JP4155000B2 - Trip processing method and motor driving apparatus using the same - Google Patents

Trip processing method and motor driving apparatus using the same Download PDF

Info

Publication number
JP4155000B2
JP4155000B2 JP2002320888A JP2002320888A JP4155000B2 JP 4155000 B2 JP4155000 B2 JP 4155000B2 JP 2002320888 A JP2002320888 A JP 2002320888A JP 2002320888 A JP2002320888 A JP 2002320888A JP 4155000 B2 JP4155000 B2 JP 4155000B2
Authority
JP
Japan
Prior art keywords
voltage value
motor
value
reference voltage
trip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002320888A
Other languages
Japanese (ja)
Other versions
JP2004159394A (en
Inventor
裕二 濱田
智 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002320888A priority Critical patent/JP4155000B2/en
Publication of JP2004159394A publication Critical patent/JP2004159394A/en
Application granted granted Critical
Publication of JP4155000B2 publication Critical patent/JP4155000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モータ駆動装置のトリップ処理に関するものである。
【0002】
【従来の技術】
従来、交流電源をコンバータにて直流電圧に整流し、インバータにより任意の周波数に変換することでサーボモータを駆動している。そして、モータと駆動機器の安全を確保するため、最大出力時に必要な基準電圧(設定値)より低下すると、異常と見なしてトリップ処理を行い、モータへの電力供給を遮断する。
【0003】
また、過剰なトルク伝達を防止するため、トルクリミッタを設けて必要以上のトルクが機器に伝達しないようにしている。
【0004】
一方、瞬時停電などで瞬間的に直流電圧が設定値より低下してもトリップするため、平滑用コンデンサの容量を大きくする必要があった。
【0005】
これに対して、平滑用コンデンサの容量を増やすことなく瞬時停電時の保護、動作の断続を行うモータ駆動装置が提案されている(例えば特許文献1参照)。
【0006】
以下、従来のモータ駆動装置について説明する。図4において、交流電源41をコンバータ42にて直流電圧に整流し、分圧抵抗器44aから分圧抵抗器44dを用いて、瞬時停電検出レベルとモータ駆動用直流電圧との比較をコンパレータ45aで行い、モータ駆動信号Aをオフすることでインバータ46はモータ47への電力供給を遮断する。コンパレータ45aはモータ駆動用直流電圧V1の復帰とともにモータ47への電力供給を再開する。これにより、平滑用コンデンサ43の容量を大きくする必要がなかった。
【0007】
【特許文献1】
特開平06−30597号公報
【0008】
【発明が解決しようとする課題】
上記従来のトリップ検出レベルは、サーボモータの最大回転速度・最大出力トルク時(駆動に必要な一番高い電圧)に設定された固定値であり、瞬時停電のように瞬間的にトリップ検出レベルを割込みすぐに上昇復帰する場合には有効であった。
【0009】
しかしながら、モータは常に最大回転速度・最大出力トルクで駆動されるわけではなく、低速回転・低出力時のモータ駆動に必要な電圧に対しては、トリップ検出レベルの設定が高すぎるため、必要以上に電源遮断が発生しやすかった。
【0010】
本発明は上記従来の課題を解決するものであり、平滑コンデンサ容量を増やすことなく、モータ駆動に必要な電源電圧を安定確保でき、必要以上にトリップしないモータ駆動装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記従来の課題を解決するために本発明は、モータの回転速度と出力トルクに応じてモータ駆動に必要な電圧値を演算により求めた演算電圧値(V3)と、あらかじめ設定した不足電圧を検出するための基準電圧値(V2)とを比較する第1ステップと、第1ステップの比較結果によって前記演算電圧値(V3)あるいは基準電圧値(V2)とインバータ部に印加される直流電圧検出値(V1)とを比較する第2ステップとを備え、第1ステップで演算電圧値(V3)が基準電圧値(V2)より小さいときには、第2ステップで演算電圧値(V3)と比較し、第1ステップで演算電圧値(V3)が基準電圧値(V2)より大きいときには、第2ステップで基準電圧値(V2)と比較し、直流電圧検出値(V1)が演算電圧値(V3)あるいは基準電圧値(V2)より小さいときにトリップ処理を実行するものであり、モータ駆動状態に応じて必要な電源電圧を安定確保でき、必要以上にトリップが発生するのを抑制できる。
【0012】
【発明の実施の形態】
上記の課題を解決するため請求項1記載のトリップ処理方法は、モータの回転速度と出力トルクに応じてモータ駆動に必要な電圧値を演算により求めた演算電圧値(V3)と、あらかじめ設定した不足電圧を検出するための基準電圧値(V2)とを比較する第1ステップと、第1ステップの比較結果によって前記演算電圧値(V3)あるいは基準電圧値(V2)とインバータ部に印加される直流電圧検出値(V1)とを比較する第2ステップとを備え、第1ステップで演算電圧値(V3)が基準電圧値(V2)より小さいときには、第2ステップで演算電圧値(V3)と比較し、第1ステップで演算電圧値(V3)が基準電圧値(V2)より大きいときには、第2ステップで基準電圧値(V2)と比較し、直流電圧検出値(V1)が演算電圧値(V3)あるいは基準電圧値(V2)より小さいときにトリップ処理を実行するものであり、モータ駆動に応じた演算電圧値を用いることで必要以上にトリップすることなく、あらかじめ設定した不足電圧を検出するための基準電圧値
を設けたので平滑用コンデンサの容量を増やす必要もない。
【0013】
さらに、上記のトリップ処理方法を用いることで、平滑コンデンサ容量を増やすことなく、モータ駆動に必要な電源電圧を確保できるため、必要以上にトリップしないモータ駆動装置が得られる。
【0014】
【実施例】
以下、本発明の実施例について図を参照しながら説明する。
【0015】
図1において、1は交流電源、2はコンバータ、3は平滑コンデンサ、4a、4bは分圧抵抗器、5aは電流検出器、6はインバータ部、7はモータ、8はロータリーエンコーダ、9はマイコンである。
【0016】
あらかじめ従来と同様に不足電圧を検出するための基準電圧値V2(固定値)を設定する。直流電圧検出値V1は、インバータ部6に印加される直流電圧で分圧抵抗器4a,4bの両端から得られ、駆動状態や電源事情により変化する。
【0017】
モータ駆動後に、実際のモータ駆動状態に応じて必要な直流電圧を演算により求める。モータ7の出力(電流検出器5aおよびロータリーエンコーダ8)をマイコン9に入力し、マイコン9で演算処理して演算電圧値V3を得る。
【0018】
ここで、演算電圧値V3の求め方について説明すると、
V3 = Vemf + I*R (式1)
で表すことができる。Vemfはモータ誘起電圧であり、モータ7の回転速度に比例する。Iはモータ電流でありモータ出力トルクに比例する。Rはモータ巻線の抵抗値である。
【0019】
このように、演算電圧値V3は、式1の第一項の回転速度と第二項の出力トルクにより変化し、駆動状態に必要な直流電圧となる。例えば、モータ7の駆動状態が低速回転・低出力トルク域では、演算電圧値V3は小さくなり、交流電源1が仮に瞬時停電して基準電圧値V2を割込んだ場合でも、直流電圧検出値V1が演算電圧値V3よりも高ければトリップ処理をする必要がなく、モータ7を駆動できる。
【0020】
ここで、トリップ処理について図2を用いて説明する。
【0021】
あらかじめモータ駆動装置のマイコン9に基準電圧値V2を設定する。次に、モータ7を駆動して直流電圧検出値V1を検出すると同時に、モータ駆動状態に応じた演算電圧値V3を求め、基準電圧値V2と比較する。
【0022】
演算電圧値V3<基準電圧値V2のときには、直流電圧検出値V1と演算電圧値V3とを比較し、直流電圧検出値V1<演算電圧値V3のときのみトリップ処理を行う。
【0023】
また、演算電圧値V3>基準電圧値V2のときには、直流電圧検出値V1と基準電圧値V2とを比較し、直流電圧検出値V1<基準電圧値V2のときのみトリップ処理を行う。
【0024】
図3は、この直流電圧検出値V1、基準電圧値V2、演算電圧値V3の関係を表したもので、直流電圧検出値V1と演算電圧値V3は変化し、基準電圧値V2は不足電圧を検出する固定値である。
【0025】
このため、交流電源の状態に変化(例えば瞬時停電)が起きて直流電圧検出値V1が基準電圧値V2を割込んでも、基準電圧値V2と最大出力時の演算電圧値V3との交点の回
転速度Pよりも低速域であれば、演算電圧値V3によってトリップ処理するかどうかが決まる。
【0026】
このように、不足電圧を検出する基準電圧値V2を従来と同じに設定することで、平滑用コンデンサの容量を増やす必要がなく、駆動状況に応じて必要な直流電圧を演算により求めた演算電圧値V3と直流電圧検出値V1とを比較するので、必要以上にトリップすることのないモータ駆動装置となる。
【0027】
【発明の効果】
上記の実施例から明らかなように、本発明によれば、平滑コンデンサの容量を増やすことなく、必要以上にトリップすることのないモータ駆動装置が得られる。
【図面の簡単な説明】
【図1】 本発明の実施例におけるモータ駆動装置の回路構成図
【図2】 本発明の実施例におけるトリップ処理のフローチャート
【図3】 本発明の実施例における直流電圧検出値V1、基準電圧値V2、演算電圧値V3の関係を説明する図
【図4】 従来のモータ駆動装置の回路構成図
【符号の説明】
3 平滑コンデンサ
4a、4b 分圧抵抗器(直流電圧検出用)
5a 電流検出器(出力トルク)
6 インバータ部
7 モータ
8 ロータリーエンコーダ(回転速度)
9 マイコン(演算)
V1 直流電圧検出値
V2 基準電圧値
V3 演算電圧値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a trip process for a motor drive device.
[0002]
[Prior art]
Conventionally, a servo motor is driven by rectifying an AC power source into a DC voltage by a converter and converting it to an arbitrary frequency by an inverter. Then, in order to ensure the safety of the motor and the driving device, when the voltage drops below the reference voltage (set value) required at the maximum output, it is regarded as abnormal and a trip process is performed to cut off the power supply to the motor.
[0003]
Further, in order to prevent excessive torque transmission, a torque limiter is provided so that excessive torque is not transmitted to the device.
[0004]
On the other hand, even if the DC voltage drops instantaneously below the set value due to an instantaneous power failure or the like, it will trip, so the capacity of the smoothing capacitor has to be increased.
[0005]
On the other hand, there has been proposed a motor driving device that performs protection and intermittent operation during an instantaneous power failure without increasing the capacity of the smoothing capacitor (see, for example, Patent Document 1).
[0006]
A conventional motor driving device will be described below. In FIG. 4, an AC power source 41 is rectified to a DC voltage by a converter 42, and the comparator 45a compares the instantaneous power failure detection level with the DC voltage for driving the motor using the voltage dividing resistor 44a to the voltage dividing resistor 44d. The inverter 46 cuts off the power supply to the motor 47 by turning off the motor drive signal A. The comparator 45a resumes the power supply to the motor 47 with the return of the DC voltage V1 for driving the motor. This eliminates the need to increase the capacity of the smoothing capacitor 43.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 06-30597
[Problems to be solved by the invention]
The above-mentioned conventional trip detection level is a fixed value set at the maximum rotation speed and maximum output torque of the servo motor (the highest voltage required for driving). The trip detection level is instantaneously set like an instantaneous power failure. It was effective when returning to rising immediately after an interrupt.
[0009]
However, the motor is not always driven at the maximum rotation speed and maximum output torque, and the trip detection level is set too high for the voltage required to drive the motor at low speed and low output. It was easy for a power shutdown to occur.
[0010]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a motor driving device that can stably secure a power supply voltage necessary for driving a motor without increasing a smoothing capacitor capacity and does not trip more than necessary. .
[0011]
[Means for Solving the Problems]
In order to solve the above conventional problems, the present invention detects a calculated voltage value (V3) obtained by calculating a voltage value necessary for driving the motor according to the rotation speed and output torque of the motor, and a preset undervoltage. A first step for comparing a reference voltage value (V2) for performing the operation, and a DC voltage detection value applied to the operation voltage value (V3) or the reference voltage value (V2) and the inverter unit according to a comparison result of the first step A second step of comparing (V1) with the calculated voltage value (V3) is smaller than the reference voltage value (V2) in the first step, compared with the calculated voltage value (V3) in the second step, When the calculated voltage value (V3) is larger than the reference voltage value (V2) in one step, the DC voltage detection value (V1) is compared with the calculated voltage value (V3) or the reference voltage value (V2) in the second step. The reference voltage value (V2) is intended to perform a trip action when smaller, stable can ensure the necessary supply voltage according to the motor drive state, can be suppressed trip occurs more than necessary.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-described problem, the trip processing method according to claim 1 is set in advance with a calculated voltage value (V3) obtained by calculation of a voltage value necessary for driving the motor according to the rotational speed and output torque of the motor. A first step for comparing a reference voltage value (V2) for detecting an undervoltage and a result of comparison of the first step are applied to the calculated voltage value (V3) or the reference voltage value (V2) and the inverter unit. A second step of comparing the DC voltage detection value (V1) with the calculated voltage value (V3) in the second step when the calculated voltage value (V3) is smaller than the reference voltage value (V2) in the first step. In comparison, when the calculated voltage value (V3) is larger than the reference voltage value (V2) in the first step, it is compared with the reference voltage value (V2) in the second step, and the DC voltage detection value (V1) is the calculated voltage. (V3) or a reference voltage value is intended to perform a trip action when (V2) lower than without tripping unnecessarily by using the operation voltage value corresponding to the motor drive, detecting undervoltage set in advance Therefore, it is not necessary to increase the capacity of the smoothing capacitor.
[0013]
Furthermore, since the power supply voltage necessary for driving the motor can be secured without increasing the smoothing capacitor capacity by using the trip processing method described above, a motor drive device that does not trip more than necessary can be obtained.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
In FIG. 1, 1 is an AC power source, 2 is a converter, 3 is a smoothing capacitor, 4a and 4b are voltage dividing resistors, 5a is a current detector, 6 is an inverter unit, 7 is a motor, 8 is a rotary encoder, and 9 is a microcomputer. It is.
[0016]
A reference voltage value V2 (fixed value) for detecting an undervoltage is set in advance as in the prior art. The DC voltage detection value V1 is a DC voltage applied to the inverter unit 6 and is obtained from both ends of the voltage dividing resistors 4a and 4b, and varies depending on the driving state and power supply circumstances.
[0017]
After the motor is driven, a necessary DC voltage is obtained by calculation according to the actual motor driving state. The output of the motor 7 (current detector 5a and rotary encoder 8) is input to the microcomputer 9, and the microcomputer 9 performs arithmetic processing to obtain the calculated voltage value V3.
[0018]
Here, how to obtain the calculated voltage value V3 will be described.
V3 = Vemf + I * R (Formula 1)
Can be expressed as Vemf is a motor induced voltage and is proportional to the rotational speed of the motor 7. I is the motor current and is proportional to the motor output torque. R is the resistance value of the motor winding.
[0019]
Thus, the calculated voltage value V3 changes depending on the rotation speed of the first term and the output torque of the second term of Equation 1, and becomes a DC voltage necessary for the driving state. For example, when the driving state of the motor 7 is in the low speed rotation / low output torque range, the calculated voltage value V3 is small, and even if the AC power supply 1 instantaneously fails and interrupts the reference voltage value V2, the detected DC voltage value V1. Is higher than the calculated voltage value V3, it is not necessary to perform trip processing, and the motor 7 can be driven.
[0020]
Here, the trip processing will be described with reference to FIG.
[0021]
A reference voltage value V2 is set in advance in the microcomputer 9 of the motor drive device. Next, the motor 7 is driven to detect the DC voltage detection value V1, and at the same time, the calculation voltage value V3 corresponding to the motor driving state is obtained and compared with the reference voltage value V2.
[0022]
When the calculated voltage value V3 <the reference voltage value V2, the DC voltage detected value V1 is compared with the calculated voltage value V3, and the trip processing is performed only when the detected DC voltage value V1 <the calculated voltage value V3.
[0023]
When the calculated voltage value V3> the reference voltage value V2, the DC voltage detection value V1 is compared with the reference voltage value V2, and the trip processing is performed only when the DC voltage detection value V1 <the reference voltage value V2.
[0024]
FIG. 3 shows the relationship between the detected DC voltage value V1, the reference voltage value V2, and the calculated voltage value V3. The detected DC voltage value V1 and the calculated voltage value V3 change, and the reference voltage value V2 indicates an undervoltage . It is a fixed value to detect.
[0025]
For this reason, even if a change (for example, an instantaneous power failure) occurs in the state of the AC power supply and the DC voltage detection value V1 interrupts the reference voltage value V2, the rotation of the intersection of the reference voltage value V2 and the calculated voltage value V3 at the maximum output If the speed is lower than the speed P, whether or not the trip processing is performed is determined by the calculated voltage value V3.
[0026]
Thus, by setting the reference voltage value V2 to detect the undervoltage the same as the prior art, there is no need to increase the capacity of the smoothing capacitor, operation voltage obtained by calculating the required DC voltage according to the drive conditions Since the value V3 and the DC voltage detection value V1 are compared, the motor drive device does not trip more than necessary.
[0027]
【The invention's effect】
As apparent from the above-described embodiments, according to the present invention, a motor drive device that does not trip more than necessary without increasing the capacity of the smoothing capacitor can be obtained.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a motor drive device in an embodiment of the present invention. FIG. 2 is a flowchart of trip processing in an embodiment of the present invention. FIG. 3 is a DC voltage detection value V1 and a reference voltage value in an embodiment of the present invention. FIG. 4 is a diagram for explaining the relationship between V2 and operation voltage value V3. FIG. 4 is a circuit diagram of a conventional motor driving device.
3 Smoothing capacitor 4a, 4b Voltage divider resistor (for DC voltage detection)
5a Current detector (output torque)
6 Inverter section 7 Motor 8 Rotary encoder (rotational speed)
9 Microcomputer (calculation)
V1 DC voltage detection value V2 Reference voltage value V3 Calculation voltage value

Claims (2)

モータの回転速度と出力トルクに応じてモータ駆動に必要な電圧値を演算により求めた演算電圧値(V3)と、あらかじめ設定した不足電圧を検出するための基準電圧値(V2)とを比較する第1ステップと、第1ステップの比較結果によって前記演算電圧値(V3)あるいは基準電圧値(V2)とインバータ部に印加される直流電圧検出値(V1)とを比較する第2ステップとを備え、第1ステップで演算電圧値(V3)が基準電圧値(V2)より小さいときには、第2ステップで演算電圧値(V3)と比較し、第1ステップで演算電圧値(V3)が基準電圧値(V2)より大きいときには、第2ステップで基準電圧値(V2)と比較し、直流電圧検出値(V1)が演算電圧値(V3)あるいは基準電圧値(V2)より小さいときにトリップ処理を実行するトリップ処理方法。Comparing in response to the rotational speed and the output torque of the motor operation voltage value obtained by calculating a voltage value required for the motor drive and (V3), the reference voltage value for detecting undervoltage set in advance and (V2) A first step and a second step of comparing the calculated voltage value (V3) or the reference voltage value (V2) with a DC voltage detection value (V1) applied to the inverter unit according to a comparison result of the first step. When the calculated voltage value (V3) is smaller than the reference voltage value (V2) in the first step, the calculated voltage value (V3) is compared with the calculated voltage value (V3) in the second step. when (V2) greater than, trip when the reference voltage value in the second step compared to the (V2), the DC voltage detection value (V1) is smaller than the operation voltage value (V3) or a reference voltage value (V2) Trip processing method for performing processing. 請求項1に記載のトリップ処理方法を用いたモータ駆動装置。A motor drive device using the trip processing method according to claim 1 .
JP2002320888A 2002-11-05 2002-11-05 Trip processing method and motor driving apparatus using the same Expired - Fee Related JP4155000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320888A JP4155000B2 (en) 2002-11-05 2002-11-05 Trip processing method and motor driving apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320888A JP4155000B2 (en) 2002-11-05 2002-11-05 Trip processing method and motor driving apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004159394A JP2004159394A (en) 2004-06-03
JP4155000B2 true JP4155000B2 (en) 2008-09-24

Family

ID=32801602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320888A Expired - Fee Related JP4155000B2 (en) 2002-11-05 2002-11-05 Trip processing method and motor driving apparatus using the same

Country Status (1)

Country Link
JP (1) JP4155000B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737093B2 (en) * 2007-01-09 2011-07-27 株式会社デンソー Control device for multiphase rotating electrical machine
JP5138399B2 (en) * 2008-01-25 2013-02-06 アイダエンジニアリング株式会社 Servo press machine

Also Published As

Publication number Publication date
JP2004159394A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US7122992B2 (en) Inverter system for driving induction motor
US5592355A (en) Motor control circuit
US20060119302A1 (en) Method of controlling motor drive speed
JP2006054991A (en) Sensorless motor driver and its protective control method
US5703459A (en) Driver for an induction motor
US5747833A (en) Apparatus for driving induction motor
JP2008005647A (en) Inverter control method
EP3641125B1 (en) Control device for power tool
JP4155000B2 (en) Trip processing method and motor driving apparatus using the same
JPH11252990A (en) Pwm-type motor controller
JP4735042B2 (en) Permanent magnet motor restart device
JP3250590B2 (en) Control device for air conditioner
JP2677648B2 (en) Inverter device
JPH0630597A (en) Motor driver
JP3773798B2 (en) Power converter
JP4609634B2 (en) Protection device for AC-AC direct converter
KR100332787B1 (en) A apparatus and method for detecting change state of the inverter airconditioner
JP4566551B2 (en) Electric motor drive circuit
JPH05260761A (en) Detecting device for load of invertor
JP2004260943A (en) Method and apparatus for controlling operation of variable speed motor
JP2006271035A (en) Motor control device
JPH0851793A (en) Protection of inverter
JP3700744B2 (en) Power supply phase loss detection circuit
JPH01281353A (en) Protection circuit for air conditioner
JPH0360390A (en) Regenerative circuit protection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4155000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees