JP4149584B2 - Machining program display method of multi-axis multi-system NC lathe - Google Patents

Machining program display method of multi-axis multi-system NC lathe Download PDF

Info

Publication number
JP4149584B2
JP4149584B2 JP29787398A JP29787398A JP4149584B2 JP 4149584 B2 JP4149584 B2 JP 4149584B2 JP 29787398 A JP29787398 A JP 29787398A JP 29787398 A JP29787398 A JP 29787398A JP 4149584 B2 JP4149584 B2 JP 4149584B2
Authority
JP
Japan
Prior art keywords
machining program
machining
axis
program
lathe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29787398A
Other languages
Japanese (ja)
Other versions
JP2000122709A (en
Inventor
高靖 斎藤
梅夫 露崎
徹 高橋
昭秀 金谷
壮作 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP29787398A priority Critical patent/JP4149584B2/en
Publication of JP2000122709A publication Critical patent/JP2000122709A/en
Application granted granted Critical
Publication of JP4149584B2 publication Critical patent/JP4149584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は多軸多系統NC旋盤の加工プログラム表示方法に関する。
【0002】
【従来の技術】
多軸多系統NC旋盤の加工プログラムは系統ごとの加工プログラムをそれぞれひとまとめにし、すべてを系統ごとに順番に直列に表示したり、最初から最後までを系統の数と同数の複数の並列に表示したりしていた。
【0003】
図1から図5は多軸多系統NC旋盤の表示画面1と加工プログラム表示範囲2と加工プログラムが長く表示範囲に収まらない部分3等により従来の多軸多系統NC旋盤の多系統加工プログラムを模式的に示した図である。図1のように加工プログラム表示部が狭く系統ごとの加工プログラムを1行で直列に表示する場合、同時動作する他の系統の加工プログラムを同一表示部に表示できず他の系統の動作との時間関係を加工プログラム表示部だけから認識出来ないことが多かった。又、図2のように加工プログラム表示部が広く加工プログラムを複数行直列ですべてを表示できたとしても系統毎にひとまとめになっており他の系統との時間関係を認識することは難しかった。
【0004】
図3のように加工プログラム表示部が狭く複数の加工プログラムを1行で並列に表記する場合、加工プログラムの表示ステップ数が制限され動作の前後の関係の認識、他の系統との時間関係の認識共難しかった。又、図4のように加工プログラム表示部が広く複数行並列で加工プログラムの多くの部分が表示されると全体の動作の流れについては理解しやすいが、他の系統との時間関係を認識することは難しい。図5のように複数行並列で複数の系統の時間的同期を取る待ち合わせ指令のあるステップの表示行を揃える表示にすると、他の系統の動作との時間関係は認識しやすくなるが、広い加工プログラム表示部が必要となる。
【0005】
図12は図5の具体的な例であり、他の系統の動作との時間関係は認識しやすいが、多軸多系統NC旋盤を常時多系統加工プログラムで制御する場合、イニシャル時、同時動作開始時、同時動作終了時等に複数軸の複数系統への割り当てを行う必要があり、新しい割り当てでの座標系で加工プログラムの座標位置を認識し必要に応じて設定しなくてはならず、又どの軸に対する指令をどの系統にどういう座標系で書けば良いのか、時間的同期をどこでどの軸間で取るか等の難しい判断が必要とされた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、狭い加工プログラム表示部しかない多軸多系統NC旋盤でも加工プログラムを他の系統の動作との時間関係を簡単に認識出来るよう表示する表示方法を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の多軸多系統NC旋盤の加工プログラム表示方法は、複数の制御系統各々に対応する加工プログラムからなる多系統加工プログラムによる制御によって複数の制御系統で同時加工を行うことができるとともに、加工を実行する1つの制御系統に対応する加工プログラムからなる単系統加工プログラムによる制御によって、1つの制御系統のみで加工を行うことが可能に構成される多軸多系統NC旋盤の加工プログラムが、前記1つの制御系統での加工用の単系統加工プログラムと同時加工用の多系統加工プログラムとからなり、単系統加工プログラムと多系統加工プログラムとを順に直列に連続して表示し、多系統プログラムの同時実行する各加工プログラムを、各々対応する系統を示す指令とともに系統毎に順に直列に連続して表示して、多軸多系統NC旋盤の加工プログラム全体を直列に連続して表示する多軸多系統NC旋盤の加工プログラムの表示方法において、前記多軸多系統NC旋盤の加工プログラムが、前記多軸多系統NC旋盤を、単系統加工プログラムによる制御状態から多系統加工プログラムによる制御状態に切り換える多系統開始指令と、多系統加工プログラムによる制御状態から単系統加工プログラムによる制御状態に切り換える多系統終了指令とを備え、多系統加工プログラムの同時実行する各加工プログラム各々、同時実行する加工プログラムであることを示す指令を表示せずに前記同時実行する各加工プログラムを、前記一対の多系統開始指令と多系統終了指令との間に表示して、多系統加工プログラムとして同時実行される加工プログラムと、単系統加工プログラムとして実行される加工プログラムとを区別して表示し、多系統加工プログラムとして同時実行される加工プログラムを、各々対応する系統を示す指令によって系統毎に区別して表示することを特徴とする。
【0008】
【発明の実施の形態】
以下に本発明の最良の形態を、図面を使用して説明する。
【0009】
はじめに多軸多系統NC旋盤の簡単な機械構成を図8を用いて説明する。この装置は複数の工具11を保持しX1軸方向に移動する第1刃物台10と、複数の工具21を保持しZ2軸方向とX2軸方向に移動する第2刃物台20と、材料31を把持し回転しZ1軸方向に移動する主軸30で構成され、主に主軸30の回転とZ1軸方向の移動と第1刃物台10に保持された工具11のX1軸方向の移動による加工と、主軸30の回転とZ1軸方向の移動と第2刃物台20に保持された工具21のZ2軸方向の移動による加工を行う。
【0010】
図9は図10、図11の加工プログラム例による同時加工の概要を、工具の刃先の軌跡と加工後の材料の形状で示したものである。第1刃物台10の複数の工具11から選択した外径切削用工具T12により直径10mmの材料31の先端から10mmまでを直径6mmに切削し、同時に第2刃物台20の複数の工具21から選択したドリルT22により材料31の先端から深さ5mmの穴あけを行い、その後第1刃物台10の複数の工具11から選択した突っ切り用工具T13により突っ切って製品32とした。
【0011】
図6、図7は本発明の実施形態を示す直列に表記された加工プログラムの表示例を模式的に示した図である。図6は加工プログラムを1行直列に表示した例であり、多系統制御部分8すなわち同時実行する加工プログラム部分が連続し隣接しているため動作の時間関係の認識が簡単にできる。図7は加工プログラムを複数行直列に表示した例である。
【0012】
図10は本発明の第1の実施形態を示す加工プログラム例であり、左の列が指令で右にその内容を簡単に示した。各ステップの指令による動作等の終了後に次のステップの指令を実行する単系統加工プログラムによる制御に続き多系統開始指令と多系統終了指令にはさまれた多系統加工プログラムによる同時動作制御を行いさらに単系統加工プログラムによる制御を続けて行う同時加工を含む簡単な加工の多系統加工プログラム例である。この多系統加工プログラムの内容を順をおって説明する。
【0013】
まずはじめの単系統加工プログラムでは、主軸30の現在のZ1軸の座標位置を−20.0と設定し、チャックを開き、主軸30を毎分送り速度5000mm/分でZ1軸の座標位置0に移動し、0.5秒待機し、主軸30のチャックを閉じる。これらにより座標の設定を行い材料を20mm前進させた形で把持した。主軸30をZ1軸の座標位置1.0に後退させ、第1刃物台10に保持された工具11の刃先位置から材料の端面までの距離を1mmにする。工具送りを毎回転送りのモードに設定し、主軸30を回転数2500rpmで正転させる。これらにより加工の準備を行った。
【0014】
次に多系統開始指令G185から多系統終了指令G186までの区間の多系統加工プログラムでは、多系統開始指令に続く系統指令によりこれ以降の指令を系統1で制御することを示し系統1で制御する軸をZ1軸とX1軸と設定し、第1刃物台10の工具T12を選択し、この工具T12の刃先位置をX1軸の座標位置6.0に主軸30をZ1軸の座標位置0.5に移動し、主軸30をZ1軸の座標位置10.0まで1回転に付き0.05mmの毎回転切削送りで送り、第1刃物台10のX1軸の座標位置11.0に送る。ここまでを系統1で制御し、これらにより主軸30に把持された直径10mmの材料31を外径切削用工具により長手方向10mmまで直径6mmに切削する。
【0015】
続いて第2の系統指令によりこれ以降の指令を系統2で制御することを示し系統2で制御する軸をZ2軸とX2軸と設定し、第2刃物台20の工具T22を選択し、この時の第2刃物台20の工具T22の刃先位置のZ2軸の座標位置を0とし、この刃先位置をZ2軸の座標位置−0.5に移動し、同じくZ2軸の座標位置5.0まで1回転に付き0.08mmの毎回転切削送りで送り、工具T22の刃先位置をZ2軸の座標位置−0.5まで戻す。ここまでが系統2で制御され、これらにより主軸30に把持された直径10mmの材料31にドリルにより深さ5mmの穴をあける。多系統終了指令はすべての系統の最終指令の終了を確認後実行終了となる。この多系統加工プログラムによる多系統制御区間では、系統指令とこれ以降の指令を同時に実行し同時加工動作を行う。従ってこの加工プログラム例では系統1の外径切削加工と系統2の穴あけ加工を同時に実行する。
【0016】
次の単系統加工プログラムでは、第1刃物台10に保持された工具11中の工具T13を選択し、主軸30をZ1軸の座標位置20.0まで移動し、工具T13の刃先位置をX1軸の座標位置−3.0まで毎回転送りで速度0.03mm/1回転で送り、主軸30の回転を停止し、終了の処理に入る。これらにより主軸30に把持され加工されたワークを突っ切り、製品にし、製品の個数をカウントし、1サイクルを終了し、製品の個数が設定値に達していない場合プログラムの先頭に戻り、達した場合プログラムを終了する。
【0017】
図11は本発明の第2の実施形態を示す加工プログラム例である。単系統加工プログラム区間は図10の第1の実施形態と同様であるため、多系統開始指令と多系統終了指令の区間の多系統加工プログラム例を示した。この区間でも第1の実施形態から系統指令のみを省略したものが第2の実施形態であり、このため主にこの相違部分について説明する。
【0018】
工具選択指令は通常マクロプログラム指令であるためそのマクロプログラム部分に多系統開始指令と多系統終了指令の区間の多系統加工プログラム中のみに実行する系統指令を予めいれておき、工具選択指令があるとその系統指令に予め設定してある系統番号と制御する軸を設定する。ここでは第1刃物台10に保持された工具11中のいずれかを選択する工具選択指令により予め設定してある第1刃物台10の加工動作に使用する制御軸Z1軸、X1軸を第1系統の制御軸に設定する。又、第2刃物台20の工具T22中のいずれかを選択する工具選択指令では予め設定してある第2刃物台20の加工動作に使用する制御軸Z2軸、X2軸を第2系統の制御軸に設定する。そしてそれぞれの工具選択指令以降の加工プログラムを多系統加工プログラムとして同時実行し、それぞれ外径切削用工具とドリルを選択後第1の実施形態と同様に主軸30に把持された直径10mmの材料31を外径切削用工具により長手方向10mmまでを直径6mmに切削し、主軸30に把持された直径10mmの材料31にドリルにより深さ5mmの穴をあける同時加工を行う。このように加工プログラム作成者に系統指令を使わず、多系統を意識せず多軸多系統加工プログラムを作成可能とした。これらの実施形態では主軸摺動型NC旋盤の加工プログラムについて述べたが、主軸固定型NC旋盤においても同様に実施できる。また2系統の加工プログラム例について述べたが3系統以上の多系統加工プログラムにおいても同様に実施できる。制御軸の数が少なく同時加工のパターンが1つまたは少ない場合、工具選択指令により予め設定してある系統指令等で自動的に設定されるようにすると、加工プログラム作成者は同時加工の意識はあっても多系統の意識は持たずにプログラムを作成、編集できる。
【0019】
【発明の効果】
以上の説明から明らかなように、多系統開始指令と多系統終了指令を用いて多系統加工プログラムと単系統加工プログラムを直列に表示したため、狭い表示部しか持たない多軸多系統NC旋盤においても、複数の系統の動作の時間関係を認識しやすくなり、図3,図4のように表示したいが加工プログラムが長く表示範囲に収まらない部分3があるにもかかわらず表示の空き部分4を生じることが無く表示画面を最大限に使用できるという効果がある。又、多系統加工プログラム部分のみで多系統を意識し、必要な設定等を行えばよいため加工プログラムの作成、編集が楽になりミスもすくなくなった。
【図面の簡単な説明】
【図1】 多系統加工プログラムを1行直列に表示した従来例を示す図である。
【図2】 多系統加工プログラムを複数行直列に表示した従来例を示す図である。
【図3】 多系統加工プログラムを1行並列に表示した従来例を示す図である。
【図4】 多系統加工プログラムを複数行並列に表示した従来例を示す図である。
【図5】 多系統加工プログラムを複数行並列で待ち合わせ指令のあるステップの表示行を揃えて表示した従来例を示す図である。
【図6】 本発明の実施形態における加工プログラムを1行直列に表示した例を示す図である。
【図7】 本発明の実施形態における加工プログラムを複数行直列に表示した例を示す図である。
【図8】 本発明の実施形態における加工プログラムで制御する多軸多系統NC旋盤の構成例を示す図である。
【図9】 本発明の実施形態における加工プログラムでの加工例を示す図である。
【図10】 本発明の第1の実施形態における加工プログラム例を示す図である。
【図11】 本発明の第2の実施形態における加工プログラムを例示す図である。
【図12】 多系統加工プログラムを複数行並列で待ち合わせ指令のあるステップの表示行を揃えて表記した従来例を示す図である。
【符号の説明】
1 表示画面
2 加工プログラム表示範囲
10 第1刃物台
11 工具
20 第2刃物台
21 工具
30 主軸
31 材料
32 製品
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machining program display method for a multi-axis multi-system NC lathe.
[0002]
[Prior art]
The machining program for the multi-axis, multi-system NC lathe is grouped together for each system, and everything is displayed in series in order for each system, or from the beginning to the end is displayed in parallel in the same number as the number of systems. I was doing.
[0003]
Multiple system processing program of a conventional multi-axis multi-system NC lathe with 5 parts 3 such multi-axis multi-path NC lathe display screen 1 and the machining program display area 2 and the machining program can not fit in the long display range of Fig. 1 which is a diagram schematically showing. When the machining program display unit is narrow and the machining program for each system is displayed in series in one line as shown in FIG. 1, machining programs of other systems that operate simultaneously cannot be displayed on the same display unit, and the operation of other systems In many cases, the time relationship could not be recognized only from the machining program display. In addition, even if the machining program display section is wide as shown in FIG. 2 and all the machining programs can be displayed in series in a plurality of lines, it is grouped for each system and it is difficult to recognize the time relationship with other systems.
[0004]
When the machining program display section is narrow and a plurality of machining programs are written in parallel on one line as shown in FIG. 3, the number of machining program display steps is limited, recognition of the relationship before and after the operation, and the time relationship with other systems It was difficult to recognize. Also, as shown in FIG. 4, when the machining program display section is wide and many parts of the machining program are displayed in parallel in a plurality of lines, the overall operation flow is easy to understand, but the time relationship with other systems is recognized. It ’s difficult. As shown in FIG. 5, when the display lines of the steps having the waiting command for taking time synchronization of a plurality of systems in a plurality of lines in parallel are displayed so that the time relationship with the operation of other systems is easy to recognize, A program display is required.
[0005]
FIG. 12 is a specific example of FIG. 5 and it is easy to recognize the time relationship with the operation of other systems. However, when a multi-axis multi-system NC lathe is always controlled by a multi-system machining program, the initial operation is simultaneous. It is necessary to assign multiple axes to multiple systems at the start, at the end of simultaneous operation, etc., and the coordinate position of the machining program must be recognized and set as necessary in the coordinate system with the new assignment, Further, it is necessary to make difficult judgments such as which axis should be written in which coordinate system and which coordinate system should be written, and where and which axis should be synchronized in time.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a display method for displaying a machining program so that the time relationship with the operation of other systems can be easily recognized even on a multi-axis multi-system NC lathe having only a narrow machining program display section.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the machining program display method of the multi-axis multi-system NC lathe according to the present invention performs simultaneous machining in a plurality of control systems by control by a multi-system machining program comprising machining programs corresponding to each of the plurality of control systems. A multi-axis multi-line system that is capable of performing machining with only one control system through control by a single system machining program that includes a machining program corresponding to one control system that performs machining. The NC lathe machining program consists of a single system machining program for machining in the one control system and a multi-system machining program for simultaneous machining, and the single-system machining program and the multi-system machining program are sequentially connected in series. Display each machining program to be executed simultaneously by the multi-system program, along with a command indicating the corresponding system. In the method for displaying a machining program for a multi-axis multi-system NC lathe, in which the entire machining program for a multi-axis multi-system NC lathe is displayed in series in succession, The machining program includes a multi-system start command for switching the multi-axis multi-system NC lathe from a control state by the single-system machining program to a control state by the multi-system machining program, and a single-system machining program from the control state by the multi-system machining program. a multisystem end command to switch the control state, each processing program, each of concurrency multisystem machining program, without displaying the instruction indicating that the machining program to be executed simultaneously, each said concurrency a machining program, displayed between the pair of multi-path start command and multiple system end command, the multi-system processing program The machining program that is executed at the time and the machining program that is executed as a single system machining program are displayed separately, and the machining program that is simultaneously executed as a multi-system machining program is divided for each system by a command indicating the corresponding system. It is characterized by being displayed separately.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The best mode of the present invention will be described below with reference to the drawings.
[0009]
First, a simple mechanical configuration of a multi-axis multi-system NC lathe will be described with reference to FIG. This apparatus holds a plurality of tools 11 and moves a first tool post 10 that moves in the X1 axis direction, a plurality of tools 21 holds a second tool rest 20 that moves in the Z2 axis direction and the X2 axis direction, and a material 31. A spindle 30 that is gripped, rotated, and moved in the Z1 axis direction, mainly processing by rotation of the spindle 30, movement in the Z1 axis direction, and movement of the tool 11 held on the first tool post 10 in the X1 axis direction; Machining is performed by rotating the spindle 30, moving in the Z1 axis direction, and moving the tool 21 held by the second tool post 20 in the Z2 axis direction.
[0010]
FIG. 9 shows an outline of simultaneous machining by the machining program examples of FIGS. 10 and 11 in terms of the locus of the cutting edge of the tool and the shape of the material after machining. The outer diameter cutting tool T12 selected from the plurality of tools 11 of the first tool post 10 is used to cut from the tip of the material 31 having a diameter of 10 mm to 10 mm to a diameter of 6 mm, and at the same time selected from the plurality of tools 21 of the second tool post 20 A drill having a depth of 5 mm was drilled from the tip of the material 31 with the drill T22, and the product 32 was then cut off with the cutting tool T13 selected from the plurality of tools 11 of the first tool post 10.
[0011]
FIG. 6 and FIG. 7 are diagrams schematically showing display examples of the machining programs written in series showing the embodiment of the present invention. FIG. 6 shows an example in which machining programs are displayed in series in one line. Since the multi-system control part 8, that is, the machining program parts to be executed simultaneously, are continuous and adjacent to each other, the time relation of the operation can be easily recognized. FIG. 7 shows an example in which machining programs are displayed in a plurality of lines in series.
[0012]
FIG. 10 is an example of a machining program showing the first embodiment of the present invention. The left column is a command and the contents are simply shown on the right. Following the control by the single system machining program that executes the command of the next step after the operation by the command of each step is completed, the simultaneous operation control by the multi-system machining program sandwiched between the multi-system start command and the multi-system end command is performed. Furthermore, it is an example of a simple machining multi-system machining program including simultaneous machining performed continuously by a single system machining program. The contents of this multi-system machining program will be described in order.
[0013]
In the first single system machining program, the current Z1 axis coordinate position of the spindle 30 is set to -20.0, the chuck is opened, and the spindle 30 is moved to the Z1 axis coordinate position 0 at a feed rate of 5000 mm / min. It moves, waits for 0.5 seconds, and closes the chuck of the spindle 30. The coordinates were set by these, and the material was gripped in a form advanced by 20 mm. The main shaft 30 is retracted to the coordinate position 1.0 of the Z1 axis, and the distance from the cutting edge position of the tool 11 held on the first tool rest 10 to the end face of the material is set to 1 mm. The tool feed is set to a mode of every rotation feed, and the main spindle 30 is rotated forward at a rotational speed of 2500 rpm. The preparation of processing was performed by these.
[0014]
Next, in the multi-system machining program in the section from the multi-system start command G185 to the multi-system end command G186, the system command subsequent to the multi-system start command indicates that the subsequent commands are controlled by the system 1, and is controlled by the system 1 The axes are set as the Z1 axis and the X1 axis, the tool T12 of the first tool post 10 is selected, the cutting edge position of the tool T12 is set to the coordinate position 6.0 of the X1 axis, and the main shaft 30 is set to the coordinate position 0.5 of the Z1 axis. The spindle 30 is fed to the Z1 axis coordinate position 10.0 at a rotation speed of 0.05 mm per rotation until the Z1 axis coordinate position 10.0, and is sent to the X1 axis coordinate position 11.0 of the first tool post 10. The process up to this point is controlled by the system 1, and the material 31 having a diameter of 10 mm held by the main shaft 30 is cut to a diameter of 6 mm by a tool for outer diameter cutting up to 10 mm in the longitudinal direction.
[0015]
Subsequently, the second system command indicates that the subsequent commands are controlled by the system 2, the axes controlled by the system 2 are set as the Z2 axis and the X2 axis, the tool T22 of the second tool post 20 is selected, and this The coordinate position of the Z2 axis of the tool tip position of the tool T22 of the second tool post 20 at time 0 is set to 0, and this tooltip position is moved to the coordinate position -0.5 of the Z2 axis, and similarly to the coordinate position 5.0 of the Z2 axis. It is sent at a cutting feed of 0.08 mm per rotation, and the cutting edge position of the tool T22 is returned to the coordinate position −0.5 of the Z2 axis. The process up to this point is controlled by the system 2, and a hole having a depth of 5 mm is made by a drill in the material 31 having a diameter of 10 mm held by the spindle 30. The multi-system end command is executed after confirming the end of the final command of all systems. In a multi-system control section by this multi-system machining program, a system command and subsequent commands are simultaneously executed to perform simultaneous machining operations. Therefore, in this machining program example, the outer diameter cutting of the system 1 and the drilling of the system 2 are executed simultaneously.
[0016]
In the next single system machining program, the tool T13 in the tool 11 held on the first tool post 10 is selected, the spindle 30 is moved to the coordinate position 20.0 of the Z1 axis, and the cutting edge position of the tool T13 is set to the X1 axis. Is sent at a speed of 0.03 mm / 1 rotation at a rotation speed of up to the coordinate position −3.0, and the rotation of the main shaft 30 is stopped, and the end processing is started. When the workpieces gripped and processed by the spindle 30 are cut off and made into products, the number of products is counted, one cycle is completed, and if the number of products has not reached the set value, the program returns to the top and reaches Exit the program.
[0017]
FIG. 11 is a machining program example showing the second embodiment of the present invention. Since the single system machining program section is the same as that of the first embodiment of FIG. 10, the example of the multi-system machining program in the section of the multi-system start command and the multi-system end command is shown. Even in this section, only the system command is omitted from the first embodiment is the second embodiment, and therefore, this difference will be mainly described.
[0018]
Since the tool selection command is usually a macro program command, a system command to be executed only in the multi-system machining program in the section of the multi-system start command and multi-system end command is entered in advance in the macro program part, and there is a tool selection command And the system number preset in the system command and the axis to be controlled are set. Here, the control axes Z1 and X1 used for the machining operation of the first tool rest 10 set in advance by a tool selection command for selecting one of the tools 11 held on the first tool rest 10 are set to the first. Set to the control axis of the system. Further, in the tool selection command for selecting one of the tools T22 of the second tool post 20, the control axes Z2 and X2 used for the machining operation of the second tool post 20 set in advance are controlled by the second system. Set to axis. Then, the machining program after each tool selection command is simultaneously executed as a multi-system machining program, and after selecting an outer diameter cutting tool and a drill, respectively, a material 31 having a diameter of 10 mm held by the spindle 30 as in the first embodiment. The outer diameter cutting tool is used to cut a diameter of up to 10 mm to a diameter of 6 mm, and simultaneously drilling a 5 mm deep hole in the material 31 having a diameter of 10 mm held by the spindle 30. In this way, it is possible to create a multi-axis multi-system machining program without using system commands for the machining program creator and without being aware of multiple systems. In these embodiments, the machining program for the spindle-sliding NC lathe has been described, but the present invention can be similarly applied to a spindle-fixed NC lathe. In addition, although two machining program examples have been described, the present invention can be similarly applied to a multi-system machining program having three or more systems. If the number of control axes is small and the number of simultaneous machining patterns is one or small, the machining program creator will not be aware of the simultaneous machining if it is automatically set by the system command set in advance by the tool selection command. Even if there is, it is possible to create and edit programs without having multi-system awareness.
[0019]
【The invention's effect】
As is clear from the above description, since the multi-system machining program and the single-system machining program are displayed in series using the multi-system start command and the multi-system end command, even in a multi-axis multi-system NC lathe having only a narrow display portion. It becomes easy to recognize the time relationship of the operation of a plurality of systems, and a display empty portion 4 is generated even though there is a portion 3 that is desired to be displayed as shown in FIGS. 3 and 4 but the machining program is long and does not fit in the display range. There is an effect that the display screen can be used as much as possible. Also, since it is only necessary to be aware of multiple systems and make necessary settings, etc. only with the multi-system machining program part, machining programs can be created and edited easily and mistakes are eliminated.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional example in which a multi-system machining program is displayed in a line in a row.
FIG. 2 is a diagram showing a conventional example in which a multi-line machining program is displayed in series in a plurality of rows.
FIG. 3 is a diagram showing a conventional example in which a multi-system machining program is displayed in a line in parallel.
FIG. 4 is a diagram showing a conventional example in which a multi-system machining program is displayed in a plurality of rows in parallel.
FIG. 5 is a diagram showing a conventional example in which a multi-line machining program is displayed in a line in which a plurality of lines are displayed in parallel and the display lines of steps having waiting instructions are aligned.
FIG. 6 is a diagram showing an example in which a machining program according to an embodiment of the present invention is displayed in one line in series.
FIG. 7 is a diagram illustrating an example in which a machining program according to an embodiment of the present invention is displayed in a plurality of lines in series.
FIG. 8 is a diagram illustrating a configuration example of a multi-axis multi-system NC lathe controlled by a machining program according to an embodiment of the present invention.
FIG. 9 is a diagram showing a machining example with a machining program in the embodiment of the present invention.
FIG. 10 is a diagram showing an example of a machining program in the first embodiment of the present invention.
FIG. 11 is a diagram showing an example of a machining program in the second embodiment of the present invention.
FIG. 12 is a diagram showing a conventional example in which a multi-system machining program is represented by aligning display lines of steps having a waiting command in parallel in a plurality of lines.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Display screen 2 Machining program display range 10 1st tool post 11 Tool 20 2nd tool post 21 Tool 30 Spindle 31 Material 32 Product

Claims (1)

複数の制御系統各々に対応する加工プログラムからなる多系統加工プログラムによる制御によって複数の制御系統で同時加工を行うことができるとともに、加工を実行する1つの制御系統に対応する加工プログラムからなる単系統加工プログラムによる制御によって、1つの制御系統のみで加工を行うことが可能に構成される多軸多系統NC旋盤の加工プログラムが、前記1つの制御系統での加工用の単系統加工プログラムと同時加工用の多系統加工プログラムとからなり、単系統加工プログラムと多系統加工プログラムとを順に直列に連続して表示し、多系統プログラムの同時実行する各加工プログラムを、各々対応する系統を示す指令とともに系統毎に順に直列に連続して表示して、多軸多系統NC旋盤の加工プログラム全体を直列に連続して表示する多軸多系統NC旋盤の加工プログラムの表示方法において、
前記多軸多系統NC旋盤の加工プログラムが、前記多軸多系統NC旋盤を、単系統加工プログラムによる制御状態から多系統加工プログラムによる制御状態に切り換える多系統開始指令と、多系統加工プログラムによる制御状態から単系統加工プログラムによる制御状態に切り換える多系統終了指令とを備え、
多系統加工プログラムの同時実行する各加工プログラム各々、同時実行する加工プログラムであることを示す指令を表示せずに前記同時実行する各加工プログラムを、前記一対の多系統開始指令と多系統終了指令との間に表示して、多系統加工プログラムとして同時実行される加工プログラムと、単系統加工プログラムとして実行される加工プログラムとを区別して表示し、多系統加工プログラムとして同時実行される加工プログラムを、各々対応する系統を示す指令によって系統毎に区別して表示することを特徴とする多軸多系統NC旋盤の加工プログラム表示方法。
A single system consisting of machining programs corresponding to one control system that can perform machining simultaneously with a plurality of control systems under the control of a multi-system machining program consisting of machining programs corresponding to each of a plurality of control systems Machining program of multi-axis multi-system NC lathe configured to be able to perform machining with only one control system under the control of machining program, simultaneous machining with single system machining program for machining with said one control system A multi-system machining program for a single system, and a single system machining program and a multi-system machining program are displayed sequentially in series, and each machining program to be executed simultaneously by the multi-system program is accompanied by a command indicating the corresponding system. The entire machining program for a multi-axis multi-system NC lathe is displayed in series for each system in series. In the display method of the machining program of the multi-axis multi-system NC lathe to display,
The machining program of the multi-axis multi-system NC lathe includes a multi-system start command for switching the multi-axis multi-system NC lathe from a control state by a single system machining program to a control state by a multi-system machining program, and control by the multi-system machining program. Multi-system end command to switch from the state to the control state by the single system machining program,
Each machining program each for simultaneous execution of multiple system processing program, without displaying the instruction indicating that the machining program to be executed simultaneously, each processing program for the simultaneous execution, and the pair of multi-system start command Displayed between the multiple system termination command and displayed separately between the machining program executed simultaneously as a multi-system machining program and the machining program executed as a single system machining program, and executed simultaneously as a multi-system machining program A machining program display method for a multi-axis multi-system NC lathe characterized by displaying each machining program separately for each system by a command indicating the corresponding system.
JP29787398A 1998-10-20 1998-10-20 Machining program display method of multi-axis multi-system NC lathe Expired - Fee Related JP4149584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29787398A JP4149584B2 (en) 1998-10-20 1998-10-20 Machining program display method of multi-axis multi-system NC lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29787398A JP4149584B2 (en) 1998-10-20 1998-10-20 Machining program display method of multi-axis multi-system NC lathe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007257283A Division JP2008016061A (en) 2007-10-01 2007-10-01 Control method of multishaft multi-system nc lathe

Publications (2)

Publication Number Publication Date
JP2000122709A JP2000122709A (en) 2000-04-28
JP4149584B2 true JP4149584B2 (en) 2008-09-10

Family

ID=17852236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29787398A Expired - Fee Related JP4149584B2 (en) 1998-10-20 1998-10-20 Machining program display method of multi-axis multi-system NC lathe

Country Status (1)

Country Link
JP (1) JP4149584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453253B1 (en) 2012-01-27 2014-10-22 미쓰비시덴키 가부시키가이샤 Display method of synchronization control program which drive controls multi-axle synchronization control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043332B1 (en) 2000-09-22 2006-05-09 Citizen Watch Co., Ltd. Numeric control lathe and method for controlling the same
CN100397266C (en) * 2006-05-22 2008-06-25 江南机器(集团)有限公司 Single chip controller of automatic lathe for bearing rings
JP4233583B2 (en) 2007-04-03 2009-03-04 ファナック株式会社 A numerical control device having a function of editing a plurality of programs.
US9588502B2 (en) * 2011-03-30 2017-03-07 Citizen Watch Co., Ltd. Machine tool control device
JP5749594B2 (en) * 2011-07-26 2015-07-15 シチズンホールディングス株式会社 Machine tool controller
JP5639519B2 (en) * 2011-03-30 2014-12-10 シチズンホールディングス株式会社 Machine tool controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453253B1 (en) 2012-01-27 2014-10-22 미쓰비시덴키 가부시키가이샤 Display method of synchronization control program which drive controls multi-axle synchronization control device

Also Published As

Publication number Publication date
JP2000122709A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
US4949270A (en) Method of creating NC program for pocket machining
EP1807740B1 (en) System, method, and computer program product for machine tool programming
JPS62208104A (en) Numerical controller
JP2003271215A (en) Method and device for checking machining program of nc machine tool, as well as nc machine tool equipped therewith
US6741905B1 (en) Visual system for programming of simultaneous and synchronous machining operations on lathes
JP4149584B2 (en) Machining program display method of multi-axis multi-system NC lathe
JPH0550329A (en) Controlling unit and method of machine tool
KR20050026545A (en) Tool selection method for machine tool control device, and numerically controlled lathe
JP2692011B2 (en) Numerical control automatic programming device
JP4987214B2 (en) Automatic lathe and its control method and control device
JPH10124127A (en) Thread cutting device using nc lathe, and method therefor
WO2002091090A1 (en) Automatic lathe, and method for controlling the same and device for controlling the same
JP4456526B2 (en) NC program display and editing method
JP2002132313A (en) Method and device for automatic programming
JP3572113B2 (en) Control method of NC machine tool
JPH033716A (en) Deburring
JP2008016061A (en) Control method of multishaft multi-system nc lathe
JPS60191305A (en) Numerical controller
JPH03166039A (en) Method and device for deciding method of machining inner diameter in function of generating information on numerical control
JPH04129645A (en) Simultaneous processing method for numerical control lathe
JPS6324307A (en) Nc data checking method
JP2002137119A (en) Machining method for gear by machining center
JPH06155103A (en) Machining controlling method for two opposed spindle lathe
KR20230030526A (en) Machine tool
JPH01152509A (en) Cnc control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees