JP4146107B2 - Manufacturing method of clean steel - Google Patents

Manufacturing method of clean steel Download PDF

Info

Publication number
JP4146107B2
JP4146107B2 JP2001212576A JP2001212576A JP4146107B2 JP 4146107 B2 JP4146107 B2 JP 4146107B2 JP 2001212576 A JP2001212576 A JP 2001212576A JP 2001212576 A JP2001212576 A JP 2001212576A JP 4146107 B2 JP4146107 B2 JP 4146107B2
Authority
JP
Japan
Prior art keywords
steel
ladle
slag
inclusions
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001212576A
Other languages
Japanese (ja)
Other versions
JP2003034817A (en
Inventor
浩一 坂本
世意 木村
郁生 星川
豊志 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001212576A priority Critical patent/JP4146107B2/en
Publication of JP2003034817A publication Critical patent/JP2003034817A/en
Application granted granted Critical
Publication of JP4146107B2 publication Critical patent/JP4146107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷間伸線性に優れた高強度鋼線、特に極細線タイヤコード用鋼や高強度ばね用鋼の素材として有用な清浄鋼を製造するための有用な方法に関するものである。
【0002】
【従来の技術】
冷間加工によって0.1〜0.5mmに伸線される極細鋼線や高い疲労強度が必要とされるばね用鋼材では、鋼材中に存在する硬質の非金属介在物を極力低減することが必要である。こうした観点から、上記の様な用途に用いられる鋼材としては、上記非金属介在物の存在を極力低減した高清浄鋼が用いられるのが一般的である。
【0003】
鋼材中における硬質の非金属介在物を低減するという観点から、これまでにも様々な技術が提案されている。例えば、特公平6−74484号や同6−74485号には、非金属介在物が冷間加工中に延伸または破壊し易くし、実質的に鋼破断の原因とならない軟質なものに制御するため、非金属介在物の組成および存在率を規定することが示されており、これによって鋼材の冷間加工性および疲労強度を良好にすることが提案されている。
【0004】
しかしながら、非金属介在物の組成を軟質なものに制御しても、実際に冷間加工時の断線や疲労の起点となる介在物は、製造過程で取鍋内に付着した前回チャージのスラグや取鍋耐火物などから不可避的に混入してくるアルミナ系介在物、スピネル系介在物、ジルコン・ジルコニア系介在物、フォルステライト系介在物等の硬質介在物が圧倒的に多く、これらは僅かな存在量であっても断線や疲労の原因となる。
【0005】
事実、冷間伸線時に断線した線材の破断面に観察される介在物は、鋼中に僅かしか存在しないとされる上記硬質介在物が95%以上を占めており、本発明者らにより特にアルミナ系介在物、ジルコン・ジルコニア系介在物がその大半を占めていることが分かった。これに対して、軟質介在物が破断面に観察される割合は、殆ど皆無である。従って、これらの硬質介在物の存在量を極少化することこそが、冷間伸線性に優れた線材を実現する上で極めて重要である。
【0006】
取鍋耐火物などから不可避的に混入してくるアルミナ系介在物を低減するという観点から、例えば特開昭62−203647号、特許第267658号、特開平6−212237号、特公平7−103416号等の様な各種技術も提案されている。これらの技術では、基本的には、非アルミナ系耐火物を内張りした取鍋、タンデッシュおよびノズル等を使用すことによって、アルミナ系介在物の低減を図るものである。また、具体的に使用される非アルミナ系耐火物としては、ジルコン・ジルコニア系の耐火物が使用されている。
【0007】
これら技術は、アルミナ系介在物の低減という側面からすれば、効果的な方法である。しかしながら、取鍋内に付着した前回チャージのスラグを起因とするアルミナの混入は防ぐことができず、取鍋耐火物起源の介在物としては、アルミナ系介在物に代わって硬質のジルコン・ジルコニア系介在物が混入することになるので、非金属介在物低減の為の根本的な解決策とはなり得ない。
【0008】
一方、溶鋼を精錬する段階で使用するスラグの組成を調整することによって、硬質の非金属介在物の低減を図ることも行われている。例えば、特開平6−330147号には、取鍋内二次精錬に際して、CaO,SiO2,CaF2を主成分とし、CaO/SiO2(塩基度):1.2〜2.0およびAl23:0.5〜2.0%に調整したスラグを形成することによって鋼材の高清浄化を図る技術も提案されている。こうした技術では、スラグ塩基度をできるだけ高目に設定すると共に、スラグ中に存在するAl23を低減することによって、非金属介在物へのAl23富化を抑制して、非金属介在物の低融点、高延性化を図るものである。しかしながら、こうした技術においても、取鍋耐火物からの非金属介在物が混入してくる状況下においては、根本的な解決策とはなり得ず、依然として改善の余地がある。
【0009】
【発明が解決しようとする課題】
これまで提案されている各種従来技術では、冷間伸線等の加工性に最も悪影響を及ぼすとされる硬質介在物、即ち製造工程で取鍋内に付着した前回チャージのスラグや耐火物から不可避的に混入してくるアルミナ系介在物、ジルコン・ジルコニア系介在物の様な硬質介在物を完全に排除するには至らず、根本的な解決策にはなっていないのが実状である。
【0010】
本発明はこうした状況の下になされたものであって、その目的は、精錬段階で取鍋耐火物等から不可避的に混入してくる硬質の非金属介在物を極力低減し、伸線時に断線が生じたり、製品使用時に折損することなく疲労強度にも優れた高清浄鋼を製造する為の有用な方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成し得た本発明方法とは、転炉または電気炉で製造された溶鋼を取鍋に受鋼して二次精錬を施し、精錬後の溶鋼を取鍋から排出して連続鋳造した後、該取鍋を前記転炉または電気炉に再び戻して溶鋼を受鋼する工程を1サイクルとする操業を、複数の取鍋を組み合わせて循環使用して、シリコンキルド鋼について連続して複数回繰り返すに際して、この繰り返しが終了するまでは、該シリコンキルド鋼を受鋼する取鍋は、前回のチャージで受鋼する鋼種がシリコンキルド鋼またはリムド鋼のみである様にして操業する点に要旨を有するものである。
【0012】
上記本発明方法において、内張り耐火物がアルミナ系耐火物である取鍋を使用するに際しては、取鍋内表面の付着スラグ中のAl23濃度が70%以下になる様に制御して操業することが好ましい。また取鍋内表面の付着スラグのAl23濃度を70%以下に制御する為の具体的な手段としては、トップスラグ組成を、塩基度(CaO/SiO2):1〜3とすると共に、Al23濃度:10%以下に制御する構成が挙げられる。
【0013】
【発明の実施の形態】
本発明者らは、高清浄鋼中の硬質介在物を極力低減するという観点から、様々な角度から検討した。そして、混入するアルミナ系介在物やジルコニア・ジルコン系介在物の起源は、取鍋に内張りされた耐火物ばかりでなく、スラグと耐火物の反応による生成層が精錬中に剥離・脱落して溶鋼中に混入・懸濁することにもよることを明らかにし、またその個数は取鍋内表面の材質に依存しているとの知見が得られた。
【0014】
上記の様な知見に基づき、硬質の非金属介在物をできるだけ低減する為の具体的手段について、更に検討を進めた。その結果、最も簡便な手段として、転炉または電気炉で製造された溶鋼を取鍋に受鋼して二次精錬を施し、精錬後の溶鋼を取鍋から排出して連続鋳造した後、該取鍋を前記転炉または電気炉に再び戻して溶鋼を受鋼する工程を1サイクルとする操業を行なうに際に、上記の様にして取鍋を専用化すれば、画期的にアルミナ系介在物の個数を低減することができ、その他の断線の原因となるスピネル系、ジルコニア・ジルコン系介在物を極力低減できることを見出し、本発明を完成した。尚、上記精錬の方法については、何ら限定するものではなく、炉外精錬法(LF法等の取鍋精錬法)や真空脱ガスを中心とする循環脱ガス法(RH法)等のいずれをも含むものである。
【0015】
本発明において、取鍋を専用化するとは、例えば或る取鍋が転炉から溶鋼を受鋼した場合に、二次精錬を経て連続鋳造へ溶鋼を排出し、転炉に戻って次チャージの溶鋼を受鋼するサイクルにおいては、使用する取鍋を鋼種毎に専用化することを意味する。即ち、上記の様な操業を行なうに当たっては、複数の取鍋を組み合わせて循環使用して、或る鋼種について連続して複数回繰り返して操業されるのであるが、この繰り返しが終了するまでは、取鍋が受鋼する鋼種を同種であるである様にして操業するものである。
【0016】
また、ここでいう「鋼種」とは、基本的には溶鋼の化学成分によって区別されるものであるが、溶鋼の脱酸状態によっても区別されるべきものであり、脱酸状態が違っても、相反する脱酸を行なわなければ同種の鋼種と扱うことができる。但し、本発明では、その効果が最も発揮される場合として対象とする鋼種をシリコンキルド鋼に限定し、該シリコンキルド鋼を受鋼する取鍋は、前回のチャージで受鋼する鋼種がシリコンキルド鋼またはリムド鋼のみである様にして操業するものである。
【0017】
次に、本発明のより具体的な構成による作用効果について、その完成された経緯に沿って説明する。本発明においては、内張り耐火物がアルミナ系耐火物である取鍋を使用するに際しては、取鍋内表面の付着スラグのAl23濃度を70%以下に制御して操業することが好ましい実施形態である。こうした構成を採用することによって、溶鋼に接する取鍋壁面のスラグをゲーレナイト(Gehlenite)を中心とする組成とすることができ、画期的にアルミナ系介在物の個数を低減でき、その他の断線の原因となるジルコニア系、ジルコン系の介在物を、問題が生じない程度にまで低減できるのである。
【0018】
一般に、取鍋内表面の素材として使用される耐火物は、その耐久性の観点から安定で強固な高融点酸化物が望まれる。しかしながら、硬質介在物の起源は、取鍋耐火物材質であるので、強固な高融点酸化物は鋼の伸線加工性、疲労強度に対しては悪影響を及ぼすことになるので、二律背反の関係にある。そこで、取鍋耐火物の内表面にスラグ反応層を付着させ、取鍋耐火物からの混入を防止すれば良いとする着想に至った。
【0019】
こうした着想に基づき、本発明者らが更に検討したところ、取鍋内表面に付着するスラグ中のAl23濃度を70%以下にするれば、アルミナ系介在物の混入が最低限抑制できることを見出した。また、こうした構成を達成する場合には、取鍋耐火物材質としては非アルミナ系が有利であるが、アルミナ系の耐火物を用いた場合であっても、ジルコン・ジルコニア系の様な非アルミナ質を使用した場合と同様に、無害なスラグを安定して付着させることができればそれほど差異がなくなることも見出した。
【0020】
こうした状況の下で本発明者らが更に検討を加えた結果、次の様な知見が得られた。即ち、アルミナ系耐火物を取鍋の内表面の材質として用い、CaO−SiO2−Al23系の塩基性フラックスを添加してスラグ精錬する場合、取鍋内表面の酸化物組成は、スラグと耐火物の反応によって、使用したスラグと耐火物組成の間を組成変化していくことになる。これは、非アルミナ系の代表的な耐火物であるジルコン・ジルコニア系の場合でも同様である。即ち、ジルコン・ジルコニア系の場合には、スラグ組成との反応層は、アルミナ濃度は低いものの、かなりの程度反応が進んでも高融点組成領域であり、混入・懸濁したときに鋼の伸線加工性、疲労強度に悪影響を及ぼす組成となるのである。
【0021】
一方、アルミナ系耐火物の場合には、スラグ組成が塩基度(CaO/SiO2):0.5〜1.0、Al23濃度:10%以下の場合には、スラグ−耐火物反応層の組成は約1300℃の低融点組成になる。そして、この場合には却って低融点であるが故に、鋼表面に生成した反応層も次の精錬時に溶融、剥離・混入してしまい、これらは無害であるが、精錬中に常に取鍋耐火物材質である高融点のアルミナが溶鋼に曝される結果となり、これら介在物混入源となることが分かった。
【0022】
本発明では、上記の様な事実に鑑み、アルミナ系耐火物を用いると共に、スラグ組成をCaO/SiO2:1〜3、Al23濃度:10%以下として、スラグ−耐火物反応層組成がゲーレナイト(2CaO・SiO2・Al23)を中心とする組成(より好ましくは、ゲーレナイトよりも低アルミナ側を中心とする組成)にすることによって、この反応層の融点を1550℃程度に上げ、これによって次の精錬時に溶融、剥離・混入しないようにすると共に、この組成がジルコン・ジルコニア系耐火物−スラグとの反応層組成よりも、鋼の伸線加工性、疲労強度に悪影響を及ぼさない組成となるのである。即ち、ゲーレナイト組成の酸化物は、曲げ強度が他の酸化物と比べて非常に弱いため、最も無害なのである。
【0023】
また、上記ゲーレナイト化する為の具体的な手段としては、アルミナ系耐火物を主成分とする耐火物を使用した取鍋を用い、取鍋精錬時のトップスラグ(上置きスラグ)の組成を塩基度(CaO/SiO2):1〜3、Al23濃度:10%以下に制御すれば、次チャージの段階で取鍋内表面にAl23が70%以下のスラグ反応層を付着させることができる。
【0024】
但し、上記の様なスラグ制御は、取鍋から溶鋼を取り出すまでに行なわれていれば良く、例えば取鍋精錬時のスラグ組成を塩基度(CaO/SiO2):0.5〜1.0、Al23濃度:10%以下に制御して、スラグ系、脱酸系介在物の組成を制御する精錬を行ない、その精錬終了後溶鋼を取出すまでにCaO含有物質などを添加して、スラグ組成を塩基度(CaO/SiO2):1〜3、Al23濃度:10%以下の範囲に制御して、スラグの取鍋への付着性を高めて、鍋表面にAl23濃度が70%以下であるスラグを付着させることもできる。
【0025】
本発明によれば、取鍋内表面に付着したスラグ中のAl23濃度を一律に70%以下(より好ましくは、50%以下)とすると共に、スラグを安定して取鍋内表面に付着させ、且つそのスラグとアルミナ耐火物と反応した結果生成される層が、剥離等により混入せず、しかも混入しても断線介在物とならない組成とすることによって、鋼の伸線加工性や疲労強度を上げることが可能になったのである。
【0026】
こうした本発明方法によれば、ジルコン・ジルコニア系等の耐火物を溶鋼と接触する材質として使用しないことから、その他の断線原因となるジルコニア系介在物を、問題が生じない程度まで低減できるのである。
【0027】
尚、本発明では、タイヤーコード用鋼や高強度ばね用鋼等に素材として有用な高清浄鋼を想定してなされたものであり、その鋼種については特に限定するものではないが、例えば基本成分としてC:0.4〜1.3%、Si:0.1〜2.5%、Mn:0.2〜1.0%を含有するものが好ましく、更に必要によって他の合金元素としてNi:0.01〜1.0%、Cu:0.01〜1.0%およびCr:0.01〜1.5%よりなる群から選ばれる1種以上を含有するものは、冷間伸線性の高められた好ましい鋼材として挙げることができる。
【0028】
以下本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0029】
【実施例】
実験室レベルで、次の様な実験を行なった。まず、転炉から出鋼される溶鋼を模擬した500kgの溶鋼(成分組成:C:0.8%,Si:0.25%,Mn:0.6%)を溶製し、種々の耐火物内表面を呈する取鍋に受鋼し、各種フラックスを添加して成分調整、電極加熱、アルゴンバブリング行ない、スラグ精錬を実施した。
【0030】
この様にして溶製した溶鋼を、非アルミナ系タンデッシュを介して鋳造し、得られた鋼塊を鋳造、熱間圧延して直径:3〜10mmの線材とした。これら線材中の硬質介在物の個数(20μm以上の介在物の個数)を測定する一方、これを同条件で伸線し、伸線加工性を評価すると共に、疲労強度を測定した。これらの測定方法および評価基準は、下記の通りである。
【0031】
(20μm以上の硬質介在物の個数)
対象となる熱間圧延後の線材1500gを約100g程度毎に切断し、スケールを除去した後、約90℃の温硝酸溶液に入れて鋼を酸に溶解した。この溶液を篩目10μmのフィルターで濾過し、濾紙上に抽出された硬質介在物(アルミナ、ジルコニア、ジルコン)をEPMAで組成分析、個数計測した。これを鋼50g当たりの個数に換算して求めた。
【0032】
(伸線加工性)
伸線加工性の評価は、試験伸線機を用いて実施した。即ち、熱間圧延後の線材(5.5mmφ)を2.5mmφまで一次伸線し、熱処理(空気パテンテェング)し、その後二次伸線して0.8mmφとし、引き続き熱処理(鉛パテンティング)およびブラスめっきを施し、0.15mmφまで湿式伸線し、鋼線10t当たりの断線回数に換算して評価した。
【0033】
(疲労強度)
熱間圧延後の線材(5.5mmφ)を、低温焼鈍(LA)→冷間線引加工(Drawing4.8mmφ)→オイルテンパー[油焼入れと鉛浴(約450℃)焼戻し連続工程]→簡易歪取焼鈍(ブルーイング:約400℃)→ショットピーニング→歪取焼鈍を行った後、試験片として4.8mmφ×650mmのワイヤーを採取し、中村式回転曲げ試験機において、試験応力:公称応力940MPa、回転数:4000〜5000rpm、中止回数:2×107回で行ない、破損した物のうち、介在物折損したものについて、折損率=介在物折損本数/(介在物折損+中止本数)×100(%)で評価した。
【0034】
実施例1
同一の鍋を用い、前チャージに本発明の対象鋼であるシルコンキルド鋼と同一のシリコンキルド鋼(実験No.3、4)、および脱酸剤を投入しないリムド鋼(実験No.5)を処理した場合と、前チャージにアルミキルド鋼(実験No.1)、アルミシリコンキルド鋼(実験No.2)を処理した場合を比較して上記の実験を行なった。
【0035】
その結果を、鍋の基材質、前チャージスラグ塩基度、今回チャージ受鋼前の鍋内表面のアルミナ濃度(付着スラグ中のアルミナ濃度)と共に下記表1に示す。このとき、受鋼前の鍋内表面のアルミナ濃度については、受鋼前に側壁表面(高さ方向の中心部)2箇所、底部中心部表面1箇所から、深さ方向に5mmサンプリングし、各サンプルを粉砕後、蛍光X線分析により測定し、その3点の平均値とした。下記表1から明らかな様に、前チャージに同一鋼種、或は脱酸剤を用いない鋼で取鍋を専用化することによって(実験No.3〜5)、鋼の清浄化が高度に達成されて線材の特性が向上していることが分かる。
【0036】
【表1】

Figure 0004146107
【0037】
実施例2
スラグ塩基度(CaO/SiO2)を1、アルミナ濃度を10%の一定とし、受鋼前最表面のアルミナ濃度と鋼材特性の関係について調査した。その結果を、鍋の基材質、受鋼前の鍋内表面のアルミナ濃度、スラグ塩基度、スラグ中のAl23濃度と共に下記表2に示す。また、この結果に基づいて、鍋内表面のアルミナ濃度と硬質介在物個数の関係を図1に、硬質介在物個数と断線回数の関係を図2に、硬質介在物個数と折損率の関係を図3に夫々示す。
【0038】
これらの結果から明らかなように、受鋼前鍋内表面のアルミナ濃度を70%以下とすることによって(実験No.16〜25)、硬質介在物の個数の低減が達成され(鋼の清浄化が達成され)て線材の特性が向上していることが分かる。
【0039】
【表2】
Figure 0004146107
【0040】
実施例3
受鋼前の鍋内表面のアルミナ濃度を90%の一定の条件で、スラグ中のアルミナ濃度を5%として、スラグ塩基度を変化させた実験を連続して2チャージ(前回チャージ、今回チャージ)行ない、鍋内表面のアルミナ濃度の変化を調査すると共に、2チャージ目(今回チャージ)の材料について、上記の各特性を評価した。その結果を、鍋の基材質、受鋼前の鍋内表面のアルミナ濃度、スラグ塩基度、スラグ中のAl23濃度と共に下記表3に示す。また、この結果に基づいて、スラグ塩基度と1チャージ終了後の鍋内表面のアルミナ濃度の関係を図4に、受鋼前の鍋内表面のアルミナ濃度と硬質介在物個数の関係を図5に、硬質介在物個数と断線回数の関係を図6に、硬質介在物個数と折損率の関係を図7に夫々示す。
【0041】
これらの結果から明らかな様に、スラグ塩基度を1〜3(より好ましくは1〜2)とすることによって、鍋内表面のアルミナ濃度が70%以下となり、鋼材の高度な清浄化が達成されて線材の特性が向上していることが分かる。
【0042】
【表3】
Figure 0004146107
【0043】
実施例4
下記2通りの条件で精錬および鋳造を行ない、得られた線材の特性について上記と同様にして評価した。
【0044】
(本発明)
前チャージの精錬条件を、スラグ塩基度(CaO/SiO2)=0.75、スラグ中のAl23濃度=10%以下として精錬し、その後焼石灰を添加して、スラグ塩基度(CaO/SiO2)=2、スラグ中のAl23濃度=10%以下にした後鋳造し、その後受鋼し、CaO/SiO2=0.75、Al23濃度=10%以下で精錬し、鋳造した。
【0045】
(比較例)
前チャージの精錬条件を、CaO/SiO2=0.75、Al23=10%以下として精錬し、その後焼石灰を添加せずに、鋳造し、その後受鋼し、CaO/SiO2=0.75、Al23=10%以下で精錬し、鋳造した。
【0046】
その結果を、鍋の基材質、受鋼前の鍋内表面のアルミナ濃度、スラグ塩基度、スラグ中のAl23濃度と共に下記表4に示すが、精錬時は低塩基度のスラグを用いても、精錬後のスラグの塩基度を1〜3(より好ましくは1〜2)とすることによって、鋼の高度な清浄化が達成されて線材の特性が向上していることが分かる。
【0047】
【表4】
Figure 0004146107
【0048】
【発明の効果】
本発明は以上の様に構成されており、精錬段階で取鍋耐火物等から不可避的に混入してくる硬質介在物を極力低減し、伸線時に割れが生じたりすることなく、疲労強度にも優れた高清浄鋼を製造する為の有用な方法が実現できた。
【図面の簡単な説明】
【図1】実施例2に基づいて求められた鍋内表面アルミナ濃度と硬質介在物個数の関係を示すグラフである。
【図2】実施例2に基づいて求められた硬質介在物個数と断線回数の関係を示すグラフである。
【図3】実施例2に基づいて求められた硬質介在物個数と折損率の関係を示すグラフである。
【図4】実施例3に基づいて求められたスラグ塩基度と1チャージ終了後の鍋内表面のアルミナ濃度の関係を示すグラフである。
【図5】実施例3に基づいて求められた受鋼前の鍋内表面のアルミナ濃度と硬質介在物個数の関係を示すグラフである。
【図6】実施例3に基づいて求められた硬質介在物個数と断線回数の関係を示すグラフである。
【図7】実施例3に基づいて求められた硬質介在物個数と折損率の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a useful method for producing a high strength steel wire excellent in cold drawability, in particular, a clean steel useful as a raw material for ultra fine wire tire cord steel or high strength spring steel.
[0002]
[Prior art]
In ultra-fine steel wires drawn to 0.1 to 0.5 mm by cold working and spring steel materials that require high fatigue strength, it is possible to reduce hard non-metallic inclusions present in steel materials as much as possible. is necessary. From such a point of view, as a steel material used for the above-described applications, it is common to use highly clean steel in which the presence of the non-metallic inclusions is reduced as much as possible.
[0003]
Various techniques have been proposed so far from the viewpoint of reducing hard non-metallic inclusions in steel materials. For example, in Japanese Patent Publication Nos. 6-74484 and 6-74485, non-metallic inclusions are easily stretched or broken during cold working, and are controlled to be soft so as not to cause steel breakage. It has been shown to define the composition and abundance of non-metallic inclusions, and it has been proposed to improve the cold workability and fatigue strength of steel.
[0004]
However, even if the composition of the non-metallic inclusions is controlled to be soft, the inclusions that are actually the starting point of wire breakage and fatigue during cold working are the slag of the previous charge that has adhered to the ladle during the manufacturing process. Hard inclusions such as alumina inclusions, spinel inclusions, zircon / zirconia inclusions and forsterite inclusions inevitably mixed in from ladle refractories etc. Even the abundance causes disconnection and fatigue.
[0005]
In fact, the inclusions observed on the fractured surface of the wire material that was disconnected during cold drawing accounted for 95% or more of the hard inclusions that are considered to be present in the steel, and the present inventors particularly It was found that alumina inclusions and zircon / zirconia inclusions accounted for the majority. On the other hand, there is almost no rate at which soft inclusions are observed on the fracture surface. Therefore, minimizing the amount of these hard inclusions is extremely important for realizing a wire having excellent cold drawing properties.
[0006]
From the viewpoint of reducing alumina inclusions inevitably mixed in from a ladle refractory, etc., for example, JP-A-62-2203647, JP-A-267658, JP-A-6-212237, JP-B-7-103416. Various technologies such as No. are also proposed. In these techniques, basically, the use of a ladle, a tundish, a nozzle or the like lined with a non-alumina refractory is used to reduce alumina inclusions. Further, as the non-alumina refractories specifically used, zircon / zirconia refractories are used.
[0007]
These techniques are effective methods from the aspect of reducing alumina inclusions. However, mixing of alumina due to the slag of the previous charge adhering to the ladle cannot be prevented, and the inclusions derived from the ladle refractory are hard zircon / zirconia instead of alumina inclusions. Since inclusions are mixed in, it cannot be a fundamental solution for reducing non-metallic inclusions.
[0008]
On the other hand, the reduction of hard non-metallic inclusions has also been attempted by adjusting the composition of slag used at the stage of refining molten steel. For example, in JP-A-6-330147, during secondary refining in a ladle, CaO, SiO 2 and CaF 2 are the main components, CaO / SiO 2 (basicity): 1.2 to 2.0, and Al 2. A technique for achieving high cleaning of steel by forming slag adjusted to O 3 : 0.5 to 2.0% has also been proposed. In such a technique, slag basicity is set as high as possible, and Al 2 O 3 existing in the slag is reduced, thereby suppressing the enrichment of Al 2 O 3 to non-metallic inclusions. The inclusion has a low melting point and high ductility. However, even in such a technique, in the situation where non-metallic inclusions from the ladle refractory are mixed, it cannot be a fundamental solution and still has room for improvement.
[0009]
[Problems to be solved by the invention]
In various conventional technologies proposed so far, it is inevitable from hard inclusions that are said to have the most adverse effect on workability such as cold drawing, that is, slag and refractories of the previous charge that have adhered to the ladle during the manufacturing process. In reality, hard inclusions such as alumina inclusions and zircon / zirconia inclusions that are mixed in are not completely eliminated and are not a fundamental solution.
[0010]
The present invention has been made under such circumstances, and its purpose is to reduce hard non-metallic inclusions inevitably mixed from the ladle refractory etc. in the refining stage as much as possible, and disconnection during wire drawing. It is an object of the present invention to provide a useful method for producing highly clean steel having excellent fatigue strength without causing breakage or breakage during product use.
[0011]
[Means for Solving the Problems]
The method of the present invention that has achieved the above-mentioned object is that the molten steel produced in a converter or electric furnace is received in a ladle and subjected to secondary refining, and the molten steel after refining is discharged from the ladle and continuously cast. After that, the operation in which the ladle is returned to the converter or the electric furnace again to receive the molten steel as one cycle is continuously used for silicon killed steel by combining and using a plurality of ladles. When repeating a plurality of times, the ladle receiving the silicon killed steel is operated so that the steel type received by the previous charge is only silicon killed steel or rimmed steel until the repetition is completed. It has a gist.
[0012]
In the method of the present invention, when using a ladle whose lining refractory is an alumina-based refractory, the operation is controlled so that the Al 2 O 3 concentration in the adhered slag on the inner surface of the ladle becomes 70% or less. It is preferable to do. Moreover, as a concrete means for controlling the Al 2 O 3 concentration of the adhered slag on the ladle inner surface to 70% or less, the top slag composition is set to basicity (CaO / SiO 2 ): 1 to 3 , Al 2 O 3 concentration: A configuration in which the concentration is controlled to 10% or less is mentioned.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors examined from various angles from the viewpoint of reducing hard inclusions in highly clean steel as much as possible. The origin of the mixed alumina inclusions and zirconia / zircon inclusions is not only the refractory lining the ladle, but also the slag and refractory reaction layer is peeled off and dropped during refining. It was clarified that it depends on mixing and suspending in the inside, and the knowledge that the number depends on the material of the inner surface of the ladle.
[0014]
Based on the above findings, further investigations were made on specific means for reducing hard non-metallic inclusions as much as possible. As a result, as the simplest means, the molten steel produced in the converter or electric furnace is received in the ladle and subjected to secondary refining, and the molten steel after refining is discharged from the ladle and continuously cast, When the ladle is returned to the converter or the electric furnace and the operation of receiving the molten steel is performed in one cycle, if the ladle is dedicated as described above, an alumina system is revolutionary. The present inventors have found that the number of inclusions can be reduced and that spinel-type and zirconia-zircon-type inclusions that cause other disconnections can be reduced as much as possible. The above-mentioned refining method is not limited in any way, and any of the refining method outside the furnace (the ladle refining method such as the LF method) and the circulating degassing method (RH method) centering on vacuum degassing can be used. Is also included.
[0015]
In the present invention, the specialization of the ladle means that, for example, when a ladle receives molten steel from a converter, the molten steel is discharged to continuous casting through secondary refining, and returned to the converter to return to the next charge. In the cycle of receiving molten steel, this means that the ladle used is dedicated to each steel type. That is, in performing the operation as described above, a plurality of ladles are used in combination and circulated and repeatedly operated several times continuously for a certain steel type, but until this repetition is completed, The ladle is operated in the same manner as the steel type received by the ladle.
[0016]
In addition, the “steel type” here is basically distinguished by the chemical composition of the molten steel, but it should also be distinguished by the deoxidation state of the molten steel, even if the deoxidation state is different. If the opposite deoxidation is not performed, it can be treated as the same steel type. However, in the present invention, the target steel type is limited to silicon killed steel as the case where the effect is most exerted, and the ladle receiving the silicon killed steel has a silicon killed steel type that receives the steel in the previous charge. It operates as if it were only steel or rimmed steel.
[0017]
Next, the operational effects of the more specific configuration of the present invention will be described along the completed process. In the present invention, when using a ladle whose lining refractory is an alumina refractory, it is preferable to operate by controlling the Al 2 O 3 concentration of the adhered slag on the inner surface of the ladle to 70% or less. It is a form. By adopting such a configuration, the slag on the ladle wall surface in contact with the molten steel can be made to have a composition centered on Gehlenite, and the number of alumina inclusions can be dramatically reduced. The causative zirconia and zircon inclusions can be reduced to such an extent that no problem occurs.
[0018]
Generally, a refractory used as a material for the inner surface of a ladle is desired to be a stable and strong refractory oxide from the viewpoint of durability. However, since the origin of hard inclusions is the ladle refractory material, strong refractory oxides have an adverse effect on the wire drawing workability and fatigue strength of steel. is there. Then, it came to the idea that a slag reaction layer should be made to adhere to the inner surface of a ladle refractory, and mixing from a ladle refractory should be prevented.
[0019]
Based on such an idea, the present inventors further examined, and if the Al 2 O 3 concentration in the slag adhering to the ladle inner surface is 70% or less, the inclusion of alumina inclusions can be minimized. I found. In order to achieve such a configuration, the ladle refractory material is advantageously non-alumina, but even when using an alumina refractory, non-alumina such as zircon / zirconia is used. As with the use of quality, it was found that the difference would be less if harmless slag could be stably deposited.
[0020]
As a result of further studies by the present inventors under such circumstances, the following findings were obtained. That is, when using an alumina-based refractory as a material for the inner surface of the ladle and adding a basic flux of CaO—SiO 2 —Al 2 O 3 and refining slag, the oxide composition on the inner surface of the ladle is: Depending on the reaction between the slag and the refractory, the composition changes between the slag and the refractory composition used. The same applies to the case of a zircon / zirconia type which is a typical non-alumina type refractory. In other words, in the case of zircon / zirconia, the reaction layer with the slag composition has a low alumina concentration, but it is a high melting point composition region even if the reaction proceeds to a considerable extent. This is a composition that adversely affects workability and fatigue strength.
[0021]
On the other hand, in the case of an alumina-based refractory, when the slag composition is basicity (CaO / SiO 2 ): 0.5 to 1.0 and the Al 2 O 3 concentration is 10% or less, the slag-refractory reaction The composition of the layer is a low melting point composition of about 1300 ° C. In this case, since the melting point is low, the reaction layer formed on the steel surface is melted, peeled off and mixed during the next refining, and these are harmless. It was found that the high melting point alumina, which is the material, was exposed to the molten steel, and became a source of inclusions.
[0022]
In the present invention, in view of the facts described above, an alumina-based refractory is used, and the slag composition is CaO / SiO 2 : 1 to 3, Al 2 O 3 concentration is 10% or less, and the slag-refractory reaction layer composition is used. Has a composition centered on gehlenite (2CaO.SiO 2 .Al 2 O 3 ) (more preferably a composition centered on the lower alumina side than gehlenite), so that the melting point of this reaction layer is about 1550 ° C. This prevents melting, peeling, and mixing during the next refining process, and this composition has a negative effect on wire drawing workability and fatigue strength of steel than the reaction layer composition of zirconia and zirconia refractories-slag. The composition does not reach. That is, the oxide of gehlenite composition is the most harmless because its bending strength is very weak compared to other oxides.
[0023]
In addition, as a specific means for the above-mentioned gelenite conversion, a ladle using a refractory mainly composed of an alumina-based refractory is used, and the composition of top slag (top slag) during ladle refining is based on (CaO / SiO 2 ): 1-3, Al 2 O 3 concentration: Controlled to 10% or less, a slag reaction layer with 70% or less of Al 2 O 3 adheres to the surface of the ladle at the next charge stage. Can be made.
[0024]
However, the slag control as described above may be performed until the molten steel is taken out from the ladle. For example, the slag composition at the time of ladle refining is changed to basicity (CaO / SiO 2 ): 0.5 to 1.0. , Al 2 O 3 concentration: Controlled to 10% or less, refining to control the composition of slag and deoxidation inclusions, adding CaO-containing material and the like until the molten steel is taken out after the refining, The slag composition is controlled in the basicity (CaO / SiO 2 ): 1 to 3 and Al 2 O 3 concentration: 10% or less range to enhance the adhesion of slag to the ladle, and Al 2 O on the pan surface 3 Slag having a concentration of 70% or less can be attached.
[0025]
According to the present invention, the concentration of Al 2 O 3 in the slag adhering to the inner surface of the ladle is uniformly 70% or less (more preferably, 50% or less), and the slag is stably placed on the inner surface of the ladle. The layer formed as a result of adhering and reacting with the slag and the alumina refractory does not mix due to peeling or the like, and it does not become a broken inclusion even if mixed, The fatigue strength can be increased.
[0026]
According to such a method of the present invention, since a refractory such as zircon / zirconia is not used as a material that comes into contact with molten steel, other zirconia inclusions that cause disconnection can be reduced to a level that does not cause a problem. .
[0027]
In the present invention, high clean steel useful as a material for tire cord steel, high strength spring steel, etc. is assumed, and the steel type is not particularly limited. C: 0.4 to 1.3%, Si: 0.1 to 2.5%, and Mn: 0.2 to 1.0% are preferable, and Ni: One containing at least one selected from the group consisting of 0.01 to 1.0%, Cu: 0.01 to 1.0% and Cr: 0.01 to 1.5% is cold drawn. It can be mentioned as an improved preferred steel material.
[0028]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature that limits the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are all within the technical scope of the present invention. Is included.
[0029]
【Example】
The following experiment was conducted at the laboratory level. First, 500 kg of molten steel (component composition: C: 0.8%, Si: 0.25%, Mn: 0.6%) simulating the molten steel discharged from the converter is melted to produce various refractories. Steel was received in a ladle having an inner surface, and various fluxes were added to adjust the components, heat the electrode, perform argon bubbling, and perform slag refining.
[0030]
The molten steel thus melted was cast through a non-alumina tundish, and the resulting steel ingot was cast and hot-rolled to obtain a wire having a diameter of 3 to 10 mm. While the number of hard inclusions in these wires (the number of inclusions of 20 μm or more) was measured, this was drawn under the same conditions to evaluate the drawing workability and the fatigue strength. These measurement methods and evaluation criteria are as follows.
[0031]
(Number of hard inclusions of 20 μm or more)
The target 1500 g of the hot-rolled wire rod was cut every about 100 g, the scale was removed, and the steel was dissolved in an acid in a warm nitric acid solution at about 90 ° C. This solution was filtered through a filter having a mesh size of 10 μm, and hard inclusions (alumina, zirconia, zircon) extracted on the filter paper were subjected to composition analysis and number counting with EPMA. This was calculated in terms of the number per 50 g of steel.
[0032]
(Drawing workability)
The drawing workability was evaluated using a test drawing machine. That is, the wire after hot rolling (5.5 mmφ) is first drawn to 2.5 mmφ, heat-treated (air patenting), and then secondarily drawn to 0.8 mmφ, followed by heat treatment (lead patenting) and Brass plating was performed, wet-drawn to 0.15 mmφ, and converted into the number of breaks per 10 t of steel wire and evaluated.
[0033]
(Fatigue strength)
Hot-rolled wire (5.5 mmφ), low temperature annealing (LA) → cold drawing (Drawing 4.8 mmφ) → oil temper [oil quenching and lead bath (about 450 ° C) tempering continuous process] → simple strain After annealing (blueing: about 400 ° C.) → shot peening → distortion annealing, a 4.8 mmφ × 650 mm wire was taken as a test piece, and in a Nakamura type rotary bending tester, test stress: nominal stress 940 MPa , Rotational speed: 4000 to 5000 rpm, Number of cancellations: 2 × 10 7 times, among broken items, broken inclusions, broken rate = inclusion broken number / (inclusion broken + canceled number) × 100 (%).
[0034]
Example 1
Using the same pan, pre-charge the same silicon killed steel (experiment No. 3 and 4) as the target steel of the present invention, and rimmed steel (experiment No. 5) without deoxidizer. The above experiment was performed in comparison with the case where the pre-charge was treated with aluminum killed steel (experiment No. 1) and aluminum silicon killed steel (experiment No. 2).
[0035]
The results are shown in Table 1 below together with the base material of the pan, the previous charge slag basicity, and the alumina concentration (alumina concentration in the adhered slag) on the inner surface of the pan before the current charge receiving steel. At this time, about the alumina concentration of the inner surface of the pan before receiving steel, 5 mm was sampled in the depth direction from two locations on the side wall surface (center in the height direction) and one surface on the bottom center before receiving steel, The sample was pulverized and then measured by fluorescent X-ray analysis to obtain an average value of the three points. As can be seen from Table 1 below, by using a ladle exclusively made of the same steel grade for pre-charging or steel that does not use a deoxidizer (Experiment Nos. 3 to 5), the steel was highly purified. It can be seen that the properties of the wire are improved.
[0036]
[Table 1]
Figure 0004146107
[0037]
Example 2
Slag basicity (CaO / SiO 2 ) was set to 1 and the alumina concentration was kept constant at 10%, and the relationship between the alumina concentration on the outermost surface before receiving steel and the steel material characteristics was investigated. The results are shown in Table 2 below together with the base material of the pan, the alumina concentration on the inner surface of the pan before receiving steel, the slag basicity, and the Al 2 O 3 concentration in the slag. Based on this result, the relationship between the alumina concentration on the inner surface of the pan and the number of hard inclusions is shown in FIG. 1, the relationship between the number of hard inclusions and the number of disconnections is shown in FIG. 2, and the relationship between the number of hard inclusions and the breakage rate is shown. Each is shown in FIG.
[0038]
As is clear from these results, by reducing the alumina concentration on the inner surface of the pan before receiving steel to 70% or less (Experiment No. 16 to 25), a reduction in the number of hard inclusions was achieved (cleaning of steel). It can be seen that the properties of the wire are improved.
[0039]
[Table 2]
Figure 0004146107
[0040]
Example 3
Under the constant condition of 90% alumina on the inner surface of the pan before receiving steel, the alumina concentration in the slag is 5%, and the experiment in which the slag basicity is changed is continuously 2 charges (previous charge, current charge) In addition, the change in the alumina concentration on the inner surface of the pan was investigated, and the above characteristics were evaluated for the material of the second charge (current charge). The results are shown in Table 3 below together with the base material of the pan, the alumina concentration on the inner surface of the pan before receiving steel, the slag basicity, and the Al 2 O 3 concentration in the slag. Based on this result, the relationship between the slag basicity and the alumina concentration on the inner surface of the pan after one charge is shown in FIG. 4, and the relationship between the alumina concentration on the inner surface of the pan before receiving steel and the number of hard inclusions is shown in FIG. FIG. 6 shows the relationship between the number of hard inclusions and the number of disconnections, and FIG. 7 shows the relationship between the number of hard inclusions and the breakage rate.
[0041]
As is apparent from these results, by setting the slag basicity to 1 to 3 (more preferably 1 to 2), the alumina concentration on the inner surface of the pan becomes 70% or less, and a high degree of cleaning of the steel material is achieved. It can be seen that the characteristics of the wire are improved.
[0042]
[Table 3]
Figure 0004146107
[0043]
Example 4
Refining and casting were performed under the following two conditions, and the properties of the obtained wire were evaluated in the same manner as described above.
[0044]
(Invention)
The slag basicity (CaO / SiO 2 ) = 0.75, the Al 2 O 3 concentration in the slag = 10% or less, and then refined with the slag basicity (CaO / SiO 2 ) = 2, Al 2 O 3 concentration in slag = 10% or less, then cast, then steel received, and refined with CaO / SiO 2 = 0.75, Al 2 O 3 concentration = 10% or less And cast.
[0045]
(Comparative example)
Refining conditions for pre-charge are CaO / SiO 2 = 0.75, Al 2 O 3 = 10% or less, then casting without adding calcined lime, and then receiving steel, CaO / SiO 2 = Refined to 0.75, Al 2 O 3 = 10% or less, and cast.
[0046]
The results are shown in Table 4 below together with the base material of the pan, the alumina concentration on the inner surface of the pan before receiving steel, the slag basicity, and the Al 2 O 3 concentration in the slag. However, it can be seen that by setting the basicity of the slag after refining to 1 to 3 (more preferably 1 to 2), the steel is highly purified and the properties of the wire are improved.
[0047]
[Table 4]
Figure 0004146107
[0048]
【The invention's effect】
The present invention is configured as described above, reducing hard inclusions inevitably mixed in from the ladle refractory etc. in the refining stage as much as possible, and without causing cracking during wire drawing, to fatigue strength In addition, a useful method for producing excellent high clean steel was realized.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the surface alumina concentration in a pan and the number of hard inclusions determined based on Example 2. FIG.
FIG. 2 is a graph showing the relationship between the number of hard inclusions determined based on Example 2 and the number of disconnections.
FIG. 3 is a graph showing the relationship between the number of hard inclusions determined based on Example 2 and the breakage rate.
FIG. 4 is a graph showing the relationship between the slag basicity determined based on Example 3 and the alumina concentration on the inner surface of the pan after one charge is completed.
5 is a graph showing the relationship between the alumina concentration on the inner surface of the pan before receiving steel and the number of hard inclusions determined based on Example 3. FIG.
6 is a graph showing the relationship between the number of hard inclusions obtained based on Example 3 and the number of disconnections. FIG.
7 is a graph showing the relationship between the number of hard inclusions determined based on Example 3 and the breakage rate. FIG.

Claims (1)

シリコンキルド清浄鋼の製造方法であって、
転炉または電気炉で製造された溶鋼を内張り耐火物がアルミナ系耐火物である取鍋に受鋼して二次精錬を施し、精錬後の溶鋼を取鍋から排出して連続鋳造した後、該取鍋を前記転炉または電気炉に再び戻して溶鋼を受鋼する工程を1サイクルとする操業を、複数の取鍋を組み合わせて循環使用し、かつ前記サイクルはシリコンキルド鋼からなる鋼種について、またはシリコンキルド鋼とリムド鋼からなる鋼種について連続して複数回繰り返すものであり、シリコンキルド鋼を受鋼する取鍋は、前回のチャージで受鋼する鋼種がシリコンキルド鋼またはリムド鋼のみである様にして操業するとともに、
前記取鍋の壁面にスラグ−耐火物反応層としてゲーレナイト組成の酸化物を形成するように、トップスラグ組成を、塩基度(CaO/SiO2):1〜3、且つ、Al23濃度:10%(質量%の意味)以下に制御することを特徴とするシリコンキルド清浄鋼の製造方法。
A method for producing silicon killed clean steel,
After receiving molten steel produced in a converter or electric furnace into a ladle whose lining refractory is an alumina-based refractory and performing secondary refining, the molten steel after refining is discharged from the ladle and continuously cast. The operation in which the ladle is returned to the converter or the electric furnace and the process of receiving molten steel as one cycle is circulated and used in combination with a plurality of ladles , and the cycle is a steel type made of silicon killed steel. Or, a steel ladle made of silicon killed steel and rimmed steel is repeated several times in succession , and the ladle receiving the silicon killed steel is made only of silicon killed steel or rimmed steel. While operating in a certain way,
The top slag composition has a basicity (CaO / SiO 2 ) of 1 to 3 and an Al 2 O 3 concentration so as to form an oxide of gehlenite composition as a slag-refractory reaction layer on the wall surface of the ladle. A method for producing silicon killed clean steel, which is controlled to 10% (meaning mass%) or less.
JP2001212576A 2001-05-18 2001-07-12 Manufacturing method of clean steel Expired - Fee Related JP4146107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212576A JP4146107B2 (en) 2001-05-18 2001-07-12 Manufacturing method of clean steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-149931 2001-05-18
JP2001149931 2001-05-18
JP2001212576A JP4146107B2 (en) 2001-05-18 2001-07-12 Manufacturing method of clean steel

Publications (2)

Publication Number Publication Date
JP2003034817A JP2003034817A (en) 2003-02-07
JP4146107B2 true JP4146107B2 (en) 2008-09-03

Family

ID=26615356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212576A Expired - Fee Related JP4146107B2 (en) 2001-05-18 2001-07-12 Manufacturing method of clean steel

Country Status (1)

Country Link
JP (1) JP4146107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172218A (en) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd Method of melting low-al steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392111C (en) * 2003-10-27 2008-06-04 宝山钢铁股份有限公司 Method for manufacturing tool die steel plate produced by converter
JP4722772B2 (en) * 2006-06-12 2011-07-13 株式会社神戸製鋼所 Manufacturing method of high cleanliness steel
CN103014220A (en) * 2012-12-26 2013-04-03 安阳钢铁股份有限公司 Method for controlling impurities in high-carbon steel
CN113699303B (en) * 2021-09-02 2022-12-06 广东韶钢松山股份有限公司 Smelting method for steel for automobile suspension spring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172218A (en) * 2011-02-23 2012-09-10 Sumitomo Metal Ind Ltd Method of melting low-al steel

Also Published As

Publication number Publication date
JP2003034817A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
US11118250B2 (en) Fe—Cr—Ni alloy and method for production thereof
CN110205547A (en) A kind of camshaft non-hardened and tempered steel and preparation method thereof
KR101022068B1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatigue characteristics
JP5803824B2 (en) Method of melting carburized bearing steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
JP5137082B2 (en) Steel for machine structure and manufacturing method thereof
JP4146107B2 (en) Manufacturing method of clean steel
JP7260731B2 (en) High purity steel and its refining method
TW201002832A (en) Steel-making method for titanium-containing ultralow carbon steel and method for manufacturing titanium-containing ultralow carbon steel slab
CN113046616B (en) Stainless steel excellent in surface properties and method for producing same
KR100886046B1 (en) Method for producing extremely low carbon steel sheet and extremely low carbon cast piece having excellent surface characteristics, workability and formability
JP2004156116A (en) Thin steel sheet and deoxidation method for molten steel for thin steel sheet
JP2021123773A (en) Ni-Cr-Al-Fe ALLOY HAVING EXCELLENT SURFACE PROPERTIES AND METHOD FOR PRODUCING THE SAME
JP3994456B2 (en) Method for producing steel for wire rods with excellent drawability and cleanliness
JP3533196B2 (en) High fatigue strength spring steel wire and its manufacturing method.
JPH0362769B2 (en)
WO2023062855A1 (en) Nickel alloy having excellent surface properties and manufacturing method thereof
JP4213368B2 (en) High strength wire rod with excellent cold wireability
JP3953626B2 (en) Ferritic stainless steel excellent in drawing workability and manufacturing method thereof
JP6984803B1 (en) Manufacturing method of slabs used as a material for high fatigue strength steel
JP7261345B1 (en) Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method
JP2002105527A (en) Method for producing high cleanliness steel
WO2021256159A1 (en) Method for producing cast slab that serves as material for steel with high fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Ref document number: 4146107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees