JP4150568B2 - 電子顕微鏡 - Google Patents

電子顕微鏡 Download PDF

Info

Publication number
JP4150568B2
JP4150568B2 JP2002291317A JP2002291317A JP4150568B2 JP 4150568 B2 JP4150568 B2 JP 4150568B2 JP 2002291317 A JP2002291317 A JP 2002291317A JP 2002291317 A JP2002291317 A JP 2002291317A JP 4150568 B2 JP4150568 B2 JP 4150568B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
image
energy
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002291317A
Other languages
English (en)
Other versions
JP2004127763A (ja
Inventor
勝重 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2002291317A priority Critical patent/JP4150568B2/ja
Publication of JP2004127763A publication Critical patent/JP2004127763A/ja
Application granted granted Critical
Publication of JP4150568B2 publication Critical patent/JP4150568B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、エネルギーアナライザを備え、エネルギー分析及び暗視野像を同時に観察できる走査透過型の電子顕微鏡に関する。
【0002】
【従来の技術】
従来、電子ビームのエネルギーを分析するエネルギーアナライザを搭載した透過型電子顕微鏡(transmission electron microscope:TEM)が提供されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−133195
【0004】
このような電子顕微鏡は、主として次の3つの用途に使用されている。第1は、エネルギーアナライザを用いて試料の電子エネルギー損失分光法(electron energy loss spectroscopy:EELS)によるエネルギースペクトルを取得することである。第2は、電子ビームで試料を走査した顕微鏡像を観察する走査透過型電子顕微鏡(scanning transmission electron microscope:STEM)方式である。この方式を用いる場合には、試料を走査する細く絞った電子ビームの各位置について取得したEELSによるスペクトルをメモリに記憶させておく。試料を走査した後で、メモリに記憶したデータを用いて特定のエネルギーによる顕微鏡像を形成する。これは、スペクトルイメージング法と称される。第3に、直接写像の透過型電子顕微鏡(transmission electron microscope:TEM)方式である。この方式の場合には、エネルギーアナライザで選択した所望のエネルギーを有する電子ビームによって顕微鏡像を形成する。
【0005】
スペクトルイメージング法によって顕微鏡像を形成するには、入射窓面には、通常は試料による回折像が形成される。これは、入射窓面に試料の顕微鏡像を形成するとこの像は電子ビームの走査に応じて動くのに対し、試料の回折像は電子ビームの走査に関わらず静止しているため、取り扱いが容易だからである。このような静止した回折像において、対物絞りにより所望の回折スポットを選択することができる。
【0006】
エネルギーアナライザにおいて、電子ビームは、入射窓面に対応する出射窓面においてエネルギーに応じて分散する。したがって、この出射窓面にスリットを設置することによって所望のエネルギーを有する電子ビームを選択することができる。また、EELSによるスペクトルを観測する場合は、後段の光学系は、入射像面を記録観察装置に拡大投影する。電子ビームのエネルギー分解能を高めるには、入射窓面と入射像面における電子ビームの径をできるだけ小さくすることが必要である。
一方、従来、試料から大きな角度で回折された電子ビームを結像する高角度暗視野像(high angle annular dark field:HAADF)が利用されている(例えば、非特許文献1参照)。
【0007】
【非特許文献1】
“Artificial bright spots in atomic-resolution high-angle annular dark field STEM images,” T. Yamazaki, M. Kawasaki, K. Watanabe, I. Hashimoto, M. Shiojiri, Journal of Electron Microscopy 50(6) 517-521 (2001)
【0008】
【発明が解決しようとする課題】
図8は、アニュラ検出器を備えるエネルギーフィルタの構成を示す図である。このエネルギーフィルタは、光軸L0に沿って、入射窓面111と入射像面112の間に、電子ビームを透過させるように中央に孔のあいたアニュラ検出器121を配置し、EELSによるスペクトルの取得と同時に大きな角度で回折された電子ビームをアニュラ検出器121で検出する。
【0009】
図示したエネルギーアナライザにおいては、試料から大きな角度で回折された電子ビームをアニュラ検出器121によって検出する必要があるので、対物絞りを入れることができない。入射窓面に形成される試料の回折像は、試料で回折された電子ビームの角度によるため、対物絞りがないと径が大きくなる。
【0010】
図9は、電子ビームの放出角度と入射窓面における電子ビームの径を説明する図である。
【0011】
例えば、アニュラ検出器で検出する回折した電子ビームの放出角度θ11を170mradとすると、入射窓面111における電子ビームの径D11を1μm程度に縮小することができる。この状態で、エネルギーフィルタを1eV以下のエネルギー分解能で使用することは可能である。なお、図中の黒点は、回折スポットである。
【0012】
図10は、エネルギーアナライザの出射窓面及び出射像面における電子ビームの形状を示す図である。
【0013】
図10(a)及び図10(b)は、入射窓面における電子ビームの径が0.9μm、入射像面における電子ビームの径が9μmの場合の出射窓面及び出射像面における電子ビームの形状をそれぞれ示す図である。なお、図10(b)におけるスポットは、200倍に拡大したものである。
【0014】
図10(a)に示す出射窓面において、右側の電子ビームは200kVのエネルギーで入射したエネルギー損失のないものであり、左側の電子ビームは1eVだけエネルギーを損失したものである。図からわかるように、両ビームは充分に離れており、1eV以下のエネルギー分解能のエネルギースペクトルを得ることができると推定される。このように、EELSによるスペクトル、並びにそれを用いたスペクトルイメージングを観察する上で何ら問題がない。
【0015】
図11は、入射窓面における電子ビームの径を説明する図である。
【0016】
電子ビームは、放出角度θ11として170mradを有するもので、電子ビームの径D11を0.9μmまで縮小投影している。ここで、入射窓面111の後段に配置されるアニュラ検出器121の寸法が問題になる。すなわち、10mrad程度の半角θ12を有する電子ビームをアニュラ検出器121の内孔を透過させてエネルギーアナライザに入射させる場合、アニュラ検出器121の内孔の径D12には0.9μm×(10/170)=53nmが必要である。一方、アニュラ検出器121の外径はいくらでもよいが、測定する電子ビームは、光軸L0を中心として径1μm程度に集中している。現代のナノテクノロジーによれば、このように内径53nm、外径1μm程度の検出部を有するアニュラ検出器121を製作することは不可能ではないが、製造の容易さやコストを考慮すると現実性に乏しい。
【0017】
このように、エネルギーアナライザを備えた走査透過型電子顕微鏡において、エネルギー分析及び暗視野像を同時に観察するには、エネルギー分解能を確保するためにエネルギーアナライザの入射窓面において電子ビームを細く絞るとともに回折光を選択する必要があった。
【0018】
本発明は、上述の実情に鑑みて提案されるものであって、エネルギーアナライザを備える走査透過型の電子顕微鏡であって、アニュラ検出器を備えるものを提供することを目的とする。
【0019】
【課題を解決するための手段】
前述の課題を解決するために、本発明に係る電子顕微鏡は、試料を電子ビームで走査して透過像を観察するものであって、試料を走査した電子ビームをエネルギーについて分析するエネルギーアナライザと、電子ビームの進行方向について前記エネルギーアナライザの前段に配置され、前記試料で大きな角度散乱された電子ビームを検出するアニュラ検出器と、を有し、前記エネルギーアナライザの入射窓面に前記試料の小さい口径の回折像を投影し、前記エネルギーアナライザで分析した電子ビームを用いてスペクトル又は顕微鏡像を作成する。
【0020】
好ましくは、前記口径は、0.01μmから10μmの範囲にある。
【0021】
好ましくは、前記アニュラ検出器と前記入射窓面の距離は、前記入射窓面と前記入射像面の距離の半分以上である。
【0022】
好ましくは、電子ビームに沿って、前記アニュラ検出器及び前記エネルギーアナライザ間に、電子ビームの入射角又は径を制限する絞りを配置する。
【0023】
好ましくは、前記絞りの口径は、1μmから10μmの範囲にある。
【0024】
好ましくは、前記試料を走査し、前記エネルギーアナライザによって分析したスペクトルを前記試料における位置ごとにメモリに記憶し、前記メモリに記憶したスペクトルを信号処理してスペクトルを得る。
【0025】
好ましくは、本発明に係る電子顕微鏡は、試料を電子ビームで走査して透過像を観察する電子顕微鏡において、試料を走査した電子ビームをエネルギーについて分析するエネルギーアナライザと、前記エネルギーアナライザの入射像面の近傍に配置され、前記試料で大きな角度散乱された電子ビームを検出するアニュラ検出器と、を有し、前記エネルギーアナライザの入射窓面に前記試料の小さい口径の顕微鏡像を投影し、前記エネルギーアナライザで分析した電子ビームを用いてスペクトル又は顕微鏡像を作成する。
【0026】
好ましくは、前記口径は、0.01μmから10μmの範囲にある。
【0027】
好ましくは、電子ビームに沿って、前記エネルギーアナライザにおける入射像面の近傍に、電子ビームの入射角又は径を制限する絞りを配置する。
【0028】
好ましくは、前記絞りの口径は、1μmから10μmの範囲にある。
【0029】
好ましくは、前記試料を走査し、前記エネルギーアナライザによって分析したスペクトルを前記試料における位置ごとにメモリに記憶し、前記メモリに記憶したスペクトルを信号処理してスペクトルを得る。
【0030】
【発明の実施の形態】
以下、本発明に係る電子顕微鏡の実施の形態について図面を参照して詳細に説明する。本実施の形態では、アニュラ検出器により高角度暗視野像(high angle annular dark field:HAADF)も同時に観察する、エネルギーフィルタを備えた走査透過型電子顕微鏡(scanning transmission electron microscope:STEM)を想定している。
【0031】
図1は、本実施の形態の電子顕微鏡の概略的な構成を示す図である。
【0032】
この電子顕微鏡10は、光軸L0に沿って電子ビームが進行する方向に、電子銃11と、陽極12と、集束レンズ13と、走査コイル14と、対物及び中間レンズ15と、開口16と、エネルギーアナライザ17と、スリット18と、投影レンズ19と、記録観察装置20とを有する。対物及び中間レンズ15は、対物レンズ15aと中間レンズ15bとからなる。なお、図中に電子ビームの軌跡Lを示している。
【0033】
また、電子顕微鏡10は、電子ビームの光軸L0に沿った所定位置(後述)に図示しないアニュラ検出器を有する。電子顕微鏡10においては、エネルギーアナライザ17によって選択された特定のエネルギーの電子ビームによる顕微鏡像を観察すると同時に、アニュラ検出器を用いて高角度暗視野像(HAADF)を観察することができる。
【0034】
本実施の形態では、電子銃11には電界放出型電子銃(field emission gun:FEG)を用いる。エネルギーアナライザ17には、オメガフィルタを用いる。
【0035】
図2は、オメガフィルタによるエネルギーアナライザを示す図である。
【0036】
オメガフィルタは、第1乃至第4の磁極17a,17b,17c,17dを有し、これら第1乃至第4の磁極17a〜17dは巻回されたコイルにより磁場を生成し、電子ビームを対称線Aについて対称にΩ状の軌跡Lを描くように偏向する。電子ビームの軌跡Lが複数あるのは、電子ビームのエネルギーによって描く軌跡Lが異なるからである。
【0037】
図中には、オメガフィルタに入射する電子ビームがクロスオーバを結ぶ入射窓面111、記録観察装置20の物面に共役な入射側の物面である入射像面112、エネルギーの異なる電子ビームが同じ位置に結像され、アクロマティック像面とも称される出射像面113、及びエネルギー分散面とも称され、この面にスリット18が配置される出射窓面114の位置がそれぞれ示されている。
【0038】
これら入射窓面111、入射像面112、出射像面113及び出射窓面114の位置は、エネルギーアナライザ17を備える電子顕微鏡10の基本的な光学的位置として重要である。これらの位置は、エネルギーアナライザ17の結像歪みを最小とし、エネルギーアナライザ17を備えない通常の電子顕微鏡と同様の顕微鏡像の観察機能を確保するため、エネルギーアナライザ17の設計において厳密に定められる。
【0039】
本実施の形態ではエネルギーアナライザ17にオメガフィルタを用いたが、これ以外に、アルファフィルタ、ガンマフィルタ、マンドリンフィルタ、ウィーンフィルタ等の他のエネルギーフィルタを用いることもできる。なお、前述の入射窓面、入射像面、出射像面及び出射窓面の位置は、オメガフィルタに限らす、どのようなエネルギーフィルタにおいても定義される。
【0040】
本実施の形態では、記録観察装置20には、CCDカメラを用いるが、記録フィルム、イメージングプレート等を用いることもできる。
【0041】
電子銃11から出射された電子ビームは、電子銃11と陽極12の間の電位差によって加速され、集束レンズ13によって試料101上に細い電子ビームとして収束される。その際、走査コイル14によって、試料101上において収束される位置を走査される。試料101を走査した電子ビームは、対物及び中間レンズ15によって収束され、開口16を介してエネルギーアナライザ17の入射窓面に収束される。エネルギーアナライザ17を通過した電子ビームは、出射窓面に配置されたスリット18によって特定のエネルギーを有する電子ビームのみが選択され、投影レンズ119によって記録観察装置20に投影される。
【0042】
本実施の形態では、前記構成の電子顕微鏡により、エネルギーアナライザ17の入射窓面において電子ビームを細く絞ることによりエネルギー分解能を確保するとともに、回折光を選択して暗視野像を得ることができる。
【0043】
図3は、第1の実施の形態を示す図である。
【0044】
第1の実施の形態においては、200kVにおいて1.2μm/eVのエネルギー分散を有するオメガフィルタをエネルギーアナライザ17として用い、1eVのエネルギー分解能を想定する。
【0045】
図4は、第1の実施の形態の参考例として出射窓面及び出射像面における電子ビームの形状を示す図である。
【0046】
図4(a)及び図4(b)は、入射窓面における電子ビームの径が2.0μm、入射像面における電子ビームの径が2.5μmの場合の出射窓面及び出射像面における電子ビームの形状をそれぞれ示す図である。なお、図4(b)におけるスポットは、200倍に拡大したものである。
【0047】
図4(a)に示す出射窓面において、右側の電子ビームは200kVのエネルギーで入射したエネルギー損失のないものであり、左側の電子ビームは1eVだけエネルギーを損失したものであるが、これらは重なり合っている。このため、1eVの分解能を得るためには、右側と左側の電子ビームが重なり合わないように、電子ビームの径は1μm以下であることが必要であると思われる。このとき、電子ビームの径(1μm)は、分散の値(1.2μm/eV)の5/6倍である。
【0048】
第1の実施の形態においては、光軸L0に沿って電子ビームの進行方向について、入射窓面111の前段に、中心部に径1μmの内孔21aを有するアニュラ検出器21を配置する。光軸L0に沿って、アニュラ検出器21と入射窓面111の距離D1は、入射窓面111と入射像面112の距離D2の半分以上とする。このような構成によると、アニュラ検出器21の内孔21aが、入射窓面111において電子ビームの径を決める絞りとして働く。
【0049】
なお、エネルギーアナライザ17としてオメガフィルタ以外のものを用いる場合には、電子ビームの幅が1μm以下であるという制限も異なるものとなる。エネルギーアナライザの分散の大きさは色々あり、マンドリンフィルタでは例えば6μm/eV、S字フィルタでは例えば10μm/eVである。したがって、1eVの分解能を得るためには、マンドリンフィルタでは電子ビームの径は5μm以下であることが必要と思われ、S字フィルタでは8.3μm以下であることが必要と思われる。ここで、余裕度を考慮し、前述のオメガフィルタの場合と同様に分散を値を5/6倍して電子ビームの径を得た。
【0050】
また、エネルギーフィルタ17に本実施の形態の1.2μm/eVの分散を有するオメガフィルタを用い、10eVの分解能を必要とする場合、電子ビームの径は10μm以下であることが必要と思われ、絞りとして働くアニュラ検出器21の内孔の径は、1eVの分解能を必要とする場合と比べて10倍にすることができる。
【0051】
図5は、第2の実施の形態を示す図である。
【0052】
第2の実施の形態においては、中間レンズ15bから入射した電子ビームによって、入射窓面111に試料101の顕微鏡像を形成し、入射像面112に試料の回折像を形成する。そして、電子ビームの光軸L0に沿って入射像面112の近傍にアニュラ検出器21を配置する。本実施の形態によると、試料101の所望の1点におけるEELSによるスペクトルを取得することができる。
【0053】
入射像面112に形成される回折像は、電子ビームが試料101面に対し垂直に入射しているために、走査コイル16によって電子ビームを試料101面上で二次元走査させても動かない。アニュラ検出器21は、走査に伴って生じる試料101の情報を持つこの回折像を検出して、高角度暗視野像(HAADF)を取得するのが目的であるので、その位置はできるだけ回折像が形成されている入射像面112かその近傍が望ましい。
【0054】
図6は、第2の実施の形態の参考例として出射窓面及び出射像面における電子ビームの形状を示す図である。
【0055】
図6(a)及び図6(b)は、入射窓面における電子ビームの径が0.1μm、入射像面における電子ビームの径が20.0μmの場合の出射窓面及び出射像面における電子ビームの形状をそれぞれ示す図である。なお、図6(a)の電子ビームは10倍に拡大したものであり、図6(b)におけるスポットは200倍に拡大したものである。
【0056】
図6(a)に示す出射窓面において、右側の電子ビームは200kVのエネルギーで入射したエネルギー損失のないのであり、左側の電子ビームは1eVだけエネルギーを損失したものである。
【0057】
入射窓面111に試料101の顕微鏡像を形成した場合に、入射像面112には試料101の回折像が形成される。この試料の回折像の径は、かなり大きく取ることができる。
【0058】
例えば、対物レンズ15aの焦点距離fo=2.3mm、対物レンズ15aの主面と対物レンズ15aによって作られる像の間の距離b=192.3mmとする。いま、試料101上に照射する電子ビームの半径ro=1nm、そのときの電子ビームの収束半角を30mradとする。ただし、問題とするのは、試料101より放出角度ro´=170mradの半角で散乱された電子ビームである。
【0059】
対物レンズ15aの倍率Mo=1−(b/fo)=86.2、対物レンズ15aを出た後の電子ビームの傾斜角ri´=ro/fo+ro´/Mo=2.06mradとなるので、対物レンズ15aの焦点面に形成される回折像のro´=170mradに対する大きさは、rD=(b−fo)tan(ri´)=0.4mmとなる。
【0060】
この回折像をエネルギーアナライザ17の入射像面112にカメラ長Lc=20mmで投影したとすると、その間の倍率Md=Lc/fo=8.7、したがって、入射像面112上の放出角度ro´=170mradに対応する電子ビームの半径はrfi=rD×Md=3.4mm(径6.8mm)となる。
【0061】
いま、アニュラ検出器21がエネルギーアナライザ17の入射窓面111と入射像面112の間にあるとすると、アニュラ検出器21上においてはこれより小さい径となる。このように、径が数mm程度のアニュラ検出器21は、製造の容易さやコストの観点から充分に現実的である。
【0062】
次に、入射窓面111における電子ビームの径を求める。対物レンズ15a後段であってエネルギーアナライザ17の前段にある中間レンズ15bの倍率をMi、入射窓面111と入射像面112の距離をL1=95mmとしたとき倍率Miの大きさは、次の式によって求められる。Md×Mi=(b−fo)/L1=0.52。今の場合、Mi=0.52/8.7=0.06である。したがって、入射窓面111上の電子ビームの半径はrfd=ro×Mo×Mi=1×82.6×0.05=5nm(径0.01μm)となる。これは、充分に小さな値であり、エネルギーが1eVだけ異なる電子ビームは充分に離れており、エネルギー分解能は0.5eVより高い。電子ビームの形状は分散と直角方向にほとんどふくらみを持たず、図にした場合良く見えないので、図6(a)では、電子ビームの径0.1μmと10倍にして示した。このように、電子ビームを1点に固定してEELSによるスペクトルを測定する場合には、入射窓面111に試料101の顕微鏡像を投影すれば充分なエネルギー分解能を持つ像を得ることができる。
【0063】
図7は、第3の実施の形態を説明する図である。図7(a)は記録観察装置20におけるピクセルを示す図であり、図7(b)は各ピクセルにおいて検出したスペクトルを示す図であり、図7(c)はピクセルについて位置を調整したスペクトルを示す図である。記録観察装置は、検出の単位となるピクセルが二次元状に配置されている。
【0064】
第3の実施の形態は、第2の実施の形態と同様の構成であるが、記録観察装置20において検出した試料101の回折像を処理する方法が異なる。すなわち、第2の実施の形態と同様に入射窓面111及び入射像面112にそれぞれ試料101の顕微鏡像及び回折像を形成するが、記録観察装置20において検出した回折像を信号処理する。
【0065】
第3の実施の形態においては、走査コイル16により試料101を走査した電子ビームの各位置でのEELSによるスペクトルを積算せずに、それぞれをメモリに保存する。図7(a)に示す記録観測装置20において、各ピクセルp1、p2,p3,p4・・・について検出したスペクトルをメモリに保存する。
【0066】
本実施の形態では、エネルギーアナライザ17を用いて各ピクセルp1,p2‥について電子ビームのエネルギーを変化させ電子ビームの強度を測定することで、図7(b)に示すように各ピクセルp1,p2‥についてEELSによるスペクトルを検出している。試料101を走査する電子ビームの位置の移動に応じて、アニュラ検出器21上での電子ビームも移動し、スペクトルの視点の位置もこれに伴って移動している。このため、図中では位置に応じて横軸の視点の位置をずらしてある。
【0067】
検出したスペクトルs1,s2‥は、試料101を走査したそれぞれの位置について分解能の高いものが得られる。なお、図中のスペクトルs1,s2‥の横軸は例えばエネルギー又は波長であり、縦軸は例えば強度である。
【0068】
これらの各ピクセルp1,p2‥におけるスペクトルs1,s2‥をメモリに格納した後に、図7(c)に示すように、この位置を修正する。すなわち、試料101における電子ビームの走査によるスペクトルの位置のずれを戻すように位置を修正する。その後にスペクトルを重ね合わせれば、高い分解能を維持したままスペクトルの積算を行うことができる。
【0069】
なお、前述の実施の形態は、本発明の具体例を示すものであり、本発明がこれに限定されない。本発明を逸脱しない範囲で、種々の態様で実施することができる。
【0070】
【発明の効果】
前述のように、本発明は、エネルギーアナライザを備える走査透過型の電子顕微鏡であって、アニュラ検出器を備えるものを提供することを目的とする。
【図面の簡単な説明】
【図1】本実施の形態の電子顕微鏡の概略的な構成を示す図である。
【図2】オメガフィルタによるエネルギーアナライザを示す図である。
【図3】第1の実施の形態を示す図である。
【図4】第1の実施の形態の参考例を示す図である。
【図5】第2の実施の形態を示す図である。
【図6】第2の実施の形態の参考例を示す図である。
【図7】第3の実施の形態を説明する図である。
【図8】アニュラ検出器を備えるエネルギーフィルタの構成を示す図である。
【図9】電子ビームの放出角度と入射窓面における電子ビームの径を説明する図である。
【図10】エネルギーアナライザの出射窓面及び出射像面における電子ビームの形状を示す図である。
【図11】入射窓面における電子ビームの径を説明する図である。
【符号の説明】
10 電子顕微鏡
11 電子銃
12 陽極
13 集束レンズ
14 走査コイル
15 対物及び中間レンズ
16 開口
17 エネルギーアナライザ
18 スリット
19 投影レンズ
20 記録観察装置

Claims (3)

  1. 試料を電子ビームで走査して透過像を観察する電子顕微鏡において、
    試料を走査した電子ビームをエネルギーについて分析するエネルギーアナライザと、
    電子ビームの進行方向について、前記エネルギーアナライザに入射する電子ビームがクロスオーバを結ぶ入射窓面の前段に配置され、前記試料で大きな角度散乱された電子ビームを検出するアニュラ検出器と、
    を有し、
    前記エネルギーアナライザの入射窓面に前記試料の回折像を投影し、前記エネルギーアナライザで分析した電子ビームを用いてスペクトル又は顕微鏡像を作成すること
    を特徴とする電子顕微鏡。
  2. 前記アニュラ検出器と前記入射窓面の距離は、前記入射窓面と前記入射像面の距離の半分以上であることを特徴とする請求項1記載の電子顕微鏡。
  3. 試料を電子ビームで走査して透過像を観察する電子顕微鏡において、
    試料を走査した電子ビームをエネルギーについて分析するエネルギーアナライザと、
    電子ビームの進行方向について、前記エネルギーアナライザに入射する電子ビームがクロスオーバを結ぶ入射窓面と入射像面の間に配置され、前記試料で大きな角度散乱された電子ビームを検出するアニュラ検出器と、
    を有し、
    前記エネルギーアナライザの入射窓面に前記試料の顕微鏡像形成すると共に、前記入射像面に試料の回折像を形成し、前記エネルギーアナライザで分析した電子ビームを用いてスペクトル又は顕微鏡像を作成すること
    を特徴とする電子顕微鏡。
JP2002291317A 2002-10-03 2002-10-03 電子顕微鏡 Expired - Fee Related JP4150568B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291317A JP4150568B2 (ja) 2002-10-03 2002-10-03 電子顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291317A JP4150568B2 (ja) 2002-10-03 2002-10-03 電子顕微鏡

Publications (2)

Publication Number Publication Date
JP2004127763A JP2004127763A (ja) 2004-04-22
JP4150568B2 true JP4150568B2 (ja) 2008-09-17

Family

ID=32282943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291317A Expired - Fee Related JP4150568B2 (ja) 2002-10-03 2002-10-03 電子顕微鏡

Country Status (1)

Country Link
JP (1) JP4150568B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739714B1 (en) * 2005-03-08 2012-04-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Imaging apparatus for high probe currents
JP6252099B2 (ja) * 2013-10-24 2017-12-27 富士通株式会社 走査透過電子顕微鏡システム、画像処理装置、画像処理方法、および画像処理プログラム
JP6808772B2 (ja) * 2019-04-08 2021-01-06 日本電子株式会社 エネルギーフィルタおよび荷電粒子線装置

Also Published As

Publication number Publication date
JP2004127763A (ja) 2004-04-22

Similar Documents

Publication Publication Date Title
US11657999B2 (en) Particle beam system and method for the particle-optical examination of an object
JP5871440B2 (ja) 走査共焦点電子顕微鏡のコントラストの向上
US9679738B2 (en) Electron microscope
JP2018535525A (ja) 複数の荷電粒子ビームの装置
JP2004342341A (ja) ミラー電子顕微鏡及びそれを用いたパターン欠陥検査装置
US20140197312A1 (en) Electron microscope and sample observation method
JP4006165B2 (ja) 元素分析装置及び走査透過型電子顕微鏡並びに元素分析方法
JP4205224B2 (ja) エネルギーフィルタを有する粒子線装置
US10446362B2 (en) Distortion correction method and electron microscope
JP5934513B2 (ja) 透過電子顕微鏡
JP4150568B2 (ja) 電子顕微鏡
JP3780620B2 (ja) 電子分光器及びそれを備えた透過型電子顕微鏡
WO2002049066A1 (fr) Microscope a faisceau de particules chargees, dispositif d'application de ce faisceau, procede d'utilisation du microscope en question, procede d'inspection via un tel faisceau, et microscope electronique
JP4895525B2 (ja) 走査透過電子顕微鏡装置
US10825649B2 (en) Electron beam device
US10381193B2 (en) Scanning transmission electron microscope with an objective electromagnetic lens and a method of use thereof
JP4170224B2 (ja) 粒子ビームを横方向に移動することができる光軸を具備するレンズ配列
EP3379556B1 (en) Scanning transmission electron microscope with a condenser objective system and a method of use thereof
JP3705760B2 (ja) 最適電子光学設計による高性能x線像観察装置
JP2001006601A (ja) 透過型電子顕微鏡
JP3858370B2 (ja) 検査装置
JP2006302523A (ja) 走査像観察機能を有した透過電子顕微鏡
JPS61250952A (ja) 電子顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees