JP4147793B2 - Gas-liquid separator for ejector cycle - Google Patents

Gas-liquid separator for ejector cycle Download PDF

Info

Publication number
JP4147793B2
JP4147793B2 JP2002076076A JP2002076076A JP4147793B2 JP 4147793 B2 JP4147793 B2 JP 4147793B2 JP 2002076076 A JP2002076076 A JP 2002076076A JP 2002076076 A JP2002076076 A JP 2002076076A JP 4147793 B2 JP4147793 B2 JP 4147793B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
phase refrigerant
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002076076A
Other languages
Japanese (ja)
Other versions
JP2003269824A (en
Inventor
進 川村
猛 酒井
真也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002076076A priority Critical patent/JP4147793B2/en
Publication of JP2003269824A publication Critical patent/JP2003269824A/en
Application granted granted Critical
Publication of JP4147793B2 publication Critical patent/JP4147793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Description

【0001】
【発明の属する技術分野】
本発明は、エジェクタサイクル用の気液分離器に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
エジェクタサイクルとは、周知のごとく、エジェクタにて冷媒を減圧膨張させて蒸発器にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機の吸入圧を上昇させる冷凍サイクルである。
【0003】
つまり、エジェクタサイクルでは、圧縮機→放熱器→エジェクタ→気液分離器→圧縮機の順に循環する冷媒流れと、気液分離器→蒸発器→エジェクタ→気液分離器の順に循環する冷媒流れとが存在し、気液分離器は、エジェクタから流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機の吸引側に供給し、液相冷媒を蒸発器側に供給する。
【0004】
このとき、圧縮機にて液圧縮が発生することを防止するためには、理想的には気相冷媒、つまり飽和ガスのみを気液分離器から圧縮機に供給することが望ましい。なお、圧縮機にて液圧縮が発生すると、吐出温度及び吐出圧力が過度に上昇して圧縮機の寿命低下を招くとともに、圧縮機の消費動力が増大してしまう。
【0005】
一方、液相冷媒と共に多くの冷凍機油が蒸発器内に流れ込んでしまうと、冷凍機油が蒸発器内面に付着するようにして、多量の冷凍機油が蒸発器に滞留してしまうおそれがある。
【0006】
そして、冷凍機油が蒸発器内面に付着すると、液相冷媒と蒸発器との間の熱伝達率が低下して液相冷媒の蒸発を阻害し、蒸発器の熱交換効率の低下を招くとともに、実質的な冷媒通路断面積が縮小して蒸発器内を流れる冷媒流量の減少、及びこれに呼応して蒸発器での吸熱能力の低下を招く。
【0007】
さらに、蒸発器で冷凍機油が滞留するため、圧縮機にて冷凍機油不足、つまり潤滑不足が発生するおそれもある。
【0008】
本発明は、上記点に鑑み、気相冷媒、液相冷媒及び冷凍機油を分離することができる、従来と異なる新規な構造を有する気液気液分離器を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、圧縮機(10)にて圧縮された高圧の冷媒を放冷する放熱器(20)と、低圧の冷媒を蒸発させる蒸発器(30)、放熱器(20)から流出した冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル、及びノズルから噴射する冷媒と蒸発器(30)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部とを有するエジェクタ(40)とを備えるエジェクタサイクルに適用され、エジェクタ(40)から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機(10)の吸引側に供給し、液相冷媒を蒸発器(30)側に供給する気液分離器であって、エジェクタ(40)から流出した冷媒が流入する流入部(52)、気相冷媒を流出させる気相冷媒流出部(53)、液相冷媒を流出させる液相冷媒流出部(54)、及び冷凍機油を流出させるオイル戻し部(55)が設けられたタンク本体(51)を有し、タンク本体(51)の上部側にて、主に気相成分と液相成分とを遠心分離し、一方、タンク本体(51)の下部側にて、主に液相冷媒と冷凍機油とを比重分離するように構成され、液相冷媒流出部(54)及びオイル戻し部(55)の上方側には、液相冷媒流出部(54)及びオイル戻し部(55)を覆うように流入抑止部材(56)が設けられており、流入抑止部材(56)には、タンク本体(51)内を旋回するように流れる冷媒を減速させる減速手段(56a)が設けられていることを特徴とする。
【0010】
これにより、気相冷媒、液相冷媒及び冷凍機油を分離することができる、従来と異なる新規な構造を有する気液気液分離器を得ることができる。
また、液相冷媒流出部(54)及びオイル戻し部(55)の上方側に、液相冷媒流出部(54)及びオイル戻し部(55)を覆うように流入抑止部材(56)を設けることで、タンク本体(51)内に流入した冷媒が、直接的に、液相冷媒流出部(54)及びオイル戻し部(55)側に流入することを抑制でき、気液分離器内に溜まった液相冷媒の液面をより一層安定させることができるので、液相冷媒と冷凍機油とを確実に比重分離することができる。
また、流入抑止部材(56)に、タンク本体(51)内を旋回するように流れる冷媒を減速させる減速手段(56a)を設けることで、タンク断面積が小さい部位からタンク断面積が大きい部位に流入した冷媒の旋回速度を確実に低下させることができるので、気液分離器内に溜まった液相冷媒の液面をより一層安定させることができる、液相冷媒と冷凍機油とを確実に比重分離することができる。
【0011】
請求項2に記載の発明では、タンク本体(51)のうち液相冷媒流出部(54)が設けられた部位におけるタンク断面積(S1)は、タンク本体(51)のうち流入部(52)が設けられた部位におけるタンク断面積(S2)に比べて大きいことを特徴とする。
【0012】
これにより、タンク断面積が小さい部位からタンク断面積が大きい部位に流入した冷媒は、その旋回速度を低下させるので、気液分離器内に溜まった液相冷媒の液面を安定させることができる。
【0013】
したがって、液相冷媒と冷凍機油とを確実に比重分離することができるので、、液相冷媒を蒸発器(30)に安定的に供給することができ、封入冷媒量を低減することができる。延いては、エジェクタサイクルの製造原価低減を図ることができる。
【0015】
これにより、気液分離器内に溜まった液相冷媒の液面をより一層安定させることができるので、液相冷媒と冷凍機油とを確実に比重分離することができる。
【0018】
なお、液相冷媒の密度が冷凍機油の密度より小さい場合には、請求項に記載の発明のごとく、液相冷媒流出部(54)をオイル戻し部(55)より上方側に位置させることが望ましい。
【0019】
因みに、液相冷媒の密度より小さい密度を有する冷凍機油を採用した場合には、オイル戻し部(55)を液相冷媒流出部(54)より上方側に位置させることが望ましい。
【0020】
請求項に記載の発明では、圧縮機(10)にて圧縮された高圧の冷媒を放冷する放熱器(20)と、低圧の冷媒を蒸発させる蒸発器(30)と、放熱器(20)から流出した冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル、及びノズルから噴射する冷媒と蒸発器(30)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部とを有するエジェクタ(40)と、エジェクタ(40)から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機(10)の吸引側に供給し、液相冷媒を蒸発器(30)側に供給する請求項1ないしのいずれか1つに記載の気液分離器(50)とを備え、高圧の冷媒は、冷媒の臨界圧力以上まで加圧されることを特徴とする。
【0021】
これにより、エジェクタサイクルを効率よく稼動させることができる。
【0022】
なお、請求項に記載の発明のごとく、冷媒は、二酸化炭素としてもよい。
【0023】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0024】
【発明の実施の形態】
本実施形態は、本発明に係るエジェクタサイクルを空調装置に適用したものであって、図1は本実施形態に係るエジェクタサイクルの模式図である。
【0025】
圧縮機10は冷媒を吸入圧縮するものであり、凝縮器20は圧縮機10から吐出した冷媒と室外空気とを熱交換して冷媒が吸熱した熱を放冷する高圧側熱交換器である。因みに、本実施形態では、冷媒としてフロン(R404)を用いているが、冷媒として二酸化炭素を用いてもよいことは言うまでもない。
【0026】
なお、冷媒としてフロンを用いた場合には、凝縮器20にて冷媒が凝縮するが、冷媒として、二酸化炭素を用いた場合には、高圧側冷媒圧力は冷媒の臨界圧力以上となり、かつ、凝縮器20内で冷媒が凝縮することなく、冷媒入口側から冷媒出口側に向かうほど冷媒温度が低下するような温度分布を有するので、凝縮器20は放熱器として機能する。
【0027】
蒸発器30は室内に吹き出す空気と液相冷媒とを熱交換させて液相冷媒を蒸発させることにより冷媒を蒸発させて空気から吸熱する低圧側熱交換器であり、エジェクタ40は、冷媒を減圧膨張させるノズル、並びに蒸発器30にて蒸発した気相冷媒を吸引するとともに膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させる混合部及びディフューザからなる昇圧部を有して構成された減圧手段とポンプ手段とを兼ねるものである。
【0028】
気液分離器50はエジェクタ40から流出した冷媒が流入するとともに、その流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離手段であり、気液分離器50の気相冷媒流出口は圧縮機10の吸引側に接続され、液相冷媒流出口は蒸発器30側の流入側に接続される。
【0029】
次に、気液分離器50の構造を述べる。
【0030】
図2は気液分離器50の模式図であり、タンク本体51は、エジェクタ40から流出した冷媒が流入する流入部をなす流入口52、気相冷媒を流出させる気相冷媒流出部をなす気相冷媒流出口53、液相冷媒を流出させる液相冷媒流出部をなす液相冷媒流出口54、及び冷凍機油を流出させるオイル戻し部をなすオイル戻し穴55が設けられ冷媒容器である。
【0031】
そして、液相冷媒流出口54及びオイル戻し穴55は流入口52より下方側に設けられ、気相冷媒流出口53は液相冷媒流出口54及びオイル戻し穴55より上方側に設けられ、液相冷媒流出口54はオイル戻し穴55より上方側に設けられている。
【0032】
なお、流入口52は、図3に示すように、小径部51bに流入した冷媒が小径部51b内で旋回するように小径部51bの円周内壁の接線方向に向けて開口している。
【0033】
また、タンク本体51のうち液相冷媒流出口54及びオイル戻し穴55が設けられた大径部51aのタンク断面積S1は、図2に示すように、タンク本体51のうち流入口52が設けられた小径部51bのタンク断面積S2に比べて大きくなっている。
【0034】
そして、液相冷媒流出口54及びオイル戻し穴55より上方側には、図2に示すように、タンク本体51内に流入した冷媒が、直接的に、液相冷媒流出口54及びオイル戻し穴55側に流入することを抑制する流入抑止部材としての遮蔽版56が設けられており、この遮蔽版56の上面側には、図4に示すように、タンク本体51内を旋回するように流れる冷媒を減速させる減速手段としての減速ブレード56aが一体形成されている。
【0035】
なお、タンク本体51は、加工性に優れた材質であり、本実施形態では、アルミニウム合金を採用している。
【0036】
次に、本実施形態に係る気液分離器50の作用効果述べる。
【0037】
流入口52からタンク本体51内に流入した冷媒は、タンク本体51の上部側、つまり小径部51bにて主に気相成分と液相成分とが遠心分離され、タンク本体51の下部側、つまり大径部51aにて主に液相冷媒と冷凍機油とを比重分離される。
【0038】
ここで、遠心分離とは、冷凍機油を含む冷媒を旋回させて、液相成分(液相冷媒及び冷凍機油)に作用する遠心力と気相成分(気相冷媒)に作用する遠心力との相違を利用して分離することであり、比重分離とは、液相冷媒に作用する重力と冷凍機油に作用する重力との相違を利用して分離することを言う。
【0039】
そして、気相成分に比べて密度が大きい液相成分は、気相成分に比べて大きな旋回速度でタンク本体51の内周壁に沿って下方側に螺旋状に流れ、気相成分は気相冷媒流出口53から圧縮機10側に流出する。
【0040】
このとき、大径部51aにおけるタンク断面積S1が小径部51bにおけるタンク断面積S2に比べて大きくなっているので、小径部51bから大径部51aに流入した冷媒は、その旋回速度を低下させる。
【0041】
したがって、気液分離器50内に溜まった液相冷媒の液面を安定させることができるので、液相冷媒と冷凍機油とを確実に比重分離することができる。延いては、液相冷媒を蒸発器30に安定的に供給することができるので、封入冷媒量を低減することができるので、エジェクタサイクルの製造原価低減を図ることができる。
【0042】
また、遮蔽版56にてタンク本体51内に流入した冷媒が、直接的に、液相冷媒流出口54及びオイル戻し穴55側に流入することが確実に抑制されるので、気液分離器50内に溜まった液相冷媒の液面をより一層安定させることができ、液相冷媒と冷凍機油とを確実に比重分離することができる。
【0043】
さらに、遮蔽版56に減速ブレード56aが設けられているので、小径部51bから大径部51aに流入した冷媒の旋回速度を確実に低下させることができるので、気液分離器50内に溜まった液相冷媒の液面をより一層安定させることができ、液相冷媒と冷凍機油とを確実に比重分離することができる。
【0044】
(その他の実施形態)
上述の実施形態では、空調装置に本発明を適用したが、本発明はこれに限定されるものではなく、給湯器や冷蔵庫等にも適用することができる。
【0045】
また、遮蔽版56、特に減速ブレード56aの形状は、図4に示された形状に限定されるものではなく、冷媒速度を減速させることができる形状であればよい。
【0046】
また、上述の実施形態では、段付き状にタンク本体51内の断面積が変化するものであったが、本発明はこれに限定されるものではなく、下方側に向かうほど、タンク断面積Sが増大するような円錐フラスコ状のタンク本体51を採用してもよい。
【0047】
また、冷媒は、二酸化炭素及びフロンに限定されるものではなく、炭化水素系の冷媒や窒素等の自然冷媒又は混合冷媒であってもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係るエジェクタサイクルの模式図である。
【図2】本発明の実施形態に係る気液分離器の模式図である。
【図3】本発明の実施形態に係る気液分離器の上面図である。
【図4】本発明の実施形態に係る遮蔽版の二面図である。
【符号の説明】
50…気液分離器、51…タンク本体、52…流入口、53…気相冷媒流出口53、54…液相冷媒流出口、55…オイル戻し穴、56…遮蔽版。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-liquid separator for an ejector cycle.
[0002]
[Prior art and problems to be solved by the invention]
As is well known, an ejector cycle is a refrigeration system in which a refrigerant is decompressed and expanded by an ejector and a vapor-phase refrigerant evaporated by an evaporator is sucked, and expansion energy is converted into pressure energy to increase the suction pressure of the compressor. Cycle.
[0003]
In other words, in the ejector cycle, the refrigerant flow that circulates in the order of compressor → radiator → ejector → gas-liquid separator → compressor and the refrigerant flow that circulates in the order of gas-liquid separator → evaporator → ejector → gas-liquid separator The gas-liquid separator separates the refrigerant flowing out from the ejector into a gas phase refrigerant and a liquid phase refrigerant, supplies the gas phase refrigerant to the suction side of the compressor, and supplies the liquid phase refrigerant to the evaporator side. To do.
[0004]
At this time, in order to prevent liquid compression from occurring in the compressor, ideally, it is desirable to supply only the gas-phase refrigerant, that is, saturated gas, from the gas-liquid separator to the compressor. When liquid compression occurs in the compressor, the discharge temperature and the discharge pressure increase excessively, leading to a reduction in the life of the compressor and an increase in power consumption of the compressor.
[0005]
On the other hand, if a lot of refrigerating machine oil flows into the evaporator together with the liquid phase refrigerant, a large amount of refrigerating machine oil may stay in the evaporator as the refrigerating machine oil adheres to the inner surface of the evaporator.
[0006]
And when the refrigeration oil adheres to the evaporator inner surface, the heat transfer coefficient between the liquid phase refrigerant and the evaporator is lowered to inhibit the evaporation of the liquid phase refrigerant, leading to a decrease in the heat exchange efficiency of the evaporator, The substantial cross-sectional area of the refrigerant passage is reduced to reduce the flow rate of the refrigerant flowing in the evaporator, and in response to this, the heat absorption capacity of the evaporator is reduced.
[0007]
Furthermore, since the refrigerating machine oil stays in the evaporator, there is a possibility that the refrigerating machine oil shortage, that is, insufficient lubrication may occur in the compressor.
[0008]
An object of this invention is to provide the gas-liquid gas-liquid separator which can isolate | separate a gaseous-phase refrigerant | coolant, a liquid phase refrigerant | coolant, and refrigerator oil which has a novel structure different from the former in view of the said point.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in the invention described in claim 1, the radiator (20) for cooling the high-pressure refrigerant compressed by the compressor (10) and the low-pressure refrigerant are evaporated. The evaporator (30) to be discharged, the pressure energy of the refrigerant flowing out of the radiator (20) into velocity energy to decompress and expand the refrigerant, the refrigerant injected from the nozzle, and the refrigerant sucked from the evaporator (30) Is applied to an ejector cycle having a booster that converts pressure energy into pressure energy to increase the pressure of the refrigerant, and the refrigerant flowing out of the ejector (40) A gas-liquid separator that separates into a liquid phase refrigerant and supplies the gas phase refrigerant to the suction side of the compressor (10) and supplies the liquid phase refrigerant to the evaporator (30) side, from the ejector (40) Flow Inflow section (52) through which the refrigerant flows in, gas phase refrigerant outflow section (53) through which the gas phase refrigerant flows out, liquid phase refrigerant outflow section (54) through which the liquid phase refrigerant flows out, and oil return section through which the refrigeration machine oil flows out (55) is provided, and in the upper part of the tank body (51), mainly the gas phase component and the liquid phase component are centrifuged, while the tank body (51) On the lower side, the liquid phase refrigerant and the refrigeration oil are mainly separated by specific gravity. Above the liquid phase refrigerant outflow part (54) and the oil return part (55), the liquid phase refrigerant outflow part ( 54) and an oil return portion (55) are provided so as to cover the inflow suppression member (56), and the inflow suppression member (56) decelerates the refrigerant flowing so as to turn in the tank body (51). A deceleration means (56a) is provided .
[0010]
Thereby, the gas-liquid gas-liquid separator which can isolate | separate a gaseous-phase refrigerant | coolant, a liquid phase refrigerant | coolant, and refrigerator oil which has a novel structure different from the past can be obtained.
Further, an inflow suppression member (56) is provided on the upper side of the liquid phase refrigerant outflow portion (54) and the oil return portion (55) so as to cover the liquid phase refrigerant outflow portion (54) and the oil return portion (55). Thus, the refrigerant that has flowed into the tank body (51) can be prevented from flowing directly into the liquid-phase refrigerant outflow portion (54) and the oil return portion (55), and accumulated in the gas-liquid separator. Since the liquid level of the liquid phase refrigerant can be further stabilized, the liquid phase refrigerant and the refrigerating machine oil can be reliably separated by specific gravity.
In addition, by providing the inflow suppressing member (56) with a speed reduction means (56a) for decelerating the refrigerant flowing so as to turn in the tank body (51), the tank cross-sectional area is changed to the part having a large tank cross-sectional area. Since the swirling speed of the flowing refrigerant can be reliably reduced, the liquid level of the liquid phase refrigerant accumulated in the gas-liquid separator can be further stabilized, and the specific gravity of the liquid phase refrigerant and the refrigerating machine oil can be reliably ensured. Can be separated.
[0011]
In the invention according to claim 2, the tank cross-sectional area (S1) in the portion of the tank body (51) where the liquid-phase refrigerant outflow portion (54) is provided is the inflow portion (52) of the tank body (51). It is characterized by being larger than the tank cross-sectional area (S2) at the site where the is provided.
[0012]
As a result, the refrigerant that has flowed from the portion having the small tank cross-sectional area into the portion having the large tank cross-sectional area reduces the swirling speed, so that the liquid level of the liquid-phase refrigerant accumulated in the gas-liquid separator can be stabilized. .
[0013]
Therefore, the liquid phase refrigerant and the refrigerating machine oil can be reliably separated by specific gravity, so that the liquid phase refrigerant can be stably supplied to the evaporator (30), and the amount of enclosed refrigerant can be reduced. As a result, the manufacturing cost of the ejector cycle can be reduced.
[0015]
Thereby, since the liquid level of the liquid-phase refrigerant accumulated in the gas-liquid separator can be further stabilized, specific gravity separation of the liquid-phase refrigerant and the refrigerating machine oil can be ensured.
[0018]
If the density of the liquid refrigerant is smaller than that of the refrigerating machine oil, the liquid refrigerant outlet portion (54) is positioned above the oil return portion (55) as in the third aspect of the invention. Is desirable.
[0019]
Incidentally, when refrigeration oil having a density smaller than that of the liquid-phase refrigerant is employed, it is desirable to position the oil return part (55) above the liquid-phase refrigerant outflow part (54).
[0020]
In invention of Claim 4 , the heat radiator (20) which cools the high voltage | pressure refrigerant | coolant compressed with the compressor (10), the evaporator (30) which evaporates a low voltage | pressure refrigerant | coolant, and a heat radiator (20) The pressure energy of the refrigerant flowing out from the nozzle is converted into velocity energy, and the velocity energy is converted into pressure energy while mixing the refrigerant that is decompressed and expanded, and the refrigerant injected from the nozzle and the refrigerant sucked from the evaporator (30). And an ejector (40) having a booster for increasing the pressure of the refrigerant, and separating the refrigerant flowing out of the ejector (40) into a gas-phase refrigerant and a liquid-phase refrigerant to convert the gas-phase refrigerant into the compressor (10) The gas-liquid separator (50) according to any one of claims 1 to 3 , wherein the high-pressure refrigerant is supplied to the suction side and supplies the liquid-phase refrigerant to the evaporator (30) side. Be pressurized to above critical pressure The features.
[0021]
Thereby, an ejector cycle can be operated efficiently.
[0022]
Note that, as in the invention described in claim 5 , the refrigerant may be carbon dioxide.
[0023]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
In this embodiment, the ejector cycle according to the present invention is applied to an air conditioner, and FIG. 1 is a schematic diagram of the ejector cycle according to the present embodiment.
[0025]
The compressor 10 sucks and compresses refrigerant, and the condenser 20 is a high-pressure side heat exchanger that exchanges heat between the refrigerant discharged from the compressor 10 and outdoor air and cools the heat absorbed by the refrigerant. Incidentally, in the present embodiment, Freon (R404) is used as the refrigerant, but it goes without saying that carbon dioxide may be used as the refrigerant.
[0026]
In the case where chlorofluorocarbon is used as the refrigerant, the refrigerant is condensed in the condenser 20, but in the case where carbon dioxide is used as the refrigerant, the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant, and the condensation is performed. Since the refrigerant has a temperature distribution such that the refrigerant temperature decreases from the refrigerant inlet side toward the refrigerant outlet side without condensing the refrigerant in the condenser 20, the condenser 20 functions as a radiator.
[0027]
The evaporator 30 is a low-pressure side heat exchanger that evaporates the liquid phase by evaporating the liquid phase refrigerant by exchanging heat between the air blown into the room and the liquid phase refrigerant, and the ejector 40 decompresses the refrigerant. The nozzle is configured to expand, and includes a pressure increasing unit including a mixing unit and a diffuser that sucks the gas-phase refrigerant evaporated in the evaporator 30 and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10. The pressure reducing means and the pump means are used.
[0028]
The gas-liquid separator 50 is gas-liquid separation means for storing the refrigerant by flowing the refrigerant flowing out from the ejector 40 into the gas-phase refrigerant and the liquid-phase refrigerant and storing the refrigerant. The gas-phase refrigerant outlet is connected to the suction side of the compressor 10, and the liquid-phase refrigerant outlet is connected to the inlet side of the evaporator 30 side.
[0029]
Next, the structure of the gas-liquid separator 50 will be described.
[0030]
FIG. 2 is a schematic diagram of the gas-liquid separator 50. The tank body 51 includes an inflow port 52 that forms an inflow portion into which the refrigerant that has flowed out from the ejector 40 flows in, and a gas that forms an outflow portion in which a gas phase refrigerant flows out. A refrigerant refrigerant container is provided with a phase refrigerant outlet 53, a liquid phase refrigerant outlet 54 forming a liquid refrigerant outlet for flowing out liquid phase refrigerant, and an oil return hole 55 forming an oil return section for discharging refrigerant oil.
[0031]
The liquid-phase refrigerant outlet 54 and the oil return hole 55 are provided below the inlet 52, and the gas-phase refrigerant outlet 53 is provided above the liquid-phase refrigerant outlet 54 and the oil return hole 55. The phase refrigerant outlet 54 is provided above the oil return hole 55.
[0032]
In addition, as shown in FIG. 3, the inflow port 52 is opened toward the tangential direction of the circumferential inner wall of the small diameter part 51b so that the refrigerant flowing into the small diameter part 51b swirls within the small diameter part 51b.
[0033]
Further, the tank cross-sectional area S1 of the large-diameter portion 51a provided with the liquid refrigerant outlet 54 and the oil return hole 55 in the tank body 51 is provided with the inlet 52 in the tank body 51 as shown in FIG. It is larger than the tank cross-sectional area S2 of the small diameter portion 51b.
[0034]
Further, as shown in FIG. 2, the refrigerant flowing into the tank body 51 directly above the liquid phase refrigerant outlet 54 and the oil return hole 55 is directly connected to the liquid phase refrigerant outlet 54 and the oil return hole. A shielding plate 56 is provided as an inflow restraining member that suppresses inflow to the 55 side, and flows on the upper surface side of the shielding plate 56 so as to turn in the tank body 51 as shown in FIG. A speed reducing blade 56a as a speed reducing means for decelerating the refrigerant is integrally formed.
[0035]
The tank main body 51 is a material excellent in workability, and in this embodiment, an aluminum alloy is adopted.
[0036]
Next, operational effects of the gas-liquid separator 50 according to this embodiment will be described.
[0037]
The refrigerant that has flowed into the tank body 51 from the inflow port 52 is subjected to centrifugal separation of the gas phase component and the liquid phase component mainly at the upper side of the tank body 51, that is, the small diameter portion 51b. The liquid phase refrigerant and the refrigeration oil are mainly separated by specific gravity at the large diameter portion 51a.
[0038]
Here, the centrifugal separation refers to the centrifugal force acting on the gas phase component (gas phase refrigerant) and the centrifugal force acting on the liquid phase component (liquid phase refrigerant and refrigeration oil) by rotating the refrigerant containing the refrigerator oil. Separation is based on the difference, and the specific gravity separation means separation using the difference between the gravity acting on the liquid-phase refrigerant and the gravity acting on the refrigerating machine oil.
[0039]
Then, the liquid phase component having a density higher than that of the gas phase component spirals downward along the inner peripheral wall of the tank body 51 at a swirling speed higher than that of the gas phase component, and the gas phase component is gas phase refrigerant. It flows out from the outlet 53 to the compressor 10 side.
[0040]
At this time, since the tank cross-sectional area S1 in the large-diameter portion 51a is larger than the tank cross-sectional area S2 in the small-diameter portion 51b, the refrigerant that has flowed into the large-diameter portion 51a from the small-diameter portion 51b decreases its turning speed. .
[0041]
Therefore, since the liquid level of the liquid phase refrigerant accumulated in the gas-liquid separator 50 can be stabilized, the liquid phase refrigerant and the refrigerating machine oil can be reliably separated by specific gravity. As a result, since the liquid phase refrigerant can be stably supplied to the evaporator 30, the amount of the enclosed refrigerant can be reduced, so that the manufacturing cost of the ejector cycle can be reduced.
[0042]
Further, since the refrigerant that has flowed into the tank body 51 by the shielding plate 56 is surely suppressed from flowing directly into the liquid-phase refrigerant outlet 54 and the oil return hole 55 side, the gas-liquid separator 50 The liquid level of the liquid phase refrigerant accumulated in the inside can be further stabilized, and the liquid phase refrigerant and the refrigerating machine oil can be reliably separated by specific gravity.
[0043]
Further, since the speed reducing blade 56a is provided on the shielding plate 56, the swirling speed of the refrigerant flowing into the large diameter part 51a from the small diameter part 51b can be surely reduced, so that it has accumulated in the gas-liquid separator 50. The liquid level of the liquid phase refrigerant can be further stabilized, and the liquid phase refrigerant and the refrigerating machine oil can be reliably separated by specific gravity.
[0044]
(Other embodiments)
In the above-described embodiment, the present invention is applied to the air conditioner. However, the present invention is not limited to this, and can be applied to a water heater, a refrigerator, and the like.
[0045]
Further, the shape of the shielding plate 56, in particular, the speed reducing blade 56a is not limited to the shape shown in FIG. 4, and may be any shape that can reduce the refrigerant speed.
[0046]
Moreover, in the above-mentioned embodiment, although the cross-sectional area in the tank main body 51 changes in a stepped shape, the present invention is not limited to this, and the tank cross-sectional area S increases toward the lower side. A conical flask-shaped tank main body 51 may be employed so as to increase the turbulence.
[0047]
Further, the refrigerant is not limited to carbon dioxide and chlorofluorocarbon, and may be a hydrocarbon refrigerant, a natural refrigerant such as nitrogen, or a mixed refrigerant.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an ejector cycle according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of a gas-liquid separator according to an embodiment of the present invention.
FIG. 3 is a top view of the gas-liquid separator according to the embodiment of the present invention.
FIG. 4 is a two-side view of a shielding plate according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 50 ... Gas-liquid separator, 51 ... Tank main body, 52 ... Inlet, 53 ... Gas-phase refrigerant outlet 53, 54 ... Liquid-phase refrigerant outlet, 55 ... Oil return hole, 56 ... Shielding plate.

Claims (5)

圧縮機(10)にて圧縮された高圧の冷媒を放冷する放熱器(20)と、
低圧の冷媒を蒸発させる蒸発器(30)、
前記放熱器(20)から流出した冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル、及び前記ノズルから噴射する冷媒と前記蒸発器(30)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部とを有するエジェクタ(40)とを備えるエジェクタサイクルに適用され、
前記エジェクタ(40)から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を前記圧縮機(10)の吸引側に供給し、液相冷媒を前記蒸発器(30)側に供給する気液分離器であって、
前記エジェクタ(40)から流出した冷媒が流入する流入部(52)、気相冷媒を流出させる気相冷媒流出部(53)、液相冷媒を流出させる液相冷媒流出部(54)、及び冷凍機油を流出させるオイル戻し部(55)が設けられたタンク本体(51)を有し、
前記タンク本体(51)の上部側にて、主に気相成分と液相成分とを遠心分離し、一方、前記タンク本体(51)の下部側にて、主に液相冷媒と冷凍機油とを比重分離するように構成され、
前記液相冷媒流出部(54)及び前記オイル戻し部(55)の上方側には、前記液相冷媒流出部(54)及び前記オイル戻し部(55)を覆うように流入抑止部材(56)が設けられており、
前記流入抑止部材(56)には、前記タンク本体(51)内を旋回するように流れる冷媒を減速させる減速手段(56a)が設けられていることを特徴とするエジェクタサイクル用の気液分離器。
A radiator (20) that cools the high-pressure refrigerant compressed by the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant;
While the pressure energy of the refrigerant flowing out of the radiator (20) is converted into velocity energy to decompress and expand the refrigerant, the refrigerant injected from the nozzle and the refrigerant sucked from the evaporator (30) are mixed. Applied to an ejector cycle comprising an ejector (40) having a pressure-increasing part for converting velocity energy into pressure energy to increase the pressure of the refrigerant;
The refrigerant flowing out of the ejector (40) is separated into a gas phase refrigerant and a liquid phase refrigerant, and the gas phase refrigerant is supplied to the suction side of the compressor (10), and the liquid phase refrigerant is supplied to the evaporator (30) side. A gas-liquid separator to be supplied to
The inflow part (52) into which the refrigerant that has flowed out from the ejector (40) flows in, the gas phase refrigerant outflow part (53) through which the gas phase refrigerant flows out, the liquid phase refrigerant outflow part (54) through which the liquid phase refrigerant flows out, and the refrigeration It has a tank body (51) provided with an oil return part (55) through which machine oil flows out,
On the upper side of the tank body (51), mainly the gas phase component and the liquid phase component are centrifuged, while on the lower side of the tank body (51), mainly the liquid phase refrigerant and the refrigerator oil. Is configured to separate specific gravity ,
On the upper side of the liquid-phase refrigerant outflow portion (54) and the oil return portion (55), an inflow suppression member (56) is provided so as to cover the liquid-phase refrigerant outflow portion (54) and the oil return portion (55). Is provided,
A gas-liquid separator for an ejector cycle, wherein the inflow suppression member (56) is provided with a speed reduction means (56a) for decelerating the refrigerant flowing so as to turn in the tank body (51) . .
前記タンク本体(51)のうち前記液相冷媒流出部(54)が設けられた部位におけるタンク断面積(S1)は、前記タンク本体(51)のうち前記流入部(52)が設けられた部位におけるタンク断面積(S2)に比べて大きいことを特徴とする請求項1に記載のエジェクタサイクル用の気液分離器。  The tank cross-sectional area (S1) in the portion of the tank body (51) where the liquid-phase refrigerant outflow portion (54) is provided is the portion of the tank body (51) where the inflow portion (52) is provided. The gas-liquid separator for an ejector cycle according to claim 1, characterized in that it is larger than the tank cross-sectional area (S2). 前記液相冷媒流出部(54)は、前記オイル戻し部(55)より上方側に位置していることを特徴とする請求項1または2に記載のエジェクタサイクル用の気液分離器。The gas-liquid separator for an ejector cycle according to claim 1 or 2 , wherein the liquid-phase refrigerant outflow portion (54) is positioned above the oil return portion (55). 圧縮機(10)にて圧縮された高圧の冷媒を放冷する放熱器(20)と、
低圧の冷媒を蒸発させる蒸発器(30)と、
前記放熱器(20)から流出した冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル、及び前記ノズルから噴射する冷媒と前記蒸発器(30)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部とを有するエジェクタ(40)と、
前記エジェクタ(40)から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を前記圧縮機(10)の吸引側に供給し、液相冷媒を前記蒸発器(30)側に供給する請求項1ないしのいずれか1つに記載の気液分離器(50)とを備え、
前記高圧の冷媒は、冷媒の臨界圧力以上まで加圧されることを特徴とするエジェクタサイクル。
A radiator (20) that cools the high-pressure refrigerant compressed by the compressor (10);
An evaporator (30) for evaporating the low-pressure refrigerant;
While the pressure energy of the refrigerant flowing out of the radiator (20) is converted into velocity energy to decompress and expand the refrigerant, the refrigerant injected from the nozzle and the refrigerant sucked from the evaporator (30) are mixed. An ejector (40) having a boosting unit that converts the velocity energy into pressure energy to boost the pressure of the refrigerant;
The refrigerant flowing out of the ejector (40) is separated into a gas phase refrigerant and a liquid phase refrigerant, and the gas phase refrigerant is supplied to the suction side of the compressor (10), and the liquid phase refrigerant is supplied to the evaporator (30) side. A gas-liquid separator (50) according to any one of claims 1 to 3 , wherein
The ejector cycle, wherein the high-pressure refrigerant is pressurized to a critical pressure or higher of the refrigerant.
前記冷媒は、二酸化炭素であることを特徴とする請求項に記載のエジェクタサイクル。The ejector cycle according to claim 4 , wherein the refrigerant is carbon dioxide.
JP2002076076A 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle Expired - Fee Related JP4147793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076076A JP4147793B2 (en) 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076076A JP4147793B2 (en) 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle

Publications (2)

Publication Number Publication Date
JP2003269824A JP2003269824A (en) 2003-09-25
JP4147793B2 true JP4147793B2 (en) 2008-09-10

Family

ID=29204973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076076A Expired - Fee Related JP4147793B2 (en) 2002-03-19 2002-03-19 Gas-liquid separator for ejector cycle

Country Status (1)

Country Link
JP (1) JP4147793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115204A (en) * 2015-08-14 2015-12-02 浙江大学 Gas-liquid separator capable of controlling lubricating oil circulation volume and control method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1681522B1 (en) * 2003-12-09 2008-09-17 Fujikoki Corporation Gas liquid separator
US6941769B1 (en) * 2004-04-08 2005-09-13 York International Corporation Flash tank economizer refrigeration systems
KR100669289B1 (en) 2004-12-09 2007-01-15 주식회사 대우일렉트로닉스 Accumulator of variable capacity type
JP4929971B2 (en) * 2006-10-18 2012-05-09 ダイキン工業株式会社 Oil separator
JP5004879B2 (en) * 2008-06-20 2012-08-22 三菱電機株式会社 Refrigeration cycle equipment
JP5498715B2 (en) * 2009-02-12 2014-05-21 日冷工業株式会社 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
KR101086021B1 (en) * 2009-04-22 2011-11-22 한국에너지기술연구원 Oil Recovery Equipment
JP6070465B2 (en) * 2013-07-31 2017-02-01 株式会社デンソー Ejector
JP6459235B2 (en) * 2014-06-18 2019-01-30 富士電機株式会社 Gas-liquid separator
CN109357449A (en) * 2018-10-29 2019-02-19 中国科学院理化技术研究所 Gas-liquid separator and refrigeration/heat pump system
CN109974355A (en) * 2019-04-16 2019-07-05 西北工业大学 A kind of gas-liquid separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115204A (en) * 2015-08-14 2015-12-02 浙江大学 Gas-liquid separator capable of controlling lubricating oil circulation volume and control method thereof
CN105115204B (en) * 2015-08-14 2017-08-08 浙江大学 The gas-liquid separator and control method of a kind of controllable lubrication oil circulation amount

Also Published As

Publication number Publication date
JP2003269824A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
JP3322263B1 (en) Ejector cycle, gas-liquid separator used therefor, and water heater and heat management system using this ejector cycle
JP5482767B2 (en) Ejector refrigeration cycle
JP4147793B2 (en) Gas-liquid separator for ejector cycle
US7513128B2 (en) Ejector-type cycle
US6742356B2 (en) Gas-liquid separator for ejector cycle
CN1170860A (en) Dual inlet oil separator for chiller
JP2002130874A (en) Refrigerating cycle device
JP2003329336A (en) Gas-liquid separator for steam-compression type refrigerating cycle and ejector cycle
JP4665856B2 (en) Vortex tube and refrigerant circuit using the same
US6799435B2 (en) Vapor compression refrigeration system
JP2003139098A (en) Ejector
JP2003222445A (en) Gas liquid separator for ejector cycle and oil separator
JP4407094B2 (en) Gas-liquid separator
JP2000097519A (en) Air conditioner and condenser used therefor
JP2008304077A (en) Ejector type refrigerating cycle
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP2002349978A (en) Ejector cycle
JP2008309343A (en) Expansion mechanism and refrigerating apparatus having the same
JP2005233470A (en) Gas-liquid separator
JP2007093121A (en) Gas-liquid separator for refrigerating cycle
JP2000035251A (en) Three layers separator in cooling cycle
JP4333556B2 (en) Gas-liquid separator for ejector cycle
JP2002061966A (en) Air conditioner
JP2003262413A (en) Ejector cycle
US20030209031A1 (en) Vapor compression refrigeration system having ejector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees