typically the external appearance and internal structure of the power plug which concerns on the 4th example of apparatus of this invention. 本発明の第5装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。It is a figure which shows typically the external appearance and internal structure of the power plug which concerns on the 5th apparatus example of this invention. 本発明の第6装置例に係る電源プラグの外観及び内部構成を模式的に示す図である。It is a figure which shows typically the external appearance and internal structure of the power plug which concerns on the 6th apparatus example of this invention.

符号の説明Explanation of symbols

α,β,γ,δ,ε,ζ…電源プラグ
1…プラグ本体
2,7,10,17…プラグ電極
3…電源コード
4…金属配線
5,8…支持体
6…薄膜半導体部材
9…薄膜抵抗体部材
11…棒状絶縁体部材
12…環状抵抗体部材
13…環状導体部材
14…誘導性負荷
15…直流電源
16…コンセント電極
18…可変抵抗器
18a…摺動接点
19…調整器
20…バネ
21…経路抵抗随意可変装置
22…プランジャー
23…経路抵抗自動可変装置
24…正特性サーミスタ
25…バイパス電極
[alpha], [beta], [gamma], [delta], [epsilon], [zeta] ... power plug 1 ... plug body 2, 7, 10, 17 ... plug electrode 3 ... power cord 4 ... metal wiring 5, 8 ... support 6 ... thin film semiconductor member 9 ... thin film Resistor member 11 ... Rod-shaped insulator member 12 ... Ring resistor member 13 ... Ring conductor member 14 ... Inductive load 15 ... DC power supply 16 ... Outlet electrode 18 ... Variable resistor 18a ... Sliding contact 19 ... Adjuster 20 ... Spring 21 ... Path resistance voluntary variable device 22 ... Plunger 23 ... Path resistance automatic variable device 24 ... Positive temperature coefficient thermistor 25 ... Bypass electrode

Claims (6)

任意種別の電源から電気コンセントを介して供給される電流を、誘導性負荷を構成する電気機器に伝達するための電源プラグであって、
当該電源プラグを前記電気コンセントから離脱させる過程で、その電源プラグに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を有し、
前記経路抵抗可変手段は、
前記電源プラグにおいて前記電流経路を構成する一対のプラグ電極の少なくとも何れか一方に形成され、当該プラグ電極の長手方向に沿う電気抵抗値が、その基端部から先端部にかけ低抵抗から高抵抗へと連続的に変化する分布をもつ抵抗体組成物からなり、
前記抵抗体組成物は、
前記電気コンセントにおけるコンセント電極との電気的接触を得る前記プラグ電極の有効接触面上に、当該プラグ電極の基端部から先端部にかけて漸次不純物濃度が高濃度から低濃度に連続的な分布をもち、所要の前記電気抵抗値の連続分布が得られるよう形成された薄膜半導体部材からなる、
ことを特徴とする電源プラグ。
A power plug for transmitting a current supplied from an arbitrary type of power source through an electrical outlet to an electrical device constituting the inductive load,
In the process of detaching the power plug from the electrical outlet, path resistance variable means capable of changing the electrical resistance value on the current path configured in the power plug from a low resistance to a high resistance,
The path resistance varying means is
The electric plug is formed on at least one of a pair of plug electrodes constituting the current path in the power plug, and an electric resistance value along the longitudinal direction of the plug electrode is changed from a low resistance to a high resistance from the base end portion to the tip end portion. And a resistor composition having a continuously changing distribution,
The resistor composition is:
On the effective contact surface of the plug electrode to obtain electrical contact with the outlet electrode in the electric outlet, the impurity concentration gradually has a continuous distribution from a high concentration to a low concentration from the proximal end portion to the distal end portion of the plug electrode. A thin film semiconductor member formed so as to obtain a required continuous distribution of the electrical resistance value,
A power plug characterized by that.
任意種別の電源から電気コンセントを介して供給される電流を、誘導性負荷を構成する電気機器に伝達するための電源プラグであって、
当該電源プラグを前記電気コンセントから離脱させる過程で、その電源プラグに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を有し、
前記経路抵抗可変手段は、
前記電源プラグにおいて前記電流経路を構成する一対のプラグ電極の少なくとも何れか一方に形成され、当該プラグ電極の長手方向に沿う電気抵抗値が、その基端部から先端部にかけ低抵抗から高抵抗へと段階的に変化する分布をもつ抵抗体組成物からなり、
前記経路抵抗可変手段が形成された前記プラグ電極は、
その前記基端部における導体領域から前記先端部の方向に延在されて、当該プラグ電極を支持する導電性をもつ支持体を有し、
前記抵抗体組成物は、
前記電気コンセントにおけるコンセント電極との電気的接触を得る前記支持体の有効接触面上に、当該プラグ電極の長手方向に沿って所要の前記電気抵抗値の段階分布が得られるよう形成された複数の薄膜抵抗体部材からなる、
ことを特徴とする電源プラグ。
A power plug for transmitting a current supplied from an arbitrary type of power source through an electrical outlet to an electrical device constituting the inductive load,
In the process of detaching the power plug from the electrical outlet, path resistance variable means capable of changing the electrical resistance value on the current path configured in the power plug from a low resistance to a high resistance,
The path resistance varying means is
The electric plug is formed on at least one of a pair of plug electrodes constituting the current path in the power plug, and an electric resistance value along the longitudinal direction of the plug electrode is changed from a low resistance to a high resistance from the base end portion to the tip end portion. And a resistor composition having a distribution that changes stepwise.
The plug electrode in which the path resistance varying means is formed is
Extending in the direction of the tip from the conductor region at the base end, and having a conductive support for supporting the plug electrode,
The resistor composition is:
On the effective contact surface of the support that obtains electrical contact with the outlet electrode in the electrical outlet, a plurality of stepwise distributions of the required electrical resistance values are obtained along the longitudinal direction of the plug electrode. Consisting of thin film resistor members,
A power plug characterized by that.
任意種別の電源から電気コンセントを介して供給される電流を、誘導性負荷を構成する電気機器に伝達するための電源プラグであって、
当該電源プラグを前記電気コンセントから離脱させる過程で、その電源プラグに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を有し、
記経路抵抗可変手段は、
前記電源プラグにおいて前記電流経路を構成する一対のプラグ電極の少なくとも何れか一方に形成され、当該プラグ電極の長手方向に沿う電気抵抗値が、その基端部から先端部にかけ低抵抗から高抵抗へと段階的に変化する分布をもつ抵抗体組成物からなり、
前記プラグ電極は、
その前記基端部における導体領域から前記先端部の方向に延在されて、当該プラグ電極の中心軸を形作る棒状絶縁体部材を有し、
前記抵抗体組成物は、
当該棒状絶縁体部材に、当該プラグ電極の長手方向に沿って所要の前記電気抵抗値の段階分布が得られるよう交互に分割挿通された複数の環状抵抗体部材と複数の環状導体部材との組み合せからなり、当該プラグ電極の長手方向における前記環状導体部材の長さに対する前記環状抵抗体部材の長さの比率が、当該プラグ電極の基端部から先端部にかけて大きくなる、
ことを特徴とする電源プラグ。
A power plug for transmitting a current supplied from an arbitrary type of power source through an electrical outlet to an electrical device constituting the inductive load,
In the process of detaching the power plug from the electrical outlet, path resistance variable means capable of changing the electrical resistance value on the current path configured in the power plug from a low resistance to a high resistance,
Before Symbol path resistance variable means,
The electric plug is formed on at least one of a pair of plug electrodes constituting the current path in the power plug, and an electric resistance value along the longitudinal direction of the plug electrode is changed from a low resistance to a high resistance from the base end portion to the tip end portion. And a resistor composition having a distribution that changes stepwise.
The plug electrode is
A rod-like insulator member extending in the direction of the distal end from the conductor region at the base end and forming the central axis of the plug electrode;
The resistor composition is:
A combination of a plurality of annular resistor members and a plurality of annular conductor members alternately divided and inserted in the rod-like insulator member so as to obtain a desired stepwise distribution of the electrical resistance value along the longitudinal direction of the plug electrode The ratio of the length of the annular resistor member to the length of the annular conductor member in the longitudinal direction of the plug electrode is increased from the proximal end portion to the distal end portion of the plug electrode.
A power plug characterized by that.
任意種別の電源から電気コンセントを介して供給される電流を、誘導性負荷を構成する電気機器に伝達するための電源プラグであって、
当該電源プラグを前記電気コンセントから離脱させる過程で、その電源プラグに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を有し、
前記経路抵抗可変手段は、
前記電源プラグの内部において前記電流経路を構成し、当該電源プラグにおける一対のプラグ電極の少なくとも何れか一方に接続された電源コードの金属配線上に介在させた可変抵抗器と、
前記電気コンセントに対する前記電源プラグの位置関係に応じて弾性出没自在に構成され、前記電気コンセントのコンセント電極との電気的接触が、該当する前記プラグ電極の基端部で得られているときには前記可変抵抗器の電気抵抗値を最小値に、当該プラグ電極の先端部のみで得られているときには当該電気抵抗値を最高値に設定可能とするプランジャーと、を有する、
ことを特徴とする電源プラグ。
A power plug for transmitting a current supplied from an arbitrary type of power source through an electrical outlet to an electrical device constituting the inductive load,
In the process of detaching the power plug from the electrical outlet, path resistance variable means capable of changing the electrical resistance value on the current path configured in the power plug from a low resistance to a high resistance,
The path resistance varying means is
A variable resistor configured on the metal wiring of the power cord connected to at least one of the pair of plug electrodes in the power plug, the current path being configured inside the power plug;
According to the positional relationship of the power plug with respect to the electrical outlet, it is configured to be elastically movable, and when the electrical contact with the outlet electrode of the electrical outlet is obtained at the base end portion of the corresponding plug electrode, the variable is possible. A plunger that enables the electrical resistance value of the resistor to be set to the minimum value, and the electrical resistance value to be set to the maximum value when it is obtained only at the tip of the plug electrode,
A power plug characterized by that.
任意種別の電源から電気コンセントを介して供給される電流を、誘導性負荷を構成する電気機器に伝達するための電源プラグであって、
当該電源プラグを前記電気コンセントから離脱させる過程で、その電源プラグに構成される電流経路上の電気抵抗値を低抵抗から高抵抗へと変化させることの可能な経路抵抗可変手段を有し、
前記経路抵抗可変手段は、
前記電源プラグの内部において前記電流経路を構成し、当該電源プラグにおける一対のプラグ電極の少なくとも何れか一方に接続された電源コードの金属配線上に介在させた正特性サーミスタと、
該当する前記プラグ電極と前記正特性サーミスタとの直列回路と並列に前記金属配線に接続され、前記電気コンセントを介して供給される前記電流を、当該プラグ電極の先端部が前記電気コンセントのコンセント電極から離脱する直前まで前記金属配線に側路するバイパス電極と、を有する、
ことを特徴とする電源プラグ。
A power plug for transmitting a current supplied from an arbitrary type of power source through an electrical outlet to an electrical device constituting the inductive load,
In the process of detaching the power plug from the electrical outlet, path resistance variable means capable of changing the electrical resistance value on the current path configured in the power plug from a low resistance to a high resistance,
The path resistance varying means is
A positive temperature coefficient thermistor configured on the metal wiring of the power cord connected to at least one of the pair of plug electrodes in the power plug, forming the current path inside the power plug;
The plug electrode and the positive temperature coefficient thermistor are connected to the metal wiring in parallel with the series circuit, and the current supplied through the electrical outlet is connected to the outlet electrode of the electrical outlet. A bypass electrode that bypasses the metal wiring until immediately before leaving.
A power plug characterized by that.
前記バイパス電極は、
その長手方向の有効長を前記プラグ電極のそれよりも短く設定され、
前記正特性サーミスタは、
当該バイパス電極の先端部が前記コンセント電極から離脱して、当該コンセント電極との電気的接触が前記プラグ電極の先端周辺領域のみを介して得られたときに、自身への前記電流の急激な流入に伴うジュール熱の増加により自身の電気抵抗値を所定値まで増加させる機能手段を具備する、
ことを特徴とする請求項に記載の電源プラグ。
The bypass electrode is
The effective length in the longitudinal direction is set shorter than that of the plug electrode,
The positive temperature coefficient thermistor is
When the tip of the bypass electrode is detached from the outlet electrode and electrical contact with the outlet electrode is obtained only through the region around the tip of the plug electrode, the current suddenly flows into itself. Comprising a functional means for increasing its own electrical resistance value to a predetermined value by an increase in Joule heat accompanying
The power plug according to claim 5 .
JP2003336046A 2003-09-26 2003-09-26 electrical plug Expired - Fee Related JP4155902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336046A JP4155902B2 (en) 2003-09-26 2003-09-26 electrical plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336046A JP4155902B2 (en) 2003-09-26 2003-09-26 electrical plug

Publications (2)

Publication Number Publication Date
JP2005108451A JP2005108451A (en) 2005-04-21
JP4155902B2 true JP4155902B2 (en) 2008-09-24

Family

ID=34532312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336046A Expired - Fee Related JP4155902B2 (en) 2003-09-26 2003-09-26 electrical plug

Country Status (1)

Country Link
JP (1) JP4155902B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921922B2 (en) * 2006-10-25 2012-04-25 イリソ電子工業株式会社 Method for forming a resistor for electrical connection terminals
WO2009152660A1 (en) * 2008-06-20 2009-12-23 Tian Yu Spark-resistant plug structure and power supply adaptor
JP2011258511A (en) * 2010-06-11 2011-12-22 Toshiba Lighting & Technology Corp Wiring device
US9666977B2 (en) 2015-07-29 2017-05-30 Abb Schweiz Ag Direct current socket with direct current arc protection
US10483693B2 (en) 2015-09-24 2019-11-19 Abb Schweiz Ag Sliding contact assembly for accelerating relative separation speed between plug contacts and socket outlet contacts
US10020613B2 (en) 2016-08-01 2018-07-10 Te Connectivity Corporation Power terminal for arcless power connector

Also Published As

Publication number Publication date
JP2005108451A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
AU2003259447A1 (en) Electric device comprising phase change material
JP4714155B2 (en) Corona discharge electrode and operation method thereof
ATE150580T1 (en) VARIABLE HIGH CURRENT RESISTANCE AND APPLICATION AS A PROTECTIVE ELEMENT
US4890186A (en) Fault current limiting device
AU2003283730A1 (en) Electric device comprising a layer of phase change material and method of manufacturing the same
JP2002538606A5 (en)
JP4155902B2 (en) electrical plug
KR102260843B1 (en) Electric switch for protection of an over current using critical-temperature device
US2949592A (en) Adjustable transformer with stabilized contact track
WO1999036927A1 (en) Circuit breaker with improved arc interruption function
JP2012093265A (en) Power supply connecting terminal
US2459306A (en) Contact protection for mercury wetted switch contacts
US3974470A (en) Multi-stage switching apparatus
US4121187A (en) High speed ratio, dual fuse link
JP5240177B2 (en) Disconnector
US5960541A (en) Method of making circuit breaking contact with micro-contact interface
JP4155901B2 (en) Outlet socket
JP6201681B2 (en) Switch
US10074944B2 (en) Arc suppression connector
US2902664A (en) Power resistor assembly
Fnineche et al. Investigations on some parameters influencing the current commutation in the circuit breakers
DE3400881A1 (en) TEMPERATURE ADJUSTMENT FOR HEATING PILLOW
EP3048686A1 (en) Electrical switchgear for overcurrent protection using critical temperature device
JP2586276B2 (en) Disconnector
US4028591A (en) Relay contact protector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees