JP4149722B2 - Excitation control device for synchronous machine - Google Patents

Excitation control device for synchronous machine Download PDF

Info

Publication number
JP4149722B2
JP4149722B2 JP2002099512A JP2002099512A JP4149722B2 JP 4149722 B2 JP4149722 B2 JP 4149722B2 JP 2002099512 A JP2002099512 A JP 2002099512A JP 2002099512 A JP2002099512 A JP 2002099512A JP 4149722 B2 JP4149722 B2 JP 4149722B2
Authority
JP
Japan
Prior art keywords
synchronous machine
overvoltage
power
field
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002099512A
Other languages
Japanese (ja)
Other versions
JP2003299398A (en
Inventor
忍 竹田
義徳 工藤
明 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba System Technology Corp
Original Assignee
Toshiba Corp
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2002099512A priority Critical patent/JP4149722B2/en
Publication of JP2003299398A publication Critical patent/JP2003299398A/en
Application granted granted Critical
Publication of JP4149722B2 publication Critical patent/JP4149722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は励磁回路に過電圧保護装置を備えた同期機の励磁制御装置に関する。
【0002】
【従来の技術】
近年、同期発電機や同期電動機などに使用される同期機の励磁制御装置は小型で合理的なものが要求されている。特に励磁制御装置の小型化については、従来使用していた大型の界磁遮断器(直流遮断器)に代わって小型でリーズナブルな電源遮断器(交流遮断器)が使用される場合が多い。但し、電源遮断器を使用した場合には電源遮断器開極時に発生する界磁側過電圧から界磁巻線を保護するために過電圧保護装置が必要となってくる。しかしながら、大型の界磁遮断器を単独で使用するケースと電源遮断器と過電圧保護装置とを組み合わせて使用するケースとを比較すると、後者の方が小型でよりリーズナブルなことは確かである。
【0003】
図9に、励磁回路に電源遮断器と過電圧保護装置とを使用した従来の同期機の励磁制御装置の一例を示す。図9において、同期機1の界磁側は電力変換器2に接続されている。図9では、電力変換器2としてサイリスタ整流器を使用し、同期機電機子端自己電力の一部を励磁変圧器3を介して電力変換器2に供給するようにしている。励磁変圧器3と電力変換器2は電源遮断器4を介して接続され、その間を開閉されるように成っている。5は同期機1の励磁回路に設けられた過電圧保護装置で、過電圧検出器5−1、この過電圧検出器5−1の出力信号によりオン、オフされるスイッチング素子5−2、過電圧検出器5−3、この過電圧検出器5−3の出力信号によりオン、オフされるスイッチング素子5−4、および放電抵抗器5−5から構成されている。図ではスイッチング素子としてサイリスタを使用した例を示す。
【0004】
6は制御装置で、電力変換器2を操作端として電圧検出器7から検出される同期機電機子電圧Vgを目標値となるように電力変換器2にゲートパルスを出力して自動電圧調整する部分(AVR部)6−1と、起動/停止シーケンスおよび緊急停止シーケンスに従い電源遮断器4に開/閉指令を与える部分(シーケンサ部)6−2とにより構成されている。8は保護装置で、同期機保護シーケンスに従い電源遮断器4に開指令を与えるものである。
【0005】
このような同期機の励磁制御装置において、同期機電機子側から界磁側に誘起してくる界磁側過電圧については、過電圧検出器5−1が過電圧を検出し、スイッチング素子5−2にゲート信号を送出してオンさせ、放電抵抗器5−5に界磁電流を流し、界磁エネルギーを吸収して、界磁側過電圧から界磁巻線を保護する。
【0006】
また、制御装置6のシーケンサ部分6−2あるいは保護装置8から与えられる電源遮断器4の開指令については、電源遮断器4からみた場合、開指令そのものは電気的に与えられるが、電源遮断器4の開極動作は機械的に行われるため、開極動作の間電源遮断器4の主極にはアークが発生することになる。このアークは同期機界磁側のインピーダンスを著しく高めるように作用する。一方同期機界磁巻線のインピーダンスはほとんどがリアクタンスであり、界磁電流連続条件が成立する。
【0007】
すなわち、電源遮断器4の開極動作で高インピーダンスになっている励磁回路に開極動作前の界磁電流が流れようとすることで、界磁側過電圧が発生する。この電源遮断器4の開極に伴う界磁側過電圧を過電圧検出器5−3が検出し、スイッチング素子5−4にゲート信号を送出してオンさせ、放電抵抗器5−5に界磁電流を流し放熱させ、界磁エネルギーを吸収して、界磁側過電圧から界磁巻線を保護する。
【0008】
【発明が解決しようとする課題】
ところで、電源遮断器4は三相交流遮断器であるため、開指令が与えられた時の三相電流位相の状態で、開極動作の時に主極に発生するアークの状態は概ね以下の2パターンに大別される。
【0009】
(1)開指令が与えられた時に主極の三相電流が全て通電状態に合った場合、開極動作で三相主極の全てにアークが発生する。
(2)開指令が与えられた時に主極の三相電流の内の一相がゼロクロスで無通電状態にあり、残りの二相は通電状態にあった場合、開極動作で通電のあった二相主極だけにアークが発生する。
【0010】
前者の場合は、同期機界磁側のインピーダンスを著しく高めるように作用するため、充分な界磁側過電圧が発生して、過電圧検出器5−3がその過電圧を検出し、スイッチング素子5−4にゲート信号を送出してオンさせ、放電抵抗器5−5に界磁電流を流して界磁エネルギーを吸収し、界磁側過電圧から界磁巻線を保護する。しかしながら後者の場合には同期機界磁側のインピーダンスを充分に高めることができないため、低レベルの界磁側過電圧しか発生せず、このため過電圧検出器5−3の動作レベルまで達しない場合がある。この場合、スイッチング素子5−4はオンしないため界磁エネルギーは吸収されず、この界磁エネルギーが電源遮断器4の通電状態にある二相主脚に集中することとなり、界磁側過電圧の充分なる吸収が行われずに電源遮断器4を損傷させたり焼損させたりする恐れがあった。
【0011】
本発明は上述の課題を解決するためになされたもので、電源遮断器の開閉状態に左右されることなく、界磁側過電圧を確実に吸収して動作信頼性の高い同期機の励磁制御装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために請求項1に記載の同期機の励磁制御装置の発明は、同期機の界磁側を励磁する電力変換器と、電力変換器と同期機の電機子端とを接続する三相交流遮断器より成る電源遮断器と、同期機の界磁側に接続され、電機子側から界磁側に誘起してくる界磁側過電圧を検出する第1の過電圧検出器、この第1の過電圧検出器の出力信号により動作する第1のスイッチング素子、前記電源遮断器の開極動作に伴って発生する界磁側過電圧を検出する第2の過電圧検出器、この第2の過電圧検出器の出力信号により動作する第2のスイッチング素子、これら第1、第2のスイッチング素子に接続された放電抵抗器を備えた過電圧保護装置と、電力変換器を操作端として同期機の電機子側電圧を目標値に制御する第1の手段および電源遮断器に開/閉指令を与える第2の手段を有する制御装置と、同期機を保護するために電源遮断器に開指令を与える保護装置とからなる同期機の励磁制御装置において、
前記第2の過電圧検出器に相対的に高い値の過電圧検出レベルと低い値の過電圧検出レベルとを設け、前記制御装置の第2の手段あるいは保護装置から前記電源遮断器へ与えられる開指令を低い値の過電圧検出レベルに入力するようにしたことを特徴とする。
この発明によれば、界磁側過電圧の大きさに依存せず、電源遮断器に開指令が発せられた時に界磁エネルギーを過電圧保護装置が吸収する。
【0013】
請求項2に記載の同期機の励磁制御装置の発明は、請求項1に記載の発明において、制御装置の第1の手段にゲートシフトを設け、前記制御装置の第2の手段あるいは保護装置から前記電源遮断器へ与えられる開指令により当該ゲートシフトを機能させて前記電力変換器で界磁電流を絞ることを特徴とする。
【0014】
請求項3に記載の同期機の励磁制御装置の発明は、同期機の界磁側を励磁する電力変換器と、電力変換器と同期機の電機子端とを接続する三相交流遮断器より成る電源遮断器と、同期機の界磁側に接続され、電機子側から界磁側に誘起してくる界磁側過電圧を検出する第1の過電圧検出器、この第1の過電圧検出器の出力信号により動作する第1のスイッチング素子、前記電源遮断器の開極動作に伴って発生する磁側過電圧を検出する第2の過電圧検出器、この第2の過電圧検出器の出力信号により動作する第2のスイッチング素子、これら第1、第2のスイッチング素子に接続された放電抵抗器を備えた過電圧保護装置と、電力変換器を操作端として同期機の電機子側電圧を目標値に制御する第1の手段および電源遮断器に開/閉指令を与える第2の手段を有する制御装置と、同期機を保護するために電源遮断器に開指令を与える保護装置とからなる同期機の励磁制御装置において、
前記過電圧保護装置の第2のスイッチング素子を動作させる手段として前記第2の過電圧検出器に加えて、前記制御装置あるいは保護装置から電源遮断器に与えられる開指令によって駆動されるマルチパルス発生器を設けたことを特徴とする。
この発明によれば、界磁側過電圧の大きさに依存せず、電源遮断器が開極する時にマルチパス発生器が動作し、界磁エネルギーを過電圧保護装置が吸収する。
【0015】
請求項4に記載の同期機の励磁制御装置の発明は、請求項3に記載の発明手において、電源遮断器が開極を完了した時に出力する開極信号によってマルチパルス発生器を停止させる手段を設けたことを特徴とする。
この発明によれば、界磁側過電圧の大きさに依存せず、電源遮断器が開極する時に開指令から開極までの必要な時間だけ界磁エネルギーを過電圧保護装置が吸収する。
【0016】
請求項5に記載の同期機の励磁制御装置の発明は、請求項3または4に記載の発明において、電源遮断器の開極信号をオンディレイタイマを介してマルチパルス発生器に入力し、マルチパルス発生器を停止させるタイミングを遅らせる手段を設けたことを特徴とする。
この発明によれば、界磁側過電圧の大きさに依存せず、電源遮断器が開極する時に開指令から開極までの必要な時間と、界磁電流が充分減衰するまでの時間だけ界磁エネルギーを過電圧保護装置が吸収する。
【0017】
請求項6に記載の同期機の励磁制御装置の発明は、請求項1乃至5のいずれかに記載の発明において、電源遮断器の開指令を、同期機の電機子電圧を目標値に制御する部分に入力する手段と、電源遮断器の開指令によって、電力変換器で界磁電流を絞る手段を設けたことを特徴とする。
この発明によれば、請求項1乃至5のそれぞれに記載の発明の作用に加えて、界磁電流が絞られた状態で界磁エネルギーを過電圧保護装置が吸収する。
【0018】
【発明の実施の形態】
以下本発明の実施の形態を図を参照して説明する。図1は本発明の第1の実施の形態を示す図で、同期機1の界磁側は電力変換器2に接続され励磁されている。図1では、電力変換器2としてサイリスタ整流器を使用し、同期機電機子端自己電力の一部を励磁変圧器3を介して電力変換器2に供給するようにしている。励磁変圧器3と電力変換器2は三相交流遮断器より成る電源遮断器4を介して接続され、その間を開閉されるようになっている。5は同期機1の励磁回路に設けられた過電圧保護装置で、過電圧検出器5−1、この過電圧検出器5−1の出力信号によりオン、オフされるスイッチング素子5−2、過電圧検出器5−3、この過電圧検出器5−3の出力信号によりオン、オフされるスイッチング素子5−4、および放電抵抗器5−5から構成されている。図ではスイッチング素子としてサイリスタを使用した例を示す。
【0019】
6は制御装置で、電力変換器2を操作端として電圧検出器7から検出される同期機電機子電圧Vgを目標値となるように電力変換器2にゲートパルスを出力して自動電圧調整する部分(AVR部)6−1と、起動/停止シーケンスおよび緊急停止シーケンスに従い電源遮断器4に開/閉指令を与える部分(シーケンサ部)6−2とにより構成されている。8は保護装置で、同期機保護シーケンスに従い電源遮断器4に開指令を与えるものである。
【0020】
本発明の第1の実施の形態においては、過電圧保護装置5の過電圧検出器5−3に過電圧検出レベルとして相対的に高レベル検出部5−3−1と相対的に低レベル検出部5−3−2を設けている。また、制御装置6のシーケンサ部6−2と保護装置8とから出力される電源遮断器4への開指令を、過電圧検出器5−3の低レベル検出部5−3−2に入力する手段を設けている。
【0021】
このような構成とすることにより、制御装置6のシーケンサ部分6−2と保護装置8とから出力される電源遮断器4への開指令により電源遮断器4が開極する時に低レベルの界磁側過電圧しか発生しない場合でも過電圧検出器5−3の低レベル検出部5−3−2に開指令が入力され、低レベルの界磁側過電圧を検出し、スイッチング素子5−4をオンさせ、放電抵抗器5−5に界磁電流を流して放電させ、電源遮断器4の通電状態にある二相主極にアークが集中してもこのエネルギーを過電圧保護装置5で吸収し、電源遮断器の損傷、焼損を防ぐと共に、界磁側過電圧から界磁巻線を保護する。
【0022】
図2は本発明の第2の実施の形態を示す図で、図1に示す第1の実施の形態と同一部分は同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、制御装置6のシーケンサ部6−2と保護装置8とから出力される電源遮断器4への開指令を制御装置6のAVR部6−1に入力し、この開指令を基に制御装置6のAVR部6−1に設けられ、電力変換器2で界磁電流を絞る手段(ゲートシフト;GS)6−1−1により界磁電流を絞っている。その他は図1に示す第1の実施の形態と同様である。
【0023】
このような構成とすることにより、第1の実施の形態の作用に加えて、界磁電流が絞られた状態で界磁エネルギーを過電圧保護装置5で吸収するので、電源遮断器の負担を軽減することができる。
【0024】
図3は本発明の第3の実施の形態を示す図で、図1に示す第1の実施の形態と同一部分は同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、図1に示す過電圧保護装置5の高レベル検出部5−3−1、低レベル検出部5−3−2を設ける代わりに、過電圧保護装置5のスイッチング素子5−4をオン動作させる手段としてマルチパルス発生器9を設けている。また、制御装置6のシーケンサ部6−2と保護装置8とから出力される電源遮断器4への開指令でマルチパス発生器9を駆動する手段を設けている。その他は図1に示す第1の実施の形態と同様である。
【0025】
このような構成とすることとにより、界磁側過電圧の大きさに依存せず、電源遮断器4が開極する時にマルチパルス発生器9のマルチパルスにより過電圧保護装置5のスイッチング素子5−4がオンし、放電抵抗器5−5に界磁電流を流し、通電状態にある二相主極にアークが集中してもこのエネルギーを過電圧保護装置5で吸収し、電源遮断器の損傷、焼損を防ぐと共に界磁側過電圧から界磁巻線を保護する。
【0026】
図4は本発明の第4の実施の形態を示す図で、図3に示す第3の実施の形態と同一部分は同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、制御装置6のシーケンサ部6−2と保護装置8とから出力される電源遮断器4への開指令を制御装置6のAVR部6−1に入力し、この開指令を基に制御装置6のAVR部6−1に設けられ、電力変換器2で界磁電流を絞る手段(ゲートシフト;GS)6−1−1により界磁電流を絞っている。その他は図3に示す第3の実施の形態と同様である。
【0027】
このような構成とすることにより第3の実施の形態の作用に加えて、界磁電流が絞られた状態で界磁エネルギーを過電圧保護装置5で吸収するので、電源遮断器の負担を軽減することができる。
【0028】
図5は本発明の第5の実施の形態を示す図で、図3に示す第3の実施の形態と同一部分は同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、電源遮断器4が開極を完了した時に出力する電源遮断器4の開極信号をマルチパルス発生器9に入力し、この開極信号に従ってマルチパス発生器9を停止させる手段を設けている。その他は図3に示す第3の実施の形態と同様である。
【0029】
このような構成とすることにより、界磁側過電圧の大きさに依存せず、電源遮断器4が開極する時に開指令から開極までの必要な時間だけ過電圧保護装置5のスイッチング素子5−4がオンし、放電抵抗器5に界磁電流を流し、通電状態にある二相主極にアークが集中してもこのエネルギーを過電圧保護装置5で吸収し、電源遮断器の損傷、焼損を防ぐと共に界磁側過電圧から界磁巻線を保護する。
【0030】
図6は本発明の第6の実施の形態を示す図で、図5に示す第5の実施の形態と同一部分は同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、制御装置6のシーケンサ部6−2と保護装置8とから出力される電源遮断器4への開指令を制御装置6のAVR部6−1に入力し、、この開指令を基に制御装置6のAVR部6−1に設けられ、電力変換器2で界磁電流を絞る手段(ゲートシフト;GS)6−1−1により界磁電流を絞っている。その他は図5に示す第5の実施の形態と同様である。
【0031】
このような構成とすることにより、第5の実施の形態の作用に加え、界磁電流が絞られた状態で界磁エネルギーを過電圧保護装置5で吸収するので、電源遮断器の負担を軽減することができる。
【0032】
図7は本発明の第7の実施の形態を示す図で、図5に示す第5の実施の形態と同一部分は同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、電源遮断器4の開極信号をオンディレイタイマー10を介してマルチパルス発生器9に入力し、この信号に従ってマルチパス発生器9を電源遮断器4への開極からタイミングを遅らせて停止させる手段を設けている。その他は図5に示す第5の実施の形態と同様である。
【0033】
このような構成とすることにより、界磁側過電圧の大きさに依存せず、電源遮断器4が開極する時に開指令から開極までの必要な時間と界磁電流が充分減衰するまでの時間だけ過電圧保護装置5にあるスイッチング素子5−4がオンし、放電抵抗器5−5に界磁電流を流し、界磁エネルギーを過電圧保護装置5で吸収する。
【0034】
図8は本発明の第8の実施の形態を示す図で、図7に示す第7の実施の形態と同一部分は同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、制御装置6のシーケンサ部6−2と保護装置8とから出力される電源遮断器4への開指令を制御装置6のAVR部分6−1に入力し、この開指令を基に制御装置6のAVR部6−1に設けられ、電力変換器2で界磁電流を絞る手段(ゲートシフト;GS)6−6−1により界磁電流を絞っている。その他は図7に示す第7の実施の形態と同様である。
【0035】
このような構成とすることにより、第7の実施の形態の作用に加え、界磁電流が絞られた状態で界磁エネルギーを過電圧保護装置5で吸収するので、電源遮断器の負担を軽減することができる。
【0036】
【発明の効果】
以上説明したように、本発明によれば、同期機の界磁側を励磁する電力変換器と、電力変換器と同期機の電機子端とを接続する三相交流遮断器より成る電源遮断器と、同期機の界磁側に接続された過電圧検出器、この過電圧検出器の出力信号により動作するスイッチング素子、このスイッチング素子に接続された放電抵抗器とからなる過電圧保護装置と、電力変換器を操作端として同期機の電機子側電圧を目標値に制御する手段および電源遮断器に開/閉指令を与える手段とを設けた制御装置と、同期機を保護するために電源遮断器に開指令を与える保護装置とからなる同期機の励磁制御装置において、電源遮断器への開指令により過電圧保護装置を動作させるようにしたので、電源遮断器の開閉状態に左右されることなく、界磁側過電圧を確実に吸収して動作信頼性の高い同期機の励磁制御装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による同期機の励磁制御装置を示す結線図。
【図2】本発明の第2の実施の形態による同期機の励磁制御装置を示す結線図。
【図3】本発明の第3の実施の形態による同期機の励磁制御装置を示す結線図。
【図4】本発明の第4の実施の形態による同期機の励磁制御装置を示す結線図。
【図5】本発明の第5の実施の形態による同期機の励磁制御装置を示す結線図。
【図6】本発明の第6の実施の形態による同期機の励磁制御装置を示す結線図。
【図7】本発明の第7の実施の形態による同期機の励磁制御装置を示す結線図。
【図8】本発明の第8の実施の形態による同期機の励磁制御装置を示す結線図。
【図9】従来の同期機の励磁制御装置を示す結線図。
【符号の説明】
1…同期機、2…電力変換器、3…励磁変圧器、4…電源遮断器、5…過電圧保護装置、5−1,5−3…過電圧検出器、5−2,5−4…スイッチング素子、6…制御装置、6−1…AVR部、6−2シーケンサ部、7…電圧検出器8…保護装置、9…マルチパルス発生器、10…オンディレイタイマー。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an excitation control device for a synchronous machine having an overvoltage protection device in an excitation circuit.
[0002]
[Prior art]
In recent years, excitation control devices for synchronous machines used for synchronous generators and synchronous motors have been required to be small and rational. In particular, regarding the downsizing of the excitation control device, a compact and reasonable power circuit breaker (AC circuit breaker) is often used in place of the large-sized field circuit breaker (DC circuit breaker) used conventionally. However, when a power circuit breaker is used, an overvoltage protection device is required to protect the field winding from the field side overvoltage generated when the power circuit breaker is opened. However, comparing the case using a large field breaker alone with the case using a combination of a power breaker and an overvoltage protection device, the latter is certainly smaller and more reasonable.
[0003]
FIG. 9 shows an example of a conventional synchronous machine excitation control device using a power circuit breaker and an overvoltage protection device in the excitation circuit. In FIG. 9, the field side of the synchronous machine 1 is connected to the power converter 2. In FIG. 9, a thyristor rectifier is used as the power converter 2, and a part of the synchronous machine armature end self-power is supplied to the power converter 2 via the excitation transformer 3. The excitation transformer 3 and the power converter 2 are connected via a power circuit breaker 4 so as to be opened and closed between them. Reference numeral 5 denotes an overvoltage protection device provided in the excitation circuit of the synchronous machine 1, an overvoltage detector 5-1, a switching element 5-2 that is turned on / off by an output signal of the overvoltage detector 5-1, and an overvoltage detector 5. −3, a switching element 5-4 which is turned on / off by an output signal of the overvoltage detector 5-3, and a discharge resistor 5-5. The figure shows an example in which a thyristor is used as a switching element.
[0004]
Reference numeral 6 denotes a control device that automatically adjusts the voltage by outputting a gate pulse to the power converter 2 so that the synchronous machine armature voltage Vg detected from the voltage detector 7 becomes a target value with the power converter 2 as an operation end. A part (AVR part) 6-1 and a part (sequencer part) 6-2 for giving an open / close command to the power circuit breaker 4 according to the start / stop sequence and the emergency stop sequence are configured. A protective device 8 gives an open command to the power breaker 4 in accordance with the synchronous machine protection sequence.
[0005]
In such an excitation control device for a synchronous machine, the overvoltage detector 5-1 detects an overvoltage for the field-side overvoltage induced from the synchronous machine armature side to the field side, and the switching element 5-2 A gate signal is sent and turned on, a field current is passed through the discharge resistor 5-5, the field energy is absorbed, and the field winding is protected from the field side overvoltage.
[0006]
Further, regarding the opening command of the power circuit breaker 4 given from the sequencer portion 6-2 of the control device 6 or the protection device 8, when viewed from the power circuit breaker 4, the opening command itself is given electrically. Since the opening operation of 4 is performed mechanically, an arc is generated in the main pole of the power breaker 4 during the opening operation. This arc acts to remarkably increase the impedance on the synchronous machine field side. On the other hand, the impedance of the synchronous machine field winding is almost reactance, and the field current continuity condition is satisfied.
[0007]
That is, the field-side overvoltage is generated when the field current before the opening operation flows through the excitation circuit that has a high impedance in the opening operation of the power breaker 4. The overvoltage detector 5-3 detects the field side overvoltage associated with the opening of the power breaker 4, sends a gate signal to the switching element 5-4 to turn it on, and causes the field current to flow into the discharge resistor 5-5. Radiates heat, absorbs the field energy, and protects the field winding from overvoltage on the field side.
[0008]
[Problems to be solved by the invention]
By the way, since the power circuit breaker 4 is a three-phase AC circuit breaker, the state of the arc generated in the main pole during the opening operation in the state of the three-phase current phase when the opening command is given is approximately the following 2 Broadly divided into patterns.
[0009]
(1) When all the three-phase currents of the main pole are in the energized state when the opening command is given, an arc is generated in all of the three-phase main poles by the opening operation.
(2) When an opening command is given, if one of the three-phase currents of the main pole is zero-crossed and not energized, and the remaining two phases are energized, energization was performed in the opening operation. An arc is generated only in the two-phase main pole.
[0010]
In the former case, since the impedance on the synchronous machine field side is remarkably increased, a sufficient field-side overvoltage is generated, and the overvoltage detector 5-3 detects the overvoltage, and the switching element 5-4. Is turned on by sending a gate signal to flow field current through the discharge resistor 5-5 to absorb field energy and protect the field winding from overvoltage on the field side. However, in the latter case, since the impedance on the synchronous machine field side cannot be sufficiently increased, only a low-level field-side overvoltage is generated, so that the operating level of the overvoltage detector 5-3 may not be reached. is there. In this case, since the switching element 5-4 is not turned on, the field energy is not absorbed, and this field energy is concentrated on the two-phase main leg in the energized state of the power breaker 4, and the field side overvoltage is sufficient. There is a fear that the power breaker 4 may be damaged or burnt out without being absorbed.
[0011]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and is an excitation control device for a synchronous machine that reliably absorbs field-side overvoltage and is highly reliable in operation without being affected by the open / close state of the power breaker. The purpose is to provide.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an invention for an excitation control device for a synchronous machine according to claim 1 connects a power converter for exciting the field side of the synchronous machine, and the power converter and the armature end of the synchronous machine. A power circuit breaker comprising a three-phase AC circuit breaker and a first overvoltage detector connected to the field side of the synchronous machine for detecting a field side overvoltage induced from the armature side to the field side; A first switching element that operates in accordance with an output signal of the first overvoltage detector; a second overvoltage detector that detects a field-side overvoltage that is generated when the power breaker is opened; A second switching element that operates according to an output signal of the overvoltage detector, an overvoltage protection device including a discharge resistor connected to the first and second switching elements, and an electric machine of the synchronous machine using the power converter as an operation end first means and for controlling the slave voltage to a target value A controller having a second means for providing an open / close instruction to the source circuit breaker, the excitation control apparatus of a synchronous machine comprising a power off device and the protective device which gives an open command to protect the synchronous machine,
It provided the overvoltage detection level of the second overvoltage detection level and a low value of the relatively high value to an overvoltage detector, an open command provided by the second means or protection device of the control device to the power supply breaker characterized by being you to enter the overvoltage detection level of low value.
According to the present invention, the overvoltage protection device absorbs the field energy when an open command is issued to the power breaker without depending on the magnitude of the field side overvoltage.
[0013]
According to a second aspect of the present invention, there is provided an excitation control device for a synchronous machine according to the first aspect, wherein a gate shift is provided in the first means of the control device, and the second means or the protection device of the control device is provided. The gate shift is made to function by an open command given to the power circuit breaker, and the field current is reduced by the power converter.
[0014]
According to a third aspect of the invention, there is provided a power converter for exciting the field side of the synchronous machine, and a three-phase AC circuit breaker for connecting the power converter and the armature end of the synchronous machine. And a first overvoltage detector connected to the field side of the synchronous machine and detecting a field side overvoltage induced from the armature side to the field side, and the first overvoltage detector. A first switching element that operates in response to the output signal of the power supply, a second overvoltage detector that detects a magnetic-side overvoltage that is generated in response to the opening operation of the power breaker, and an operation that is performed by the output signal of the second overvoltage detector Second switching element, an overvoltage protection device having a discharge resistor connected to the first and second switching elements, and a power converter as an operating end, and controlling the armature side voltage of the synchronous machine to a target value given the opening / closing command to the first means and the power supply breaker of A controller having a second means that, in the excitation control apparatus of a synchronous machine comprising a power off device and the protective device which gives an open command to protect the synchronous machine,
In addition to the second overvoltage detector as a means for operating the second switching element of the overvoltage protection device, a multi-pulse generator driven by an open command given from the control device or the protection device to a power supply circuit breaker is provided. It is provided .
According to the present invention, regardless of the magnitude of the field side overvoltage, the multipath generator operates when the power breaker is opened, and the overvoltage protection device absorbs the field energy.
[0015]
According to a fourth aspect of the present invention, there is provided an excitation control device for a synchronous machine, wherein the multi-pulse generator is stopped by an opening signal output when the power breaker completes opening. Is provided.
According to this invention, regardless of the magnitude of the field side overvoltage, the overvoltage protection device absorbs the field energy for a necessary time from the opening command to opening when the power circuit breaker opens.
[0016]
According to a fifth aspect of the present invention, there is provided an excitation control device for a synchronous machine according to the third or fourth aspect, wherein an opening signal of a power breaker is input to a multi-pulse generator via an on-delay timer. Means for delaying the timing of stopping the pulse generator is provided.
According to the present invention, regardless of the magnitude of the field side overvoltage, the required time from the opening command to opening when the power breaker is opened and the time until the field current is sufficiently attenuated. The magnetic energy is absorbed by the overvoltage protection device.
[0017]
According to a sixth aspect of the present invention, there is provided an excitation control device for a synchronous machine according to any one of the first to fifth aspects, wherein the power breaker open command is controlled to a target value of the armature voltage of the synchronous machine. Means for inputting to the part and means for reducing the field current by the power converter by an open command of the power breaker are provided.
According to this invention, in addition to the effects of the inventions of the first to fifth aspects, the overvoltage protection device absorbs the field energy while the field current is reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the present invention. The field side of a synchronous machine 1 is connected to a power converter 2 and excited. In FIG. 1, a thyristor rectifier is used as the power converter 2, and a part of the synchronous machine armature end self-power is supplied to the power converter 2 via the excitation transformer 3. The excitation transformer 3 and the power converter 2 are connected via a power circuit breaker 4 formed of a three-phase AC circuit breaker, and are opened and closed between them. Reference numeral 5 denotes an overvoltage protection device provided in the excitation circuit of the synchronous machine 1, an overvoltage detector 5-1, a switching element 5-2 that is turned on / off by an output signal of the overvoltage detector 5-1, and an overvoltage detector 5. −3, a switching element 5-4 which is turned on / off by an output signal of the overvoltage detector 5-3, and a discharge resistor 5-5. The figure shows an example in which a thyristor is used as a switching element.
[0019]
Reference numeral 6 denotes a control device that automatically adjusts the voltage by outputting a gate pulse to the power converter 2 so that the synchronous machine armature voltage Vg detected from the voltage detector 7 becomes a target value with the power converter 2 as an operation end. A part (AVR part) 6-1 and a part (sequencer part) 6-2 for giving an open / close command to the power circuit breaker 4 according to the start / stop sequence and the emergency stop sequence are configured. A protective device 8 gives an open command to the power breaker 4 in accordance with the synchronous machine protection sequence.
[0020]
In the first embodiment of the present invention, the overvoltage detector 5-3 of the overvoltage protection device 5 has an overvoltage detection level as a relatively high level detection unit 5-3-1 and a relatively low level detection unit 5-3-1. 3-2 is provided. Means for inputting an open command to the power supply circuit breaker 4 output from the sequencer unit 6-2 and the protection device 8 of the control device 6 to the low level detection unit 5-3-2 of the overvoltage detector 5-3. Is provided.
[0021]
With this configuration, when the power breaker 4 is opened by the open command to the power breaker 4 output from the sequencer portion 6-2 of the control device 6 and the protection device 8, the low level field is generated. Even when only the side overvoltage is generated, an open command is input to the low level detector 5-3-2 of the overvoltage detector 5-3, the low level field side overvoltage is detected, the switching element 5-4 is turned on, Even if the arc is concentrated on the two-phase main pole in the energized state of the power breaker 4, the energy is absorbed by the overvoltage protection device 5, causing a field current to flow through the discharge resistor 5-5. In addition to preventing damage and burning, the field windings are protected from overvoltage on the field side.
[0022]
FIG. 2 is a diagram showing a second embodiment of the present invention. The same parts as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, an open command to the power circuit breaker 4 output from the sequencer unit 6-2 and the protection device 8 of the control device 6 is input to the AVR unit 6-1 of the control device 6, and this open command Is provided in the AVR unit 6-1 of the control device 6, and the field current is reduced by means (gate shift; GS) 6-1-1 for reducing the field current by the power converter 2. Others are the same as those of the first embodiment shown in FIG.
[0023]
By adopting such a configuration, in addition to the operation of the first embodiment, the field energy is absorbed by the overvoltage protection device 5 while the field current is reduced, thereby reducing the burden on the power breaker. can do.
[0024]
FIG. 3 is a diagram showing a third embodiment of the present invention. The same parts as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, instead of providing the high level detection unit 5-3-1 and the low level detection unit 5-3-2 of the overvoltage protection device 5 shown in FIG. 1, the switching element 5-4 of the overvoltage protection device 5 is provided. A multi-pulse generator 9 is provided as means for turning on. Further, a means for driving the multipath generator 9 by an open command to the power circuit breaker 4 output from the sequencer unit 6-2 and the protection device 8 of the control device 6 is provided. Others are the same as those of the first embodiment shown in FIG.
[0025]
By adopting such a configuration, the switching element 5-4 of the overvoltage protection device 5 is not dependent on the magnitude of the field-side overvoltage but by the multipulse of the multipulse generator 9 when the power supply circuit breaker 4 is opened. Is turned on, a field current is passed through the discharge resistor 5-5, and this energy is absorbed by the overvoltage protection device 5 even if the arc is concentrated on the two-phase main pole that is energized, and the power breaker is damaged or burned out. And protect the field winding from overvoltage on the field side.
[0026]
FIG. 4 is a diagram showing a fourth embodiment of the present invention. The same parts as those of the third embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, an open command to the power circuit breaker 4 output from the sequencer unit 6-2 and the protection device 8 of the control device 6 is input to the AVR unit 6-1 of the control device 6, and this open command Is provided in the AVR unit 6-1 of the control device 6, and the field current is reduced by means (gate shift; GS) 6-1-1 for reducing the field current by the power converter 2. Others are the same as those of the third embodiment shown in FIG.
[0027]
By adopting such a configuration, in addition to the action of the third embodiment, the field energy is absorbed by the overvoltage protection device 5 while the field current is reduced, thereby reducing the burden on the power breaker. be able to.
[0028]
FIG. 5 is a diagram showing a fifth embodiment of the present invention. The same parts as those of the third embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, an opening signal of the power breaker 4 output when the power breaker 4 completes opening is input to the multi-pulse generator 9, and the multipath generator 9 is stopped according to the opening signal. Means are provided. Others are the same as those of the third embodiment shown in FIG.
[0029]
By adopting such a configuration, the switching element 5- of the overvoltage protection device 5 does not depend on the magnitude of the field-side overvoltage, and only during the necessary time from the opening command to the opening when the power breaker 4 is opened. 4 is turned on, a field current is passed through the discharge resistor 5, and even if the arc is concentrated on the two-phase main pole in the energized state, this energy is absorbed by the overvoltage protection device 5, and the power breaker is damaged or burned out. Prevents and protects field windings from field side overvoltage.
[0030]
FIG. 6 is a diagram showing a sixth embodiment of the present invention. The same parts as those of the fifth embodiment shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, an open command to the power circuit breaker 4 output from the sequencer unit 6-2 and the protection device 8 of the control device 6 is input to the AVR unit 6-1 of the control device 6, and this open operation is performed. The field current is reduced by means (gate shift; GS) 6-1 provided in the AVR unit 6-1 of the control device 6 based on the command and for reducing the field current by the power converter 2. Others are the same as those of the fifth embodiment shown in FIG.
[0031]
By adopting such a configuration, in addition to the operation of the fifth embodiment, the field energy is absorbed by the overvoltage protection device 5 in a state where the field current is reduced, so the burden on the power breaker is reduced. be able to.
[0032]
FIG. 7 is a diagram showing a seventh embodiment of the present invention. The same parts as those of the fifth embodiment shown in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, the opening signal of the power breaker 4 is input to the multi-pulse generator 9 via the on-delay timer 10, and the multi-path generator 9 is opened from the opening to the power breaker 4 according to this signal. Means for stopping the timing with a delay is provided. Others are the same as those of the fifth embodiment shown in FIG.
[0033]
By adopting such a configuration, the time required from the opening command to opening and the field current are sufficiently attenuated when the power supply circuit breaker 4 opens without depending on the magnitude of the field side overvoltage. The switching element 5-4 in the overvoltage protection device 5 is turned on only for a time, a field current is passed through the discharge resistor 5-5, and the field energy is absorbed by the overvoltage protection device 5.
[0034]
FIG. 8 is a diagram showing an eighth embodiment of the present invention. The same parts as those of the seventh embodiment shown in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, an open command to the power circuit breaker 4 output from the sequencer unit 6-2 and the protection device 8 of the control device 6 is input to the AVR portion 6-1 of the control device 6, and this open command The field current is reduced by means (gate shift; GS) 6-6-1 which is provided in the AVR unit 6-1 of the control device 6 based on the power converter 2 and reduces the field current by the power converter 2. Others are the same as those of the seventh embodiment shown in FIG.
[0035]
By adopting such a configuration, in addition to the operation of the seventh embodiment, the field energy is absorbed by the overvoltage protection device 5 in a state where the field current is reduced, so the burden on the power breaker is reduced. be able to.
[0036]
【The invention's effect】
As described above, according to the present invention, the power circuit breaker includes the power converter that excites the field side of the synchronous machine, and the three-phase AC circuit breaker that connects the power converter and the armature end of the synchronous machine. An overvoltage detector connected to the field side of the synchronous machine, a switching element operated by an output signal of the overvoltage detector, a discharge resistor connected to the switching element, and a power converter And control means provided with means for controlling the armature side voltage of the synchronous machine to a target value and means for giving an open / close command to the power breaker, and open to the power breaker to protect the synchronous machine. In the excitation control device for a synchronous machine consisting of a protection device that gives a command, the overvoltage protection device is operated by an open command to the power circuit breaker, so that the field magnet is not affected by the open / close state of the power circuit breaker. Side overvoltage It is possible to provide the excitation control apparatus for reliable operation synchronous machine and indeed absorb.
[Brief description of the drawings]
FIG. 1 is a connection diagram illustrating an excitation control device for a synchronous machine according to a first embodiment of the present invention.
FIG. 2 is a connection diagram illustrating an excitation control device for a synchronous machine according to a second embodiment of the present invention.
FIG. 3 is a connection diagram illustrating an excitation control device for a synchronous machine according to a third embodiment of the present invention.
FIG. 4 is a connection diagram showing an excitation control device for a synchronous machine according to a fourth embodiment of the present invention.
FIG. 5 is a connection diagram illustrating an excitation control device for a synchronous machine according to a fifth embodiment of the present invention.
FIG. 6 is a connection diagram showing an excitation control device for a synchronous machine according to a sixth embodiment of the present invention.
FIG. 7 is a connection diagram showing an excitation control device for a synchronous machine according to a seventh embodiment of the present invention.
FIG. 8 is a connection diagram showing an excitation control device for a synchronous machine according to an eighth embodiment of the present invention.
FIG. 9 is a connection diagram showing an excitation control device of a conventional synchronous machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Synchronous machine, 2 ... Power converter, 3 ... Excitation transformer, 4 ... Power supply circuit breaker, 5 ... Overvoltage protection device, 5-1, 5-3 ... Overvoltage detector, 5-2, 5-4 ... Switching Elements, 6 ... control device, 6-1 ... AVR unit, 6-2 sequencer unit, 7 ... voltage detector 8 ... protection device, 9 ... multi-pulse generator, 10 ... on-delay timer.

Claims (6)

同期機の界磁側を励磁する電力変換器と、電力変換器と同期機の電機子端とを接続する三相交流遮断器より成る電源遮断器と、同期機の界磁側に接続され、電機子側から界磁側に誘起してくる界磁側過電圧を検出する第1の過電圧検出器、この第1の過電圧検出器の出力信号により動作する第1のスイッチング素子、前記電源遮断器の開極動作に伴って発生する界磁側過電圧を検出する第2の過電圧検出器、この第2の過電圧検出器の出力信号により動作する第2のスイッチング素子、これら第1、第2のスイッチング素子に接続された放電抵抗器を備えた過電圧保護装置と、電力変換器を操作端として同期機の電機子側電圧を目標値に制御する第1の手段および電源遮断器に開/閉指令を与える第2の手段を有する制御装置と、同期機を保護するために電源遮断器に開指令を与える保護装置とからなる同期機の励磁制御装置において、
前記第2の過電圧検出器に相対的に高い値の過電圧検出レベルと低い値の過電圧検出レベルとを設け、前記制御装置の第2の手段あるいは保護装置から前記電源遮断器へ与えられる開指令を低い値の過電圧検出レベルに入力するようにしたことを特徴とする同期機の励磁制御装置。
A power converter for exciting the field side of the synchronous machine, and a power source circuit breaker consisting of three-phase AC circuit breaker for connecting the armature end of the power converter and the synchronous machine is connected to the field side of the synchronous machine A first overvoltage detector that detects a field-side overvoltage induced from the armature side to the field side, a first switching element that operates according to an output signal of the first overvoltage detector, and the power breaker A second overvoltage detector for detecting a field-side overvoltage generated in accordance with the opening operation of the second overvoltage detector, a second switching element operated by an output signal of the second overvoltage detector, and the first and second switching elements. An overvoltage protection device having a discharge resistor connected to the element, a first means for controlling the armature side voltage of the synchronous machine to a target value with the power converter as an operation end, and an open / close command to the power breaker holding a control device, a synchronous machine having a second means for providing In excitation control apparatus of a synchronous machine comprising a protection device for providing an open command to the power source circuit breaker to,
It provided the overvoltage detection level of the second overvoltage detection level and a low value of the relatively high value to an overvoltage detector, an open command provided by the second means or protection device of the control device to the power supply breaker excitation control apparatus of a synchronous machine, characterized in that it has you to enter the overvoltage detection level of low value.
前記制御装置の第1の手段にゲートシフトを設け、前記制御装置の第2の手段あるいは保護装置から前記電源遮断器へ与えられる開指令により当該ゲートシフトを機能させて前記電力変換器で界磁電流を絞ることを特徴とする請求項1記載の同期機の励磁制御装置。 A gate shift is provided in the first means of the control device, and the gate shift is made to function by an open command given from the second means or the protection device of the control device to the power circuit breaker, and the field conversion is performed by the power converter. 2. The excitation control apparatus for a synchronous machine according to claim 1, wherein the current is reduced . 同期機の界磁側を励磁する電力変換器と、電力変換器と同期機の電機子端とを接続する三相交流遮断器より成る電源遮断器と、同期機の界磁側に接続され、電機子側から界磁側に誘起してくる界磁側過電圧を検出する第1の過電圧検出器、この第1の過電圧検出器の出力信号により動作する第1のスイッチング素子、前記電源遮断器の開極動作に伴って発生する界磁側過電圧を検出する第2の過電圧検出器、この第2の過電圧検出器の出力信号により動作する第2のスイッチング素子、これら第1、第2のスイッチング素子に接続された放電抵抗器を備えた過電圧保護装置と、電力変換器を操作端として同期機の電機子側電圧を目標値に制御する第1の手段および電源遮断器に開/閉指令を与える第2の手段を有する制御装置と、同期機を保護するために電源遮断器に開指令を与える保護装置とからなる同期機の励磁制御装置において、
前記過電圧保護装置の第2のスイッチング素子を動作させる手段として前記第2の過電圧検出器に加えて、前記制御装置あるいは保護装置から電源遮断器に与えられる開指令によって駆動されるマルチパルス発生器を設けたことを特徴とする同期機の励磁制御装置。
A power converter for exciting the field side of the synchronous machine, a power source circuit breaker consisting of three-phase AC circuit breaker for connecting the armature end of the power converter and the synchronous machine is connected to the field side of the synchronous machine A first overvoltage detector that detects a field-side overvoltage induced from the armature side to the field side, a first switching element that operates according to an output signal of the first overvoltage detector, and the power breaker A second overvoltage detector for detecting a field-side overvoltage generated in accordance with the opening operation of the second overvoltage detector, a second switching element operated by an output signal of the second overvoltage detector, and the first and second switching elements. An overvoltage protection device having a discharge resistor connected to the element, a first means for controlling the armature side voltage of the synchronous machine to a target value with the power converter as an operation end, and an open / close command to the power breaker holding a control device, a synchronous machine having a second means for providing In excitation control apparatus of a synchronous machine comprising a protection device for providing an open command to the power source circuit breaker to,
In addition to the second overvoltage detector as a means for operating the second switching element of the overvoltage protection device, a multi-pulse generator driven by an open command given from the control device or the protection device to a power supply circuit breaker is provided. An excitation control device for a synchronous machine, characterized in that it is provided .
電源遮断器が開極を完了した時に出力する開極信号によってマルチパルス発生器を停止させる手段を設けたことを特徴とする請求項3記載の同期機の励磁制御装置。  4. The excitation control apparatus for a synchronous machine according to claim 3, further comprising means for stopping the multi-pulse generator by an opening signal output when the power breaker completes opening. 電源遮断器の開極信号をオンディレイタイマを介してマルチパルス発生器に入力し、マルチパルス発生器を停止させるタイミングを遅らせる手段を設けたことを特徴とする請求項3に記載の同期機の励磁制御装置。  4. The synchronous machine according to claim 3, further comprising means for delaying a timing for stopping the multi-pulse generator by inputting an opening signal of the power breaker to the multi-pulse generator via an on-delay timer. Excitation control device. 電源遮断器の開指令を、同期機の電機子電圧を目標値に制御する部分に入力する手段と、電源遮断器の開指令によって、電力変換器で界磁電流を絞る手段を設けたことを特徴とする請求項1ないし5のいずれかに記載の同期機の励磁制御装置。  Provided means to input the power breaker open command to the part that controls the armature voltage of the synchronous machine to the target value, and means to throttle the field current by the power converter by the power breaker open command 6. The excitation control apparatus for a synchronous machine according to claim 1, wherein the excitation control apparatus is a synchronous machine.
JP2002099512A 2002-04-02 2002-04-02 Excitation control device for synchronous machine Expired - Fee Related JP4149722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002099512A JP4149722B2 (en) 2002-04-02 2002-04-02 Excitation control device for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002099512A JP4149722B2 (en) 2002-04-02 2002-04-02 Excitation control device for synchronous machine

Publications (2)

Publication Number Publication Date
JP2003299398A JP2003299398A (en) 2003-10-17
JP4149722B2 true JP4149722B2 (en) 2008-09-17

Family

ID=29388165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002099512A Expired - Fee Related JP4149722B2 (en) 2002-04-02 2002-04-02 Excitation control device for synchronous machine

Country Status (1)

Country Link
JP (1) JP4149722B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528552B2 (en) * 2004-04-19 2010-08-18 株式会社東芝 Excitation control device for synchronous machine
EP4033657A1 (en) * 2021-01-25 2022-07-27 ABB Schweiz AG De-exciting system for inductive circuits

Also Published As

Publication number Publication date
JP2003299398A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
US7276871B2 (en) System and method for fault protection for permanent magnet machines
KR20020061371A (en) Multi-functional hybrid contactor
US7804270B2 (en) Motor start circuit with capacitive discharge protection
CA2773830C (en) Electric machine assembly with fail-safe arrangement
JP2007141562A (en) Ground-fault interrupter
GB2483524A (en) Motor protection switch
JP2002359112A (en) Method and apparatus for controlling voltage of lifting magnet
JP4149722B2 (en) Excitation control device for synchronous machine
JP2017184337A (en) Overvoltage prevention apparatus for adjustable speed pumped storage power generation system
JP2004523997A (en) Acceleration of transients during generator unloading
JP3594100B2 (en) Electric vehicle electric system
JPS601808B2 (en) Open phase detection method
JP4765178B2 (en) Three-phase switch
JP4697825B2 (en) AC voltage regulator
JP3666240B2 (en) Inverter device
JP2009059607A (en) Three-phase ground-fault interrupter
JP4178588B2 (en) Induction motor braking method
RU2746149C1 (en) Method of short circuit protection of magnetoelectric generator
JP4172634B2 (en) 3-phase 3-wire circuit breaker with phase loss protection
US5946182A (en) Power supply circuit for an electromagnetic coil having low DC and high AC voltage supply
JP6585344B2 (en) Exciter for synchronous machine and excitation stop method
JPS6245480Y2 (en)
JP2001057735A (en) Fault detection and protection method when starting electric motor mode of synchronous generation electric motor, and synchronous generation electric motor
JP4483386B2 (en) Earth leakage breaker
JP2001258179A (en) Power supply switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4149722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees