JP4155884B2 - Electromagnetic induction heating device - Google Patents

Electromagnetic induction heating device Download PDF

Info

Publication number
JP4155884B2
JP4155884B2 JP2003202467A JP2003202467A JP4155884B2 JP 4155884 B2 JP4155884 B2 JP 4155884B2 JP 2003202467 A JP2003202467 A JP 2003202467A JP 2003202467 A JP2003202467 A JP 2003202467A JP 4155884 B2 JP4155884 B2 JP 4155884B2
Authority
JP
Japan
Prior art keywords
magnetic
orthogonal
core
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003202467A
Other languages
Japanese (ja)
Other versions
JP2004228068A (en
Inventor
英雄 富田
修二 小畑
直 長谷川
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2003202467A priority Critical patent/JP4155884B2/en
Publication of JP2004228068A publication Critical patent/JP2004228068A/en
Application granted granted Critical
Publication of JP4155884B2 publication Critical patent/JP4155884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導電性発熱部材に対して誘導加熱を行う電磁誘導加熱装置に関する。
【0002】
【従来の技術】
金属などの導電性物体を加熱する有効な方法の一つとして電磁誘導作用を利用した誘導加熱がある。これは交番する磁界中に導電性発熱部材が存在する場合、電磁誘導作用によって物体内に起電力が生じ、それにより物体内に誘導電流が流れてI2Rのジュール熱を発生することを利用し導電性発熱部材を所定の温度にまで加熱するものである。
【0003】
従来より、被加熱表面が平面となっている導電性発熱部材に対して誘導加熱を行う構成としては、同一平面上で渦巻き状に形成されたコイルを被加熱表面に対し平行かつ近接に配置させ、30kHz程度の高周波電流を供給することによりその被加熱表面に交番する磁力線を通過させて誘導加熱するものがある(たとえば、特許文献1、特許文献2参照)。
【0004】
また他の構成として、磁性体材料で細長い円柱形状に形成した磁心の外周にコイルを巻き付けたものがあり、この一方の端部を被加熱表面に対向させてほぼ直交するよう配置し、その対向側の端部から被加熱表面へほぼ直交する方向に交番磁力線を通過させて誘導加熱するようになっている。
【0005】
【特許文献1】
特開平8−73818号公報
【特許文献2】
特開平8−143825号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記のようなコイルを平面渦巻き状に形成したものと円柱形状の磁心にコイルを巻き付けたもののどちらの構成も、磁力線を通過させる領域は円形に限られるものとなっていた。
【0007】
磁力線の通過領域が被加熱表面の形状と一致しない場合には、磁力線の通過が不十分で渦電流が少なく十分に誘導加熱されない箇所が存在するか、または被加熱表面の縁部などに渦電流が集中して過剰に加熱させてしまい、その結果、被加熱表面全体での加熱状態が不均一となって目的の加熱形状が損なわれる問題がある。
【0008】
本発明の目的は、被加熱表面の形状に合わせて渦電流の発生領域を適切に設定し、被加熱表面を目的の形状に加熱できる電磁誘導加熱装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の電磁誘導加熱装置は、長方形の導電性発熱部材に交番磁力線を通過させることにより渦電流を発生させ、そのジュール熱で前記導電性発熱部材を誘導加熱する電磁誘導加熱装置であって、交流電流を供給する交流電流供給部と、前記導電性発熱部材の被加熱表面に対向する対向部を備え高透磁率のフェライトからなる断面長方形の直交磁心と、前記直交磁心の前記対向部の反対側に配置されるとともに前記直交磁心とによりT字形状をなして前記交番磁力線を収束する磁力線収束磁心と、前記直交磁心の外周に巻き付けられて前記交流電流供給部から前記交流電流が供給される加熱コイルとを有し、前記加熱コイルにより前記直交鉄心に発生した前記交番磁力線によって、前記直交磁心の前記対向部から前記導電性発熱部材を通過して前記加熱コイルの外側を介して前記磁力線収束磁心に至る磁路を形成し、前記導電性発熱部材を均一加熱することを特徴とする。
【0010】
本発明の電磁誘導加熱装置は、前記直交磁心の前記対向部に傾斜面により形成される尖端部を設け、前記交番磁力線を前記尖端部から前記被加熱表面に集中して放出することを特徴とする。
【0011】
本発明の電磁誘導加熱装置は、前記直交磁心の周囲の前記交番磁力線を捕捉して前記磁力線収束磁心と前記導電性発熱部材との間に前記交番磁力線を案内する磁力線捕捉部材を前記磁力線収束磁心に設けることを特徴とする。
【0015】
本発明にあっては、磁力線収束磁心が磁力線を収束することでその通過経路を被加熱表面の形状に対応した経路に整形できるため、渦電流の経路も形状に対応させて加熱の均一化を図ることができる。
【0016】
本発明にあっては、直交磁心の対向部に傾斜面により形成される尖端部が設けられているので、磁力線が中央の尖端部から集中して放出されるようになり、磁力線を集中的に被加熱表面へ通過させることが可能となる。
【0017】
本発明にあっては、直交磁心の周囲の前記交番磁力線を捕捉して前記磁力線収束磁心と前記導電性発熱部材との間に前記交番磁力線を案内する磁力線捕捉部材を前記磁力線収束磁心に設けたので、磁力線が外部へ漏出するのをより効果的に抑制することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0019】
(実施の形態1)
図1は本発明の第1の実施の形態である電磁誘導加熱装置が備える電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図であり、図2は電磁誘導加熱装置の電気回路を示すブロック図であり、図3はその導電性発熱部材に流れる渦電流の経路を図1における矢視Xから見た図である。本実施の形態の電磁誘導加熱装置は、図1に示すように誘導加熱を行うための交番磁力線Mを発生する電磁ヘッド部1を有しており、この電磁ヘッド部1は直交磁心であるコア2とその外周に巻き付けられる加熱コイル3を有している。
【0020】
コア2は、強磁性材料であるフェライト、鉄、化合物などの高透磁率を持った材質とし、被加熱体である導電性発熱部材4の被加熱表面4aに対して対向させる対向部5と、その反対側の反対部6を備えた直方体の形状に形成されている。図示してはいないが、通常この電磁ヘッド部1は、樹脂等のような非導電体かつ非磁性体の材質で形成したケース内に収容されて用いられることになる。
【0021】
電磁誘導加熱装置7は、図2に示すように、電磁ヘッド部1および操作スイッチ8を備えるヘッド収容部9と、電源ユニット10および高周波発生器11および加熱時間設定器12を備える本体部13(交流電流供給部)とを有しており、ヘッド収容部9と本体部13とは給電線14を介して接続されている。
【0022】
操作スイッチ8は電磁ヘッド部1と同じケースに設けられてヘッド収容部9を構成しており、操作者が作動開始の操作を入力できるようになっている。電源ユニット10はACコード15を介して外部の交流電源16に接続されており、供給された交流電力を直流電力に整流して以下の他の回路に供給するようになっている。高周波発生器11は給電線14を介して加熱コイル3に接続されており、たとえば20〜30kHz程度の高周波の交流電流を発生して加熱コイル3に供給するようになっている。加熱時間設定器12は1回の加熱操作に要する加熱コイル3への通電時間を設定するものであり、給電線14を介して操作スイッチ8から通電操作の信号を受けてから設定された通電時間だけ高周波発生器11に制御信号を出力するようになっている。高周波発生器11はこの制御信号を受けている間、すなわち設定された通電時間だけ加熱コイル3に交流電流を供給する。加熱時間設定器12は通電時間の設定を任意に調整できるようになっている。
【0023】
以上の構成の電磁誘導加熱装置7の操作について説明する。操作者はヘッド収容部9を移動させて図1に示すようにコア2を被加熱表面4aに向けて直交させつつ近接するよう配置し、この状態で操作スイッチ8をオン操作することにより導電性発熱部材4に対する誘導加熱を開始することになる。加熱時間設定器12に設定された通電時間だけ加熱コイル3に交流電流が供給され、その間に図示するようにコア2を中心とした加熱コイル3の周囲に交番する磁力線Mが発生する。
【0024】
コア2は磁力線Mの空間分布を制御する磁路、すなわち内部に磁力線Mを収束して通過させる磁束路として機能し、コア2の対向部5の対向面から被加熱表面4aに対して磁力線Mを直交して通過させるようになっている。したがって対向部5の対向面の断面形状を変えることで磁力線通過領域Amを任意に設定することができる。
【0025】
図3に示すように、磁力線通過領域Amに交番磁力線Mが通過することで、磁力線通過領域Amを含むその周囲には電磁誘導効果により渦電流Iが生じることになる。この渦電流Iが流れることでジュール熱が発生し、それにより導電性発熱部材4に対する誘導加熱が行われることになる。
【0026】
図17は、比較例として、コアを備えずに平面渦巻き状に形成された加熱コイル103のみで構成する電磁ヘッド部101と、それに平行に配置されて誘導加熱されている状態の導電性発熱部材4の斜視図であり、図18はその導電性発熱部材4に流れる渦電流Iの経路を示した図である。図17において導電性発熱部材4の被加熱表面4aは、長辺が加熱コイル103の直径よりも十分に長く、短辺が加熱コイル103の直径より少しだけ長い長方形に形成されている。
【0027】
この構成の場合、加熱コイル103は十分な本数の磁力線Mを得るために何周にも廻して巻く必要があり、そのため加熱コイル103が被加熱表面4aに対して磁力線Mを通過させる領域Amは、図示するように広い面積を要するほぼ円形の形状とならざるを得ない。しかし実際の被加熱表面4aは円形以外の多角形状である場合が多く、つまり被加熱表面4aの形状と磁力線通過領域Amの形状とが大きく相違してしまう場合が多い。
【0028】
図18に示すように磁力線通過領域Amが被加熱表面4aの形状と一致しない場合には、渦電流Iが局所的に流れずに十分に誘導加熱されない箇所4bが存在したり、また磁力線通過領域Amに近接している縁部4cなどには渦電流Iが集中して過剰に加熱させてしまい、その結果加熱状態が不均一となって大きく温度ムラができてしまう問題がある。また特に図17に示すようなコアを備えずに平面渦巻き状に形成された加熱コイル103のみで構成する電磁ヘッド部101の場合には、平面渦巻き状の中心位置において誘導電流の発生が少なく、そのため図18に示すように平面渦巻きコイルによる加熱は中心に穴のあいた円環形状となって加熱状態不均一となってしまう。
【0029】
これに対して図1に示す本実施の形態の電磁ヘッド部1の場合は、コア2の対向部5の断面形状が被加熱表面4aの形状に適合していることから、図3に示すように被加熱表面4aの形状全体に偏りの小さい渦電流Iを流すことができる。
【0030】
(実施の形態2)
図4は本発明の第2の実施の形態である電磁誘導加熱装置の電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図であり、図5は本実施の形態の電磁ヘッド部21により導電性発熱部材4に流れる渦電流Iのある瞬間における経路を示した図である。本実施の形態の電磁誘導加熱装置において、図4に示すように電磁ヘッド部21は相互に並列に配置された3本の直交心部(直交磁心)22a〜22cで構成するコア22と、それらの外周に巻き付けられた加熱コイル23とを有している。
【0031】
各直交心部22a〜22cは、被加熱表面4aに対して対向させる対向部25と、その反対側の反対部26を備えた直方体の形状に形成されたものであり、3本が被加熱表面4aの形状に適合して配置されている。また各直交心部22a〜22cに対応する磁力線通過領域Amと被加熱表面4aの各縁部との間の間隔については、図示するように均等な間隔とする以外にも、縁部における渦電流Iの集中を避けるために少し大きめの間隔を設ける配置としてもよい。このようにして各直交心部22a〜22cは、被加熱表面4aの形状に合わせて適合して配置された状態となっている。なお、図中に示す各直交心部22a〜22cは直方体形状となっているが、その他にも円柱形状や、他の多角形の角柱形状としてもよい。
【0032】
加熱コイル23は図中両端の直交心部22a,22cに対して同じ左廻り方向に、中央の直交心部22bには逆の右回り方向に、それぞれ同じ回数だけ巻き付けられている。これらの直交心部22a〜22cと加熱コイル23は、図示しないケース内に収容されることで、お互いの配置関係が維持されるようになっている。
【0033】
上記の構成によれば、被加熱表面4aの形状に合わせて各直交心部22a〜22cを適合して配置していることにより、被加熱表面4aの形状全体に偏りを少なく渦電流Iを流すことができるといった上記第1の実施の形態と同様の効果が得られる。さらに本実施の形態においては、隣り合う直交心部どうしで逆方向に磁力線Mを通過させていることにより、以下に説明するように被加熱表面4a上の加熱領域に対して効果的な誘導加熱を行うことができる。
【0034】
比較例として図1に示す上記第1の実施の形態のように、被加熱表面4aの形状が長方形のように長い形状であってコア2の対向部5もまたそれと相似する長い形状である場合には、長手方向の渦電流が均一化され温度ムラが少なくなる。
【0035】
図5、図6はコアの磁極の組み合わせで加熱形状を変化させる方法を示す。本実施の形態の電磁ヘッド部21によれば、図4に示すように中央の直交心部22bに常に他の両端2つの直交心部22a,22cと逆の方向に磁力線Mが通過するため、3本の直交心部22a〜22cと導電性発熱部材4とがほぼループ形状の磁路を2つ並列に形成することになり、外部への磁力線Mの漏出を抑制する効果が向上するようになる。そのため磁力線Mが広い範囲へ拡散するのを抑えて被加熱表面4aに対し磁力線Mを集中通過させて加熱効率を向上できるとともに、図中の上方側すなわち操作者側へ向かう磁力線Mの漏出を抑制できるようになっている。
【0036】
なお各直交心部22a〜22cにおける加熱コイル23の巻き付け方向については、図4に示すように隣り合う直交心部どうしで逆方向廻りに巻き付ける構成に限定されるものではなく、たとえば全ての直交心部22a〜22cで同じ方向廻りに巻き付ける構成としてもよい。この場合には、図6に示すように、各直交心部22a〜22cに対応する磁力線通過領域Amどうしの間の領域では、それぞれの渦電流Iが逆向きに重合して打ち消し合うことになり、その代わりに全ての磁力線通過領域Am全体を囲む外周にほとんどの渦電流Iが流れるようになる。
【0037】
図19に示す円柱形状の直交磁心(コア112)に加熱コイル113を巻き付けた構成の場合、磁力線Mが導電性発熱部材4を貫通して周囲の広い範囲へ拡散することになるため、後述するような磁力線収束磁心として設ける平行磁心は拡散した磁力線Mを回収する構成は特に有効となる。
【0038】
なお、図7に示すように並列に配置した各直交心部22a〜22cの反対部26に、直交連結して被加熱表面4aに対しては平行な配置となる平行心部(平行磁心)27を一体に設けてコア28全体をE字形状に形成してもよく、隣り合う直交心部どうしで逆方向廻りに加熱コイル23を巻き付けた場合には各磁路が完全なループ形状となるためより高い磁力線漏出抑制効果が得られる。このようなE字形状のコア28を用いた場合で、図7に示すように被加熱表面4aに対する平行方向の外側の直交心部すなわち両端位置の直交心部22a,22cよりも、内側の直交心部すなわち中央位置の直交心部22bの方に加熱コイル23をより多く巻き付けることにより、並置する2つのループ形状の磁路にそれぞれ通過させる磁力線Mの本数のバランスを取ることができ、より高い磁力線漏出抑制効果を得ることができるようになる。また図示しないが、中央位置の直交心部22bにのみ加熱コイル23を巻き付けるようにした場合には1つの加熱コイル23に対してその周囲に2つのループ形状の磁路を設ける配置となるため、さらに高い磁力線漏出抑制効果が得られるようになる。
【0039】
また以上の構成において、直交心部を4つ以上直列に配置し、全体的にE字形状を複数連設したコアの構成としてもよく、その場合でも各直交心部に対して上記のような加熱コイルの巻き数のバリエーションが適用できる。
【0040】
逆に直交心部を設置する本数は2本としてもよく、さらに図8に示すように並列に配置させた2本の直交心部22a,22bの反対部26に直交して連結する平行心部(平行磁心)27を一体に設けてコア29全体をU字形状に形成してもよい。その場合でも2本の直交心部22a,22bに互いに逆廻り方向に加熱コイル23を巻き付けることにより、直交心部22a,22bと導電性発熱部材4とで1つのループ形状の磁路を形成させることができる。
【0041】
次に第2の実施の形態の第1変形例であり、被加熱表面4aの形状が正方形である場合の変形例について説明する。この場合の1例としては、図9に示すように2行2列で4本の直交心部32a〜32dを配置させ、またそれらの反対部36に共通の平行平板部(平行磁心)37を設けてコア32を構成してもよい。このように直交心部32a〜32dを被加熱表面4aに対する平行方向の任意の配置で設けることにより、被加熱表面4a上の加熱領域の形状を任意に設定することが可能である。また係わる磁気ヘッドは、個々のコア(磁心)の磁極を組み換えて全体の加熱加工の形状を自在に変更することが可能である。
【0042】
図10は上記のコア32のうち隣り合う直交心部どうしで逆方向廻りに加熱コイルを巻き付けた場合の正方形の被加熱表面4aに流れる渦電流Iのある瞬間における経路を示した図である。図10に示すように、各磁力線通過領域Amどうしの間には前述と同様に渦電流Iが重合した大電流ILによる高加熱部が発生することになり、これらが均等な配置となっているため被加熱表面4a全体の均一加熱を図ることができる。また正方形の被加熱表面4aに対し、3行3列や4行4列などの配置としてより多くの直交心部を配置することでさらに均一かつ高い効率で加熱することも可能である。また隣り合う2つの直交心部と被加熱表面4aと平行平板部37とでループ形状の磁路を形成し、磁力線漏出抑制効果を得ることもできる。
【0043】
図11は上記のコア32の全ての直交心部32a〜32dで同じ方向廻りに加熱コイルを巻き付けた場合の渦電流Iのある瞬間における経路を示した図である。図11に示すように、各磁力線通過領域Amどうしの間の領域ではそれぞれの渦電流Iが逆向きに重合して打ち消し合うことになり、その結果全ての磁力線通過領域Am全体を囲む外周にほとんどの渦電流Iが流れるようになる。導電性発熱部材4の縁部分を加熱させるのに適している。
【0044】
また第2の実施の形態の第2変形例であり、被加熱表面4aの形状が四角形などの多角形である場合に特に好適な変形例について説明する。図17に示す比較例のように四角形の被加熱表面4aに対して平面渦巻き状に形成された加熱コイル103のみにより誘導加熱される場合には、図18に示すように四角形の四隅の角部分4bが十分に誘導加熱されずに加熱状態の不均一による温度ムラが生じてしまう。また特にコアを有しない場合に磁力線通過領域Amの中心に生じる加熱不足もまた温度ムラの要因となっている。
【0045】
これに対して図12に示す本変形例のコア38では、平面渦巻き状の加熱コイル103の中心位置と四角形被加熱表面4aの各角部分位置にそれぞれ円柱形状の直交心部38a,38bを配置し、さらに中心位置の直交心部38aの反対部から他の直交心部38bの反対部へそれぞれ掛け渡すように4つの円柱形状の平行心部38cを配置した構成となっている。
【0046】
これによれば、平面渦巻き状の加熱コイル103からその中心位置をも含めた円形の領域Amで磁力線Mが被加熱表面4aを通過し、そののちに各角部分位置に向かって分散してそれぞれの直交心部38bに収束し、各平行心部38cを介して中心位置の直交心部38aに収束する。そのため各角部分位置の領域Am2を含む周囲にも磁力線Mの通過により渦電流Iが流れて誘導加熱されることになり、その結果、四角形被加熱表面4aの全体における温度ムラが緩和されることになる。さらに各角部分の直交心部38bと中心位置の直交心部38aとの間にはそれぞれループ形状となる磁路が形成されるため、高い磁力線漏出抑制効果も得ることができる。
【0047】
なお、図示しないが、被加熱表面4aの形状が四角形以外の多角形形状であっても各角部分位置にそれぞれ直交心部38bを配置して中心位置の直交心部38aとの間に平行心部38cを掛け渡すよう配置することで図12に示す変形例と同様の効果を得ることができる
【0048】
(実施の形態3)
図13(A)は本発明の第3の実施の形態である電磁誘導加熱装置の電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図、図13(B)は第3の実施の形態の変形例である電磁誘導加熱装置の電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図である。本実施の形態およびその変形例の電磁誘導加熱装置において、図13(A)、図13(B)に示すように電磁ヘッド部41,51はT字形状に形成されたコア42,52と、それに巻き付けられた加熱コイル43,53とを有している。
【0049】
コア42,52は、被加熱表面4aに対して直交する配置の直交磁心である直交平板部44,54と、この直交平板部44,54の反対部46,56に直交して被加熱表面4aに対して平行となる配置の磁力線収束磁心である平行平板部47,57(平行磁心)とを一体に備えてT字形状となっている。被加熱表面4aは長方形の形状となっており、平行平板部47,57は被加熱表面4aの形状にほぼ相似する長方形の平板形状に形成されている。直交平板部44,54の対向部45,55はその両側に傾斜面48,58を有して尖った楔形状に形成されている。
【0050】
図13(A)に示す直交平板部44は被加熱表面4aに直交する方向に長く形成されており、加熱コイル43はこの対向部45の傾斜面48も含めた直交平板部44の外周に長手方向にずらして巻き付けられている。図13(B)に示す直交平板部54は被加熱表面4aに直交する方向に短く形成されており、加熱コイル53はこの対向部55の傾斜面58の外周で同じ長手方向位置に重なるよう平面渦巻き状に巻き付けられている。
図示してはいないが、通常この電磁ヘッド部41,51は、非磁性体の材質で形成したケース内に収容されて用いられることになる。
【0051】
上記構成によれば、平行平板部47,57が磁力線Mを捕捉することによりその通過経路を整形することができるため、被加熱表面4aの形状に対応する適切な経路で磁力線Mを通過させて被加熱表面4aに対する加熱の均一化を図ることができる。また図13(A)に示す電磁ヘッド部41によれば、非加熱表面4aに対して細長形状の領域で加熱することができ、図13(B)に示す電磁ヘッド部51によれば、長形大面積の領域で加熱することができる。
【0052】
また、本実施の形態の電磁ヘッド部41,51は、T字形状のコア42,52の図中下方側の対向部45,55がその両側に傾斜面48,58を有して尖った楔形状となっていることにより、以下に説明するように被加熱表面4aに通過させる磁力線Mの密度を集中させることができる。
【0053】
図14(A)は、比較例として対向部5が被加熱表面4aに対して平行な平端面の形状に形成されている場合で、加熱操作の定常状態時にそこから放出される磁力線Mの様子を示している。平端面の中央箇所において渦電流発生のメカニズムにより、被加熱表面4a上の対応する範囲Yではほとんど誘導加熱が行われずに加熱状態が不均一となって大きく温度ムラができてしまう。
【0054】
これに対して図14(B)に示すように対向部45が両側に傾斜面48を有して尖った楔形状に形成されている場合には、磁力線Mは中央の尖端部から集中して放出されるようになるため、中央の非加熱範囲Yをなくすことができるとともに、両側方向に拡散していた分の磁力線Mも合わせて集中的に被加熱表面4aへ通過させることが可能となる。したがって導電性発熱部材4に対する誘導加熱をより効果的に行うことができる。
【0055】
またこの対向部45の傾斜面48は側面側の2方向だけでなく、図15に示すようにその外周全体に渡って形成されてもよく、それによりたとえば対向部45を全体的に角錐形状(または円錐形状)に形成することもできる。この場合磁力線Mが尖端点の1点に向かって集中するように放出されるため、最も局所的かつ効率的に誘導加熱を行うことができるようになる。
【0056】
また以上の平行平板部47,57を設ける構成では、平行平板部47,57に対して直交平板部44,54が一体となって形成されているものに限られず、部材間で磁力線Mが通過可能であればそれぞれ別体で形成したものを組み合わせてT字形状とする構成としてもよい。
【0057】
さらに、コア42と同じ強磁性材料(フェライトなど)で構成され、図16中に示すようにT字形状のコア42の周囲に配置される大きさや角度の調整できるフレーム組立体49をヘッド収容部に組み込んでもよい。これにより、フレーム組立体49も磁路を形成する磁力線捕捉部材として機能し、コア42の周囲の磁力線Mを捕捉してその通過経路を整形し、また磁力線Mが外部へ漏出するのをより効果的に抑制することができる。磁力線捕捉部材は強磁性材料を材質としていれば図16に示すような形状のフレーム組立体49に限られるものではなく、たとえばネット状の形態とするなど多様な構成が考えられる。
【0058】
なお、コア42,52の平行平板部47,57および磁力線捕捉部材の形状と被加熱表面4aの形状の間の相似関係については、縦方向と横方向の縮尺の差や、小さい切り欠き形状や突出形状といった局所的違いについては多少の許容を持たせることはもちろん可能である。
【0059】
本発明は種々の誘導加熱に応用される。たとえば利用方法の1つとして、特開平8−73818号公報などに記載されているオールオーバー工法の改良磁気ヘッドとして用いることができる。導電性発熱部材としての金属薄板の両面に熱可塑性接着剤又は熱硬化性接着剤を塗布し、2つの非導電性の板材の間に挟み込ませた状態で一方の板材の反対面から本発明の加熱装置により金属薄板を誘導加熱することで2つの板材を相互に接着させるといった接着剤の溶融装置としての利用方法が考えられる。さらに、この接着剤の溶融装置によれば、部材相互の接着箇所を再度加熱して、固化した接着剤を再び溶融させ、2つの部材を相互に分離することもできる。接着剤が炭化するまで加熱し続けた場合には、接着剤を部材から容易に除去することができるので、分離した部材を再利用することができる。
【0060】
【発明の効果】
本発明によれば、磁心の対向部の断面形状が被加熱表面の形状と適合することにより、渦電流の経路を被加熱表面の形状とほぼ相似させることができ、熱伝導との融合効果により誘導加熱の均一化を図ることができる。
【0061】
本発明によれば、被加熱表面の形状に合わせて渦電流の発生領域を適切に設定できる。特に被加熱表面の形状に合わせて複数の直交磁心を配置することにより、被加熱表面全体に偏りなく渦電流を流して被加熱表面全体の均一加熱を図ることができる。さらに異なる直交磁心どうしで逆方向に磁力線を発生させることにより、渦電流が重合した大電流加熱部を発生させて加熱形状を変形させることができる。またループ形状の磁路を形成して高い磁力線漏出抑制効果も得られる。
【0062】
本発明によれば、磁力線収束磁心が磁力線を収束することによりその通過経路を被加熱表面の形状に対応した適切な経路に整形できるため、渦電流の経路も偏りをなくして加熱の均一化を図ることができる。また磁力線が広い範囲へ拡散するのを抑えて加熱効率を向上できるとともに、操作者側へ向かう漏出を抑制できる。
【図面の簡単な説明】
【図1】第1の実施の形態による電磁誘導加熱装置が備える電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図である。
【図2】電磁誘導加熱装置の電気回路を示すブロック図である。
【図3】導電性発熱部材に流れる渦電流の経路を図1における矢視Xから見た図である。
【図4】第2の実施の形態である電磁誘導加熱装置の電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図である。
【図5】図4に示す電磁ヘッド部により導電性発熱部材に流れる渦電流のある瞬間における経路を示した図である。
【図6】図4に示すコアのうち全ての直交心部で同じ方向廻りに加熱コイルを巻き付けた場合の導電性発熱部材に流れる渦電流のある瞬間における経路を示した図である。
【図7】E字形状に形成されたコアにおいて、両端位置の直交心部よりも中央位置の直交心部の方に加熱コイルをより多く巻き付けた場合の変形例の斜視図である。
【図8】U字形状に形成されたコアおよび加熱コイルを備えた電磁ヘッド部の変形例の斜視図である。
【図9】直交心部を2行2列で4本配置させ、それらの反対部に共通の平行平板部を設ける構成のコアの斜視図である。
【図10】図9に示すコアのうち隣り合う直交心部どうしで逆方向廻りに加熱コイルを巻き付けた場合の導電性発熱部材に流れる渦電流のある瞬間における経路を示した図である。
【図11】図9に示すコアのうち全ての直交心部で同じ方向廻りに加熱コイルを巻き付けた場合の導電性発熱部材に流れる渦電流のある瞬間における経路を示した図である。
【図12】平面渦巻き状の加熱コイルの中心位置と四角形被加熱表面の各角部分位置に直交心部を配置し、さらに4つの平行心部を連結した構成のコアの斜視図である。
【図13】(A)は第3の実施の形態である電磁誘導加熱装置の電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図、(B)は第3の実施の形態の変形例である電磁誘導加熱装置の電磁ヘッド部とそれにより誘導加熱されている状態の導電性発熱部材の斜視図である。
【図14】(A)は、被加熱表面に対して平行な平端面の形状に形成されている対向部から磁力線が定常状態で放出されている様子を示す断面図であり、(B)は尖った楔形状に形成されている対向部から磁力線が放出されている様子を示す断面図である。
【図15】角錐形状に形成された対向部のみを示した斜視図である。
【図16】T字形状コアの周囲に配置されるフレーム組立体を示す斜視図である。
【図17】平面渦巻き状に形成された加熱コイルのみで構成する電磁ヘッド部と、それにより誘導加熱されている状態の導電性発熱部材の斜視図である。
【図18】図17に示す電磁ヘッド部により導電性発熱部材に流れる渦電流の経路を示した図である。
【図19】円柱形状の磁心に加熱コイルを巻き付けた電磁ヘッド部と、それにより誘導加熱されている状態の導電性発熱部材の斜視図である。
【符号の説明】
1 第1実施形態の電磁ヘッド部
2 コア(直交磁心)
3 加熱コイル
4 導電性発熱部材
4a 被加熱表面
4b 不足加熱の箇所
4c 過熱する縁部
5 対向部
6 反対部
7 電磁誘導加熱装置
8 操作スイッチ
9 ヘッド収容部
10 電源ユニット
11 高周波発生器
12 加熱時間設定器
13 本体部(交流電流供給部)
14 給電リッツ線
15 ACコード
16 交流電源
21 第2実施形態の電磁ヘッド部
22 コア
22a〜22c 直交心部(直交磁心)
23 加熱コイル
25 対向部
26 反対部
27 平行心部(平行磁心)
28 E字形状コア(直交磁心、平行磁心)
29 U字形状コア(直交磁心、平行磁心)
32 第2実施形態の第1変形例のコア
32a〜32d 直交心部(直交磁心)
35 対向部
36 反対部
37 平行平板部(平行磁心)
38 第2実施形態の第2変形例のコア
38a 中心位置直交心部(直交磁心)
38b 角部分位置直交心部(直交磁心)
38c 平行心部(平行磁心)
39 第2実施形態の第3変形例のコア
39a 平行平板部(平行磁心)
39b 取り付けねじ孔
39c 取り付けねじ
39d 着脱型直交心部(直交磁心)
41,51 第3実施形態の電磁ヘッド部
42,52 T字形状コア
43,53 加熱コイル
44,54 直交平板部(直交磁心)
45,55 対向部
46,56 反対部
47,57 平行平板部(磁力線収束磁心、平行磁心)
48,58 傾斜面
49 フレーム組立体(磁力線捕捉部材)
103 平面渦巻き状加熱コイル
M 交番磁力線
Am、Am2 磁力線通過領域
Y 磁力線の無通過範囲
I 渦電流
L 重合大電流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic induction heating apparatus that performs induction heating on a conductive heating member.
[0002]
[Prior art]
One effective method for heating a conductive object such as metal is induction heating using electromagnetic induction. This is because when an electroconductive heat generating member is present in an alternating magnetic field, an electromotive force is generated in the object due to electromagnetic induction, thereby causing an induced current to flow in the object.2Utilizing the generation of R Joule heat, the conductive heating member is heated to a predetermined temperature.
[0003]
Conventionally, as a configuration for performing induction heating on a conductive heating member whose surface to be heated is a flat surface, a coil formed in a spiral on the same plane is arranged in parallel and close to the surface to be heated. , By supplying a high-frequency current of about 30 kHz, the magnetic field lines alternating on the surface to be heated are allowed to pass and induction heating is performed (for example, Patent Document 1).Patent Document 2reference).
[0004]
As another configuration, a coil is wound around the outer periphery of a magnetic core formed of a magnetic material in the form of a long and narrow cylinder. Inductive heating is performed by passing alternating magnetic field lines in a direction substantially perpendicular to the surface to be heated from the end on the side.
[0005]
[Patent Document 1]
JP-A-8-73818
[Patent Document 2]
JP-A-8-143825
[0006]
[Problems to be solved by the invention]
However, in both the configuration in which the coil as described above is formed in a plane spiral shape and the configuration in which the coil is wound around a cylindrical magnetic core, the region through which the magnetic lines of force pass is limited to a circle.
[0007]
If the area where the magnetic field lines pass does not match the shape of the surface to be heated, there are places where the magnetic field lines do not pass sufficiently and there are few eddy currents and induction heating is not sufficient, or there are eddy currents at the edge of the surface to be heated. Concentrates and heats excessively, resulting in a non-uniform heating state on the entire surface to be heated, which impairs the target heating shape.
[0008]
An object of the present invention is to provide an electromagnetic induction heating device that can appropriately set an eddy current generation region in accordance with the shape of a surface to be heated and heat the surface to be heated to a target shape.
[0009]
[Means for Solving the Problems]
  The electromagnetic induction heating device of the present invention isRectangularAn electromagnetic induction heating device that generates an eddy current by passing an alternating magnetic field line through the conductive heating member and induction-heats the conductive heating member with its Joule heat, an alternating current supply unit that supplies an alternating current; It is made of a high permeability ferrite having a facing portion facing the surface to be heated of the conductive heating member.Rectangular cross sectionWrapped around the orthogonal magnetic core, a magnetic field line converging magnetic core that is disposed on the opposite side of the orthogonal magnetic core and opposite to the opposite portion and forms a T-shape by the orthogonal magnetic core and converges the alternating magnetic field lines, and is wound around the outer periphery of the orthogonal magnetic core A heating coil to which the alternating current is supplied from the alternating current supply unit, and passes through the conductive heating member from the facing part of the orthogonal magnetic core by the alternating magnetic field lines generated in the orthogonal iron core by the heating coil. To form a magnetic path to the magnetic field line converging core through the outside of the heating coilAnd uniformly heating the conductive heating memberIt is characterized by doing.
[0010]
  The electromagnetic induction heating device of the present invention isA pointed end formed by an inclined surface is provided at the opposite part of the orthogonal magnetic core, and the alternating magnetic field lines are concentrated and emitted from the pointed end to the heated surface.It is characterized by that.
[0011]
  The electromagnetic induction heating device of the present invention isA magnetic line capturing member that captures the alternating magnetic field lines around the orthogonal magnetic core and guides the alternating magnetic field lines between the magnetic field line converging magnetic core and the conductive heating member is provided in the magnetic field line converging core.It is characterized by that.
[0015]
  The present inventionIn this case, since the magnetic field line converging core converges the magnetic field lines, the passage path can be shaped into a path corresponding to the shape of the surface to be heated, so that the eddy current path also corresponds to the shape and the heating is made uniform. Can do.
[0016]
  In the present invention,Since the pointed part formed by the inclined surface is provided in the opposite part of the orthogonal magnetic core, the magnetic field lines are concentrated and emitted from the central pointed part, and the magnetic field lines are intensively passed to the surface to be heated. Is possible.
[0017]
  The present inventionIn this case, the magnetic field line converging core is provided with a magnetic line capturing member that captures the alternating magnetic field lines around the orthogonal magnetic core and guides the alternating magnetic field lines between the magnetic field line converging magnetic core and the conductive heating member. It is possible to more effectively suppress the magnetic field lines from leaking outside.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0019]
(Embodiment 1)
FIG. 1 is a perspective view of an electromagnetic head unit included in an electromagnetic induction heating device according to a first embodiment of the present invention and a conductive heating member in a state of being induction heated by the electromagnetic head unit, and FIG. 2 is an electromagnetic induction heating device. FIG. 3 is a diagram of a path of eddy current flowing through the conductive heat generating member as viewed from an arrow X in FIG. 1. As shown in FIG. 1, the electromagnetic induction heating apparatus of the present embodiment has an electromagnetic head portion 1 that generates an alternating magnetic force line M for performing induction heating. The electromagnetic head portion 1 is a core that is an orthogonal magnetic core. 2 and a heating coil 3 wound around the outer periphery thereof.
[0020]
The core 2 is made of a material having a high magnetic permeability such as ferrite, iron, or a compound that is a ferromagnetic material, and is opposed to the heated surface 4a of the conductive heating member 4 that is a heated body, It is formed in the shape of a rectangular parallelepiped having an opposite portion 6 on the opposite side. Although not shown, normally, the electromagnetic head unit 1 is housed and used in a case formed of a non-conductive and non-magnetic material such as resin.
[0021]
As shown in FIG. 2, the electromagnetic induction heating device 7 includes a head housing portion 9 including an electromagnetic head portion 1 and an operation switch 8, and a main body portion 13 including a power supply unit 10, a high frequency generator 11, and a heating time setting device 12 ( The AC accommodating portion), and the head housing portion 9 and the main body portion 13 areFeeder14 is connected.
[0022]
The operation switch 8 is provided in the same case as the electromagnetic head unit 1 and constitutes a head housing unit 9 so that the operator can input an operation for starting operation. The power supply unit 10 is connected to an external AC power supply 16 via an AC cord 15, and rectifies the supplied AC power into DC power and supplies it to the following other circuits. The high frequency generator 11 isFeeder14 is connected to the heating coil 3, and generates a high-frequency alternating current of about 20 to 30 kHz, for example, and supplies it to the heating coil 3. The heating time setter 12 sets the energization time to the heating coil 3 required for one heating operation,FeederA control signal is output to the high-frequency generator 11 for a set energization time after receiving an energization operation signal from the operation switch 8 via 14. The high frequency generator 11 supplies an alternating current to the heating coil 3 while receiving this control signal, that is, for the set energization time. The heating time setting device 12 can arbitrarily adjust the setting of the energization time.
[0023]
The operation of the electromagnetic induction heating device 7 having the above configuration will be described. The operator moves the head accommodating portion 9 and arranges the core 2 so as to be close to each other while being orthogonally directed toward the surface to be heated 4a, as shown in FIG. Induction heating of the heat generating member 4 is started. An alternating current is supplied to the heating coil 3 for the energization time set in the heating time setting device 12, and magnetic field lines M are generated around the heating coil 3 around the core 2 as shown in the figure.
[0024]
The core 2 functions as a magnetic path for controlling the spatial distribution of the magnetic force lines M, that is, a magnetic flux path for allowing the magnetic force lines M to converge and pass through the core 2, and the magnetic force lines M from the facing surface of the facing portion 5 of the core 2 to the heated surface 4a. Are allowed to pass orthogonally. Therefore, the magnetic force line passing region Am can be arbitrarily set by changing the cross-sectional shape of the facing surface of the facing portion 5.
[0025]
As shown in FIG. 3, when the alternating magnetic field lines M pass through the magnetic field line passing region Am, an eddy current I is generated around the magnetic field line passing region Am by the electromagnetic induction effect. When this eddy current I flows, Joule heat is generated, whereby the conductive heating member 4 is induction-heated.
[0026]
FIG. 17 shows, as a comparative example, an electromagnetic head portion 101 composed only of a heating coil 103 that is not provided with a core but is formed in a plane spiral shape, and an electrically conductive heating member that is arranged in parallel and is inductively heated. 4 is a perspective view of the eddy current I flowing through the conductive heat generating member 4. In FIG. 17, the surface 4 a to be heated of the conductive heating member 4 is formed in a rectangle whose long side is sufficiently longer than the diameter of the heating coil 103 and whose short side is slightly longer than the diameter of the heating coil 103.
[0027]
In the case of this configuration, the heating coil 103 needs to be wound around in order to obtain a sufficient number of magnetic lines of force M. Therefore, the region Am through which the heating coil 103 passes the magnetic lines of force M with respect to the heated surface 4a is As shown in the figure, it must be a substantially circular shape requiring a large area. However, the actual surface to be heated 4a often has a polygonal shape other than a circle, that is, the shape of the surface to be heated 4a and the shape of the magnetic field line passing region Am often differ greatly.
[0028]
As shown in FIG. 18, when the line of magnetic force passage area Am does not coincide with the shape of the surface to be heated 4a, there is a portion 4b where the eddy current I does not flow locally and is not sufficiently induction heated, or There is a problem that the eddy current I is concentrated and excessively heated at the edge 4c or the like adjacent to Am, and as a result, the heating state becomes non-uniform and large temperature unevenness is generated. In particular, in the case of the electromagnetic head portion 101 that is configured only by the heating coil 103 formed in a plane spiral shape without the core as shown in FIG.There is little generation of induced current,Therefore, as shown in FIG.Heating with a flat spiral coilHeated in an annular shape with a hole in the centerButUnevennessEnd up.
[0029]
On the other hand, in the case of the electromagnetic head portion 1 of the present embodiment shown in FIG. 1, the cross-sectional shape of the facing portion 5 of the core 2 is adapted to the shape of the heated surface 4a. Biased to the overall shape of the heated surface 4aSmallEddy current I can flow.
[0030]
(Embodiment 2)
FIG. 4 is a perspective view of an electromagnetic head portion of an electromagnetic induction heating apparatus according to a second embodiment of the present invention and a conductive heating member in a state of being induction-heated thereby, and FIG. 5 is a diagram of the present embodiment. FIG. 6 is a diagram illustrating a path at a certain moment of an eddy current I flowing through a conductive heating member 4 by an electromagnetic head unit 21. In the electromagnetic induction heating apparatus of the present embodiment, as shown in FIG. 4, the electromagnetic head portion 21 includes a core 22 composed of three orthogonal cores (orthogonal magnetic cores) 22 a to 22 c arranged in parallel to each other, and And a heating coil 23 wound around the outer periphery of the.
[0031]
Each orthogonal center part 22a-22c is formed in the shape of a rectangular parallelepiped having a facing part 25 opposed to the surface to be heated 4a and an opposite part 26 on the opposite side. In the shape of 4aConformHas been placed. In addition, as shown in the figure, the eddy currents at the edges are not limited to the intervals between the magnetic field line passing regions Am corresponding to the orthogonal cores 22a to 22c and the edges of the heated surface 4a. In order to avoid concentration of I, a slightly larger interval may be provided. Thus, each orthogonal center part 22a-22c is in the state arrange | positioned according to the shape of the to-be-heated surface 4a. In addition, although each orthogonal center part 22a-22c shown in the figure becomes a rectangular parallelepiped shape, it is good also as a column shape or another polygonal prism shape.
[0032]
The heating coil 23 is wound the same number of times in the same counterclockwise direction with respect to the orthogonal cores 22a and 22c at both ends in the figure, and in the opposite clockwise direction with respect to the central orthogonal core 22b. These orthogonal cores 22a to 22c and the heating coil 23 are accommodated in a case (not shown) so that the mutual arrangement relationship is maintained.
[0033]
According to the above configuration, the orthogonal core portions 22a to 22c are arranged in conformity with the shape of the surface to be heated 4a, so that the entire shape of the surface to be heated 4a is biased.LessThe same effect as the first embodiment can be obtained such that the eddy current I can flow. Further, in the present embodiment, the magnetic field lines M are passed in the opposite directions between the adjacent orthogonal cores, so that the induction heating effective for the heating region on the surface to be heated 4a as described below is effective. It can be performed.
[0034]
As a comparative example, as in the first embodiment shown in FIG. 1, the shape of the heated surface 4a is long like a rectangle, and the facing portion 5 of the core 2 is also a long shape similar to it. The eddy current in the longitudinal direction is made uniform, and the temperature unevenness is reduced.
[0035]
5 and 6 show a method of changing the heating shape by combining the magnetic poles of the core. According to the electromagnetic head portion 21 of the present embodiment, as shown in FIG. 4, the magnetic force lines M always pass through the central orthogonal core portion 22b in the direction opposite to the two orthogonal core portions 22a and 22c at both ends. The three orthogonal cores 22a to 22c and the conductive heating member 4 form two substantially loop-shaped magnetic paths in parallel, so that the effect of suppressing leakage of the magnetic lines of force M to the outside is improved. Become. Therefore, it is possible to improve the heating efficiency by suppressing the diffusion of the magnetic force lines M over a wide range and to concentrate the magnetic force lines M on the surface to be heated 4a, and to suppress the leakage of the magnetic force lines M toward the upper side in FIG. It can be done.
[0036]
In addition, about the winding direction of the heating coil 23 in each orthogonal center part 22a-22c, as shown in FIG. 4, it is not limited to the structure wound around a reverse direction between adjacent orthogonal center parts, for example, all orthogonal centers It is good also as a structure wound around the same direction by the parts 22a-22c. In this case, as shown in FIG. 6, in the region between the magnetic force line passing regions Am corresponding to the respective orthogonal cores 22a to 22c, the respective eddy currents I are superposed in the opposite directions and cancel each other. Instead, most of the eddy current I flows on the outer periphery surrounding all the magnetic field line passing regions Am.
[0037]
In the case of the configuration in which the heating coil 113 is wound around the cylindrical orthogonal magnetic core (core 112) shown in FIG. 19, the magnetic lines of force M penetrate the conductive heating member 4 and diffuse to a wide surrounding area, which will be described later. A configuration in which a parallel magnetic core provided as such a magnetic force line converging magnetic core collects the diffused magnetic force lines M is particularly effective.
[0038]
In addition, as shown in FIG. 7, the parallel core part (parallel magnetic core) 27 which is orthogonally connected to the opposite part 26 of each orthogonal core part 22a-22c arrange | positioned in parallel and becomes parallel arrangement | positioning with respect to the to-be-heated surface 4a. The entire core 28 may be formed in an E shape, and when the heating coil 23 is wound in the opposite direction between adjacent orthogonal cores, each magnetic path becomes a complete loop shape. A higher effect of suppressing leakage of magnetic field lines can be obtained. In the case where such an E-shaped core 28 is used, as shown in FIG. 7, it is orthogonal to the outer orthogonal cores in the parallel direction with respect to the surface to be heated 4a, that is, orthogonal to the orthogonal cores 22a and 22c at both ends. By winding more heating coils 23 around the central portion, that is, the orthogonal central portion 22b at the center position, the number of magnetic lines M passing through the two loop-shaped magnetic paths arranged side by side can be balanced and higher. The effect of suppressing leakage of magnetic field lines can be obtained. Although not shown in the figure, when the heating coil 23 is wound only around the orthogonal center part 22b at the center position, it becomes an arrangement in which two loop-shaped magnetic paths are provided around one heating coil 23, Further, a high magnetic field line leakage suppressing effect can be obtained.
[0039]
Further, in the above configuration, four or more orthogonal cores may be arranged in series, and a core configuration in which a plurality of E-shapes are continuously provided as a whole may be used. Variations in the number of turns of the heating coil can be applied.
[0040]
Conversely, the number of orthogonal cores may be set to two, and parallel cores connected orthogonally to opposite parts 26 of the two orthogonal cores 22a and 22b arranged in parallel as shown in FIG. (Parallel magnetic core) 27 may be provided integrally to form the entire core 29 in a U shape. Even in such a case, by winding the heating coil 23 around the two orthogonal core portions 22a and 22b in opposite directions, one loop-shaped magnetic path is formed by the orthogonal core portions 22a and 22b and the conductive heating member 4. be able to.
[0041]
Next, a first modification of the second embodiment, which is a modification when the shape of the heated surface 4a is a square, will be described. As an example in this case, as shown in FIG. 9, four orthogonal cores 32 a to 32 d are arranged in 2 rows and 2 columns, and a common parallel plate portion (parallel magnetic core) 37 is disposed on the opposite portion 36. The core 32 may be configured by providing it. As described above, by providing the orthogonal core portions 32a to 32d in an arbitrary arrangement in the direction parallel to the surface to be heated 4a, the shape of the heating region on the surface to be heated 4a can be arbitrarily set. The magnetic head according to the present invention can freely change the shape of the entire heating process by recombining the magnetic poles of the individual cores (magnetic cores).
[0042]
FIG. 10 is a diagram showing a path at a certain moment of the eddy current I flowing in the square heated surface 4a when the heating coils are wound in the opposite directions between the adjacent orthogonal cores in the core 32 described above. As shown in FIG. 10, a large current I obtained by superposing eddy currents I between the magnetic field line passing regions Am as described above.LA high heating part is generated, and since these are evenly arranged, the entire surface to be heated 4a can be uniformly heated. Further, it is possible to heat the square heated surface 4a more uniformly and with high efficiency by arranging more orthogonal cores as an arrangement of 3 rows 3 columns or 4 rows 4 columns. In addition, a loop-shaped magnetic path can be formed by the two adjacent orthogonal cores, the heated surface 4a, and the parallel flat plate portion 37, and the effect of suppressing the leakage of magnetic field lines can be obtained.
[0043]
FIG. 11 is a diagram showing a path at a certain moment of the eddy current I when a heating coil is wound around the same direction in all the orthogonal core portions 32a to 32d of the core 32 described above. As shown in FIG. 11, the eddy currents I overlap in the opposite direction and cancel each other in the region between the magnetic field line passing regions Am, and as a result, almost all of the outer periphery surrounding the entire magnetic field line passing region Am is formed. Eddy current I flows. It is suitable for heating the edge portion of the conductive heating member 4.
[0044]
Moreover, it is a 2nd modification of 2nd Embodiment, and especially suitable when the shape of the to-be-heated surface 4a is polygons, such as a quadrangle | tetragon, is demonstrated. In the case where induction heating is performed only by the heating coil 103 formed in a plane spiral shape on the quadrangular heated surface 4a as in the comparative example shown in FIG. 17, the corner portions of the four corners of the quadrilateral as shown in FIG. 4b is not sufficiently induction-heated, resulting in temperature unevenness due to uneven heating. In addition, insufficient heating that occurs at the center of the line of magnetic force passage area Am when there is no core is also a cause of temperature unevenness.
[0045]
On the other hand, in the core 38 of the present modification shown in FIG. 12, cylindrical orthogonal cores 38a and 38b are arranged at the center position of the planar spiral heating coil 103 and the corner positions of the quadrangular heated surface 4a, respectively. In addition, four columnar parallel cores 38c are arranged so as to span from the opposite part of the orthogonal center part 38a at the center position to the opposite part of the other orthogonal core part 38b.
[0046]
According to this, the magnetic field lines M pass through the surface to be heated 4a in the circular area Am including the center position from the planar spiral heating coil 103, and then are dispersed toward the respective corner portion positions. And converges to the orthogonal center part 38a at the center position via each parallel center part 38c. Therefore, the area Am of each corner portion position2As a result, the eddy current I flows through the passage of the magnetic lines of force M through the magnetic field lines M, so that induction heating is performed. As a result, the temperature unevenness of the entire quadrangular heated surface 4a is alleviated. Furthermore, a magnetic path having a loop shape is formed between the orthogonal core portion 38b at each corner portion and the orthogonal core portion 38a at the center position, so that a high magnetic field line leakage suppression effect can be obtained.
[0047]
Although not shown, even if the surface to be heated 4a has a polygonal shape other than a quadrangle, orthogonal cores 38b are arranged at the respective corner portion positions and parallel to the orthogonal cores 38a at the center position. The effect similar to the modification shown in FIG. 12 can be acquired by arranging so that the part 38c may be spanned..
[0048]
(Embodiment 3)
FIG. 13A is a perspective view of an electromagnetic head portion of an electromagnetic induction heating apparatus according to a third embodiment of the present invention and a conductive heating member in a state where induction heating is performed thereby, and FIG. It is a perspective view of the electroconductive heat generating member of the state in which the electromagnetic head part of the electromagnetic induction heating apparatus which is a modification of 3rd Embodiment, and the induction heating by it. In the electromagnetic induction heating device according to the present embodiment and its modification, as shown in FIGS. 13A and 13B, the electromagnetic head portions 41 and 51 are formed in T-shaped cores 42 and 52, respectively. It has the heating coils 43 and 53 wound around it.
[0049]
The cores 42 and 52 are perpendicular to the orthogonal flat plate portions 44 and 54, which are orthogonal magnetic cores arranged orthogonal to the heated surface 4a, and the opposite surfaces 46 and 56 of the orthogonal flat plate portions 44 and 54, and the heated surface 4a. And parallel plate portions 47 and 57 (parallel magnetic cores), which are magnetic field line converging magnetic cores arranged parallel to each other, are integrally formed into a T shape. The heated surface 4a has a rectangular shape, and the parallel flat plate portions 47 and 57 are formed in a rectangular flat plate shape substantially similar to the shape of the heated surface 4a. Opposing portions 45 and 55 of the orthogonal flat plate portions 44 and 54 are formed in a sharp wedge shape having inclined surfaces 48 and 58 on both sides thereof.
[0050]
The orthogonal flat plate portion 44 shown in FIG. 13A is formed long in the direction orthogonal to the surface to be heated 4 a, and the heating coil 43 extends longitudinally on the outer periphery of the orthogonal flat plate portion 44 including the inclined surface 48 of the facing portion 45. Wrapped in the direction. The orthogonal flat plate portion 54 shown in FIG. 13B is formed to be short in the direction orthogonal to the surface to be heated 4a, and the heating coil 53 is flat so as to overlap the same longitudinal direction position on the outer periphery of the inclined surface 58 of the facing portion 55. It is wound in a spiral.
Although not shown, normally, the electromagnetic head portions 41 and 51 are housed and used in a case formed of a non-magnetic material.
[0051]
According to the above configuration, since the parallel flat plate portions 47 and 57 capture the magnetic force lines M to shape the passage path, the magnetic force lines M are allowed to pass through an appropriate path corresponding to the shape of the heated surface 4a. Uniform heating of the surface to be heated 4a can be achieved. Moreover, according to the electromagnetic head part 41 shown to FIG. 13 (A), it can heat in the elongate area | region with respect to the non-heating surface 4a, and according to the electromagnetic head part 51 shown to FIG. Heating can be performed in a large area.
[0052]
Further, the electromagnetic head portions 41 and 51 of the present embodiment are configured such that the facing portions 45 and 55 on the lower side of the T-shaped cores 42 and 52 in the drawing have the inclined surfaces 48 and 58 on both sides thereof and are sharp wedges. Due to the shape, it is possible to concentrate the density of the magnetic force lines M that pass through the heated surface 4a as described below.
[0053]
FIG. 14A shows a comparative example in which the facing portion 5 is formed in the shape of a flat end surface parallel to the surface to be heated 4a, and the lines of magnetic force M emitted therefrom in the steady state of the heating operation. Is shown. Due to the mechanism of eddy current generation at the central portion of the flat end surface, almost no induction heating is performed in the corresponding range Y on the heated surface 4a, and the heating state becomes non-uniform, resulting in large temperature unevenness.
[0054]
On the other hand, as shown in FIG. 14B, when the facing portion 45 has a sharp wedge shape with inclined surfaces 48 on both sides, the lines of magnetic force M are concentrated from the central point. Since it is released, the central non-heating range Y can be eliminated, and the magnetic lines of force M diffused in both directions can be intensively passed to the surface to be heated 4a. . Therefore, induction heating to the conductive heat generating member 4 can be performed more effectively.
[0055]
In addition, the inclined surface 48 of the facing portion 45 may be formed not only in the two directions on the side surface side but also on the entire outer periphery thereof as shown in FIG. Alternatively, it can be formed in a conical shape. In this case, the magnetic field lines M are emitted so as to concentrate toward one point of the apex point, so that induction heating can be performed most locally and efficiently.
[0056]
Further, in the configuration in which the parallel plate portions 47 and 57 are provided as described above, the perpendicular plate portions 44 and 54 are not integrally formed with the parallel plate portions 47 and 57, and the magnetic force lines M pass between the members. If possible, it is good also as a structure which makes what is formed in a different body, respectively, and makes it T shape.
[0057]
Further, the core 42 is made of the same ferromagnetic material (such as ferrite) and is disposed around the T-shaped core 42 as shown in FIG.Adjustable size and angleThe frame assembly 49 may be incorporated in the head accommodating portion. Accordingly, the frame assembly 49 also functions as a magnetic force line capturing member that forms a magnetic path, captures the magnetic force lines M around the core 42, shapes the passage path, and more effectively prevents the magnetic force lines M from leaking to the outside. Can be suppressed. The magnetic field line capturing member is not limited to the frame assembly 49 having a shape as shown in FIG. 16 as long as it is made of a ferromagnetic material. For example, various configurations such as a net shape may be considered.
[0058]
Regarding the similarity between the shapes of the parallel flat plate portions 47 and 57 of the cores 42 and 52 and the magnetic force line capturing member and the shape of the heated surface 4a, the difference between the vertical and horizontal scales, the small notch shape, Of course, it is possible to give some tolerance for local differences such as protruding shapes.
[0059]
The present invention is applied to various induction heating. For example, as one of utilization methods, it can be used as an improved magnetic head of the all-over method described in JP-A-8-73818. Thermoplastic adhesive on both sides of a thin metal plate as a conductive heating memberOr thermosetting adhesiveAdhesion of the two plate materials to each other by inductively heating the metal thin plate by the heating device of the present invention from the opposite surface of one plate material in a state where it is sandwiched between two non-conductive plate materials A method of using the agent as a melting device is conceivable. Furthermore, according to this adhesive melting apparatus, the bonding position between the members can be heated again, the solidified adhesive can be melted again, and the two members can be separated from each other. When heating is continued until the adhesive is carbonized, the adhesive can be easily removed from the member, so that the separated member can be reused.
[0060]
【The invention's effect】
According to the present invention, the cross-sectional shape of the facing portion of the magnetic core matches the shape of the surface to be heated, so that the path of the eddy current can be substantially similar to the shape of the surface to be heated. Uniform induction heating can be achieved.
[0061]
According to the present invention, it is possible to appropriately set an eddy current generation region in accordance with the shape of the surface to be heated. In particular, by arranging a plurality of orthogonal magnetic cores in accordance with the shape of the surface to be heated, an eddy current can be allowed to flow evenly over the entire surface to be heated to achieve uniform heating of the entire surface to be heated. Further, by generating magnetic lines of force in opposite directions between different orthogonal magnetic cores, it is possible to generate a large current heating portion in which eddy currents are superposed, thereby deforming the heating shape. In addition, a loop-shaped magnetic path is formed, and a high effect of suppressing magnetic field line leakage can be obtained.
[0062]
According to the present invention, since the magnetic field line converging core converges the magnetic field lines, the passage path can be shaped into an appropriate path corresponding to the shape of the surface to be heated, so that the eddy current path is also biased and heating is made uniform. Can be planned. Further, it is possible to improve the heating efficiency by suppressing the diffusion of the magnetic lines of force to a wide range, and it is possible to suppress the leakage toward the operator side.
[Brief description of the drawings]
FIG. 1 is a perspective view of an electromagnetic head unit provided in an electromagnetic induction heating device according to a first embodiment and a conductive heating member in a state of being induction heated by the electromagnetic head unit.
FIG. 2 is a block diagram showing an electric circuit of the electromagnetic induction heating device.
3 is a view of a path of eddy current flowing through a conductive heat generating member as seen from an arrow X in FIG.
FIG. 4 is a perspective view of an electromagnetic head portion of an electromagnetic induction heating device according to a second embodiment and a conductive heating member in a state of being induction heated by the electromagnetic head portion.
5 is a diagram showing a path at a certain moment of an eddy current flowing through a conductive heat generating member by the electromagnetic head unit shown in FIG. 4;
6 is a diagram showing a path at a certain moment of eddy current flowing in a conductive heating member when a heating coil is wound around the same direction in all orthogonal cores in the core shown in FIG.
FIG. 7 is a perspective view of a modification in the case where a heating coil is wound more around the orthogonal core portion at the center position than the orthogonal core portions at both end positions in the E-shaped core.
FIG. 8 is a perspective view of a modified example of an electromagnetic head unit including a core formed in a U-shape and a heating coil.
FIG. 9 is a perspective view of a core having a configuration in which four orthogonal cores are arranged in two rows and two columns, and a common parallel flat plate portion is provided on the opposite portion.
10 is a diagram showing a path at a certain moment of eddy current flowing in a conductive heating member when heating coils are wound in opposite directions between adjacent orthogonal cores in the core shown in FIG. 9;
11 is a diagram showing a path at a certain moment of an eddy current flowing in a conductive heating member when a heating coil is wound around the same direction in all orthogonal cores in the core shown in FIG. 9;
FIG. 12 is a perspective view of a core having a configuration in which orthogonal cores are arranged at the center position of a planar spiral heating coil and each corner part position of a quadrilateral heated surface, and four parallel cores are connected.
FIG. 13A is a perspective view of an electromagnetic head portion of an electromagnetic induction heating device according to a third embodiment and a conductive heating member in an induction-heated state, and FIG. 13B is a third embodiment. It is a perspective view of the electroconductive heat generating member of the state in which the electromagnetic head part of the electromagnetic induction heating apparatus which is a modification of this form, and the induction heating by it.
14A is a cross-sectional view showing a state in which magnetic lines of force are emitted in a steady state from a facing portion formed in a shape of a flat end surface parallel to the surface to be heated; FIG. It is sectional drawing which shows a mode that a magnetic force line is discharge | released from the opposing part currently formed in the sharp wedge shape.
FIG. 15 is a perspective view showing only a facing portion formed in a pyramid shape.
FIG. 16 is a perspective view showing a frame assembly disposed around a T-shaped core.
FIG. 17 is a perspective view of an electromagnetic head portion composed only of a heating coil formed in a plane spiral shape and a conductive heating member in a state of being induction-heated by the electromagnetic head portion.
18 is a diagram showing a path of eddy current flowing in the conductive heat generating member by the electromagnetic head unit shown in FIG.
FIG. 19 is a perspective view of an electromagnetic head portion in which a heating coil is wound around a cylindrical magnetic core, and a conductive heating member in a state where induction heating is performed thereby.
[Explanation of symbols]
1 Electromagnetic head portion of the first embodiment
2 core (orthogonal magnetic core)
3 Heating coil
4 Conductive heating members
4a Heated surface
4b Location of insufficient heating
4c Overheating edge
5 Opposing parts
6 Opposite part
7 Electromagnetic induction heating device
8 Operation switch
9 Head housing
10 Power supply unit
11 High frequency generator
12 Heating time setting device
13 Body (AC current supply)
14 Power supply litz wire
15 AC code
16 AC power supply
21 Electromagnetic head portion of the second embodiment
22 cores
22a-22c orthogonal core (orthogonal magnetic core)
23 Heating coil
25 Opposite part
26 Opposite
27 Parallel core (parallel magnetic core)
28 E-shaped core (orthogonal magnetic core, parallel magnetic core)
29 U-shaped core (orthogonal magnetic core, parallel magnetic core)
32 Core of the first modification of the second embodiment
32a to 32d orthogonal core (orthogonal magnetic core)
35 Opposite part
36 Opposite
37 Parallel flat plate (parallel core)
38 Core of the second modification of the second embodiment
38a Center position orthogonal core (orthogonal magnetic core)
38b Corner part position orthogonal core (orthogonal magnetic core)
38c Parallel core (parallel magnetic core)
39 Core of the third modification of the second embodiment
39a Parallel flat plate (parallel magnetic core)
39b Mounting screw hole
39c Mounting screw
39d Detachable orthogonal core (orthogonal magnetic core)
41, 51 Electromagnetic head portion of the third embodiment
42,52 T-shaped core
43,53 Heating coil
44, 54 Orthogonal flat plate (orthogonal magnetic core)
45,55 Opposite part
46, 56 Opposite part
47, 57 Parallel flat plate (magnetic field line converging core, parallel magnetic core)
48, 58 inclined surface
49 Frame assembly (Magnetic line capture member)
103 Planar spiral heating coil
M alternating magnetic field lines
Am, Am2  Magnetic field passage area
Y Non-passing range of magnetic field lines
I Eddy current
IL      Polymerization large current

Claims (3)

長方形の導電性発熱部材に交番磁力線を通過させることにより渦電流を発生させ、そのジュール熱で前記導電性発熱部材を誘導加熱する電磁誘導加熱装置であって、
交流電流を供給する交流電流供給部と、
前記導電性発熱部材の被加熱表面に対向する対向部を備え高透磁率のフェライトからなる断面長方形の直交磁心と、
前記直交磁心の前記対向部の反対側に配置されるとともに前記直交磁心とによりT字形状をなして前記交番磁力線を収束する磁力線収束磁心と、
前記直交磁心の外周に巻き付けられて前記交流電流供給部から前記交流電流が供給される加熱コイルとを有し、
前記加熱コイルにより前記直交鉄心に発生した前記交番磁力線によって、前記直交磁心の前記対向部から前記導電性発熱部材を通過して前記加熱コイルの外側を介して前記磁力線収束磁心に至る磁路を形成し、
前記導電性発熱部材を均一加熱することを特徴とする電磁誘導加熱装置。
An electromagnetic induction heating device that generates an eddy current by passing alternating magnetic field lines through a rectangular conductive heating member, and induction-heats the conductive heating member with its Joule heat,
An alternating current supply unit for supplying alternating current;
An orthogonal magnetic core having a rectangular cross section made of ferrite having a high magnetic permeability and having a facing portion facing the surface to be heated of the conductive heating member;
A magnetic field line converging core disposed on the opposite side of the orthogonal magnetic core and converging the alternating magnetic field lines in a T shape with the orthogonal magnetic core;
A heating coil wound around an outer periphery of the orthogonal magnetic core and supplied with the alternating current from the alternating current supply unit;
The alternating magnetic force lines generated in the orthogonal iron core by the heating coil form a magnetic path from the opposing portion of the orthogonal magnetic core through the conductive heating member to the magnetic field line converging magnetic core through the outside of the heating coil. And
An electromagnetic induction heating apparatus characterized by uniformly heating the conductive heating member .
請求項1記載の電磁誘導加熱装置において、前記直交磁心の前記対向部に傾斜面により形成される尖端部を設け、前記交番磁力線を前記尖端部から前記被加熱表面に集中して放出することを特徴とする電磁誘導加熱装置。  2. The electromagnetic induction heating device according to claim 1, wherein a pointed portion formed by an inclined surface is provided at the facing portion of the orthogonal magnetic core, and the alternating magnetic field lines are concentrated and emitted from the pointed portion to the surface to be heated. A feature of the electromagnetic induction heating device. 請求項1または2記載の電磁誘導加熱装置において、前記直交磁心の周囲の前記交番磁力線を捕捉して前記磁力線収束磁心と前記導電性発熱部材との間に前記交番磁力線を案内する磁力線捕捉部材を前記磁力線収束磁心に設けることを特徴とする電磁誘導加熱装置。  3. The electromagnetic induction heating device according to claim 1 or 2, further comprising: a magnetic force line capturing member that captures the alternating magnetic force lines around the orthogonal magnetic core and guides the alternating magnetic force lines between the magnetic force line converging magnetic core and the conductive heating member. An electromagnetic induction heating apparatus provided in the magnetic field line converging magnetic core.
JP2003202467A 2002-11-26 2003-07-28 Electromagnetic induction heating device Expired - Fee Related JP4155884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202467A JP4155884B2 (en) 2002-11-26 2003-07-28 Electromagnetic induction heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002342115 2002-11-26
JP2003202467A JP4155884B2 (en) 2002-11-26 2003-07-28 Electromagnetic induction heating device

Publications (2)

Publication Number Publication Date
JP2004228068A JP2004228068A (en) 2004-08-12
JP4155884B2 true JP4155884B2 (en) 2008-09-24

Family

ID=32910861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202467A Expired - Fee Related JP4155884B2 (en) 2002-11-26 2003-07-28 Electromagnetic induction heating device

Country Status (1)

Country Link
JP (1) JP4155884B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857702B1 (en) * 2006-05-15 2012-12-26 Jtekt Corporation Electromagnetic actuator, electromagnetic clutch including said electromagnetic actuator, and driving force transmitting apparatus for vehicle including said electromagnetic clutch
CN106941739A (en) * 2017-05-18 2017-07-11 湖南中科电气股份有限公司 A kind of inductor of continuous heating
CN117859408A (en) 2021-09-01 2024-04-09 日本制铁株式会社 Transverse induction heating device
CN115307386A (en) * 2022-07-18 2022-11-08 深圳市海目星激光智能装备股份有限公司 Battery core heating method and heating device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE379618B (en) * 1973-02-19 1975-10-13 Asea Ab
JPS56114400U (en) * 1980-02-01 1981-09-02
JPS62206785A (en) * 1986-03-06 1987-09-11 日本電信電話株式会社 Induction heater for reinforcement
JPH07101633B2 (en) * 1987-09-28 1995-11-01 株式会社明電舎 Flat plate induction heating device
JPH06104074A (en) * 1992-09-17 1994-04-15 Fukui Pref Gov Method for high frequency induction heating
JP2576932Y2 (en) * 1992-10-29 1998-07-23 株式会社東芝 Induction heating device
JPH0814762A (en) * 1994-06-30 1996-01-19 Mitsubishi Heavy Ind Ltd Molten metal retaining device
JP3482342B2 (en) * 1998-06-30 2003-12-22 新日本製鐵株式会社 Induction heating device on the side of metal plate
JP2000058248A (en) * 1998-08-05 2000-02-25 Matsushita Electric Ind Co Ltd Induction heating device
JP2001032016A (en) * 1999-07-19 2001-02-06 Toyota Motor Corp High frequency induction heating apparatus

Also Published As

Publication number Publication date
JP2004228068A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4845447B2 (en) Soldering apparatus and method for manufacturing soldered apparatus
JP6677204B2 (en) Reactor manufacturing method and heating device
RU2007125704A (en) ELECTRICAL CONTROL SYSTEM
WO2015106593A1 (en) Magnetic integrated inductor
JP2011090798A (en) Induction cooking device
JP4155884B2 (en) Electromagnetic induction heating device
JP4275070B2 (en) Magnetic heating device
JP6791939B2 (en) Heater device and controllable heating process
JP2013149419A (en) Induction heating apparatus
US9219422B1 (en) Operating a DC-DC converter including a coupled inductor formed of a magnetic core and a conductive sheet
JP6161479B2 (en) Induction heating device
JP6347044B2 (en) Induction heating device
US20200101309A1 (en) Magnetic field generating-apparatus for biostimulation
Banerjee et al. Uniform single-sided induction heating using multiphase, multi-resonant halbach windings
JP2006518092A (en) Dielectric heat treatment of workpieces with complex shapes
US20170079148A1 (en) Method and apparatus for welding printed circuits
JP2015069879A (en) Induction heating apparatus
KR20230002643A (en) Isolation transformer with RF shielding structure for effective magnetic power transfer
JP2014136249A (en) Soldering device and semiconductor device manufacturing method
JP2008218091A (en) Induction cooker
JP2021002451A (en) Induction heater
JPH08187971A (en) Electromagnetic induction heating device
JPS5941592Y2 (en) induction heating cooker
TWI396209B (en) Transformers and circuit devices for controlling transformers
JP2005197016A (en) Electromagnetic induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees