JP4145454B2 - Wear-resistant aluminum alloy elongated body and method for producing the same - Google Patents

Wear-resistant aluminum alloy elongated body and method for producing the same Download PDF

Info

Publication number
JP4145454B2
JP4145454B2 JP2000008680A JP2000008680A JP4145454B2 JP 4145454 B2 JP4145454 B2 JP 4145454B2 JP 2000008680 A JP2000008680 A JP 2000008680A JP 2000008680 A JP2000008680 A JP 2000008680A JP 4145454 B2 JP4145454 B2 JP 4145454B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
wear
present
heat treatment
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000008680A
Other languages
Japanese (ja)
Other versions
JP2001200326A (en
Inventor
利哉 池田
由弘 中井
義喜 岸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Sumitomo Electric Industries Ltd
Original Assignee
Toyota Industries Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Sumitomo Electric Industries Ltd filed Critical Toyota Industries Corp
Priority to JP2000008680A priority Critical patent/JP4145454B2/en
Publication of JP2001200326A publication Critical patent/JP2001200326A/en
Application granted granted Critical
Publication of JP4145454B2 publication Critical patent/JP4145454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、機械的特性と冷間加工性に優れる耐摩耗性アルミニウム合金長尺体とその製造方法に関するものであり、特に、冷間加工製品の素材として用いられると有効な耐摩耗性アルミニウム合金長尺体とその製造に関するものである。
【0002】
【従来の技術】
Al―Si系合金の機械的特性に悪影響を与える粗大Si粒が生成せず、微細なSi粒組織を生成する成分の合金が、機械的特性と耐摩耗性を両立させるアルミニウム合金として知られている。しかし、このようなAl−Si系合金であっても、製造工程においてSi粒が大きく成長すると機械的特性が悪化することも知られている。
【0003】
従来、これらのAl−Si系合金は、所望の成分の合金を溶解、鋳造した後、押出加工により製造していた。この方法では、一般に鋳造時にSi粒が大きく晶出するため機械的特性が悪化したり、押出加工が困難であった。
また、従来、耐摩耗性の向上のため、Fe、Mn、Cr等の元素をAl−Si系合金に加えていた。しかし、Fe、Mn、Cr等の添加は、これらの晶析出物の生成を招き、これらの晶析出物が粗大に成長する場合には、粗大Si粒以上に機械的特性に悪影響を与えた。
【0004】
この課題を解決するために提案されたアルミニウム合金とその製造方法として、例えば特開昭64-17834号公報、特公平7-62200号公報に開示された発明がある。先ず、両発明ともSi粒等の晶出物制御のため比較的速い冷却速度を提示している。特公平7-62200号公報によれば、鋳造合金のデンドライト2次枝間隔は10μm以下とあり、これを達成するためには5℃/sec以上の冷却速度が必要である。また、特開昭64-17834号公報には、鋳造合金のデンドライト2次枝間隔は示されていないものの、冷却速度は4℃/sec以上と示されている。すなわち、これまで良好な機械的特性を得るためには、鋳造合金のデンドライト2次枝間隔を10μm以下にするような速い冷却速度が必要であった。更に、特公平7-62200号公報は、Sr添加によるSi粒の微細化が示されている。しかし、Fe、Mn、Cr等の添加により、特公平7-62200号公報の場合と同様に比較的速い冷却速度の場合、Fe、Mn、Cr系の晶析出物は小さくなるが、冷却速度が遅くなった場合、言い換えれば、デンドライト2次枝間隔が大きくなった場合には、凝固時に粗大な化合物として生成し、機械的特性を低下させる原因となった。
【0005】
【発明が解決しようとする課題】
このように、従来提案されたアルミニウム合金と製造方法では、良好な機械的特性を得るために速い冷却速度の確保が必要であり、製造方法としてはホットトップ鋳造機を用いた場合には、速い冷却速度が得られるが、生産性の低い問題があった。また、ホットトップ鋳造機を用いても、速い冷却速度確保のため、鋳造材のサイズも比較的小型のものに限られていた。そのため、鋳造後の鋳造材を直接に、あるいは鋳造材に熱処理を施した後、鍛造用素材として用いていた。また、鋳造組織を有する鍛造用素材の課題として、冷間加工が難しく、鍛造は熱間加工で実施する必要があるなどの問題があった。
【0006】
従って、本願発明は、機械的特性に優れ、また加工性に優れ、特に冷間加工が可能である耐摩耗性に優れたアルミニウム合金長尺体とその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本願発明は、Siを7〜13wt%、Feを0.001〜0.2wt%、MnおよびCrの少なくとも1つを0.001〜0.25wt%、Srを0.003〜0.03wt%、Tiを0.005〜0.03wt%含み、残部がAlおよび不可避不純物であるアルミニウム合金を用い、内部に存在するSi粒の大きさが平均20μm以下であり、かつ、最大のSi粒の大きさが40μm以下であり、更に、結晶組織が熱間圧延組織、あるいは熱間圧延後の熱処理により得られる再結晶組織、あるいは熱間圧延組織と再結晶組織の混合組織からなるアルミニウム合金長尺体とすることで、上記の目的を達成する。本願発明に係わるアルミニウム合金は、更に、Cuを0.001〜5wt%含んでもよい。また、Mgを0.001〜1wt%含んでもよい。
【0008】
更に、本願発明に係わるアルミニウム合金を溶解し、連続鋳造により鋳塊を作製し、その後350℃〜520℃の温度範囲で加工度40%以上の熱間圧延を施すことによりアルミニウム合金長尺体を得ることができる。
なお、上記アルミニウム合金の連続鋳造時の溶湯中に存在する水素量は、0.2cc/100gAl以下であり、鋳造されたアルミニウム合金のデンドライト2次枝間隔は、50μm以下である。
本願発明に係わるアルミニウム合金を連続鋳造し、熱間圧延後、350〜520℃の温度範囲で2〜50hの熱処理を施すことで、機械的特性と冷間加工性に優れる耐摩耗性アルミニウム合金長尺体を得ることができる。
【0009】
【発明の実施の形態】
以下に、本願発明のアルミニウム合金長尺体を得るための製造方法を述べる。本願発明に係わるアルミニウム合金において、Siは機械的特性と耐摩耗性に関連する添加元素であり、非平衡状態の凝固において、共晶点の拡大が認められる。本願発明の提示するアルミニウム合金の製造方法を適用することにより、Siが13wt%以下であれば、粗大なSi初晶粒が認められないことから、機械的特性及び耐摩耗性の点から、13wt%をSi添加量の上限とする。一方、Si添加量が少ないとアルミニウム合金初晶(α相)が大きくなり、アルミニウム合金初晶域にはSi粒がないため、機械的特性と耐摩耗性が低下する。このため、本願発明に係わるアルミニウム合金は、α相が機械的特性と耐摩耗性に影響を与えないSi添加量として、7wt%以上とする。
【0010】
更に、アルミニウム合金にFeを添加すると、他の添加元素Si、Mn、Cu等とFe系化合物を形成する。凝固時に生じる粗大なFe系化合物の晶析出物は、機械的特性に悪影響を与える。そこで、本願発明に係わるアルミニウム合金は、Fe系化合物による耐摩耗性向上よりも、粗大なFe系化合物の晶析出を抑制することが機械的性質の低下を防ぐため必要であることから、Feの添加量の上限を0.2wt%とする。Feの添加量の下限値は、インゴットの不純物レベルの0.001wt%でよい。
【0011】
アルミニウム合金にMnを添加すると、Mnはアルミニウム合金の他の添加元素、主としてFeと化合物を形成する。FeとMnの化合物は粗大であると機械的性質を劣化させるが、Al-Fe系やAl-Fe-Si系化合物よりも概して機械的性質に与える影響が小さい。このため、本願発明に係わるアルミニウム合金のMnの添加量は、上限として0.25wt%まで許容できる。
【0012】
アルミニウム合金にCrを添加すると、Crは概略Mnと同様の効果をもたらす。本願発明に係わるアルミニウム合金のCrの添加量は、Mnと同様に0.25wt%まで許容できる。なお、本願発明に係わるアルミニウム合金にMnおよびCrを含む場合、MnおよびCrの合計で、上限として0.25wt%まで許容できる。
【0013】
アルミニウム合金にSrを添加すると、Si粒を微細に晶出させることができる。しかし、本願発明に係わるアルミニウム合金において、0.003wt%未満のSr添加量では効果がなく、0.03wt%より多く添加すると溶湯の水素ガス吸収が激しくなり、脱ガスが難しくなると同時に、熱処理時にブリスターが発生しやすくなる問題が生じるため、Srの添加量の上限は0.03wt%とする。
【0014】
アルミニウム合金にTiを添加すると、α相を微細に生成させることができる。本願発明に係わるアルミニウム合金において、Tiを添加する方法としては、母合金、Ti-Bワイヤを用いる。α相の微細化のためには、0.003wt%以上、必要である。ただし、0.03wt%を越えてTi添加しても添加の効果が小さいため、Ti添加の上限は0.03wt%でよい。
【0015】
アルミニウム合金における添加元素Cuは、耐摩耗性と機械的特性、特に強度に影響を与える。Cuの添加量の増加に伴い、固溶体強化、析出強化により耐摩耗性、強度が向上する。しかし、Cuを本願発明に係わるアルミニウム合金に添加すると他の添加元素と複雑な化合物を形成する。特に、鋳造時に生成するAl-Cu系やAl-Fe-Mn-Cu系化合物は、本願発明の製造法では、5wt%より多く添加すると粗大に晶析出し、機械的性質及び冷間加工性を低下させるため、Cu添加の上限値は5wt%である。一方、下限値についてはインゴットの不純物レベルの0.001wt%とする。添加元素Cuは所定の機械的特性、特に強度を得るために、必要に応じて添加する。
【0016】
本願発明に係わるアルミニウム合金において、Mgを添加すると、α相の微細化効果があるが、更に、Tiの添加によるα相微細化効果も助長する。このため、Cuの添加に比較して、Mg添加による強度向上の効果が大きい。ただし、1wt%より多く添加すると脆化挙動を示し、冷間加工性が低下するため、Mg添加の上限値は1wt%とする。一方、下限値は、不純物レベルの0.001%とする。
本願発明に係わるアルミニウム合金において、上記の添加元素の他に不可避不純物が含まれることは構わない。
なお、Cu添加量(wt%)およびMg添加量(wt%)に対する、T6熱処理後の強度σb(N/mm2)の関係を次式で示す。
【0017】
σb(N/mm2)=180(±60)+50×Cu(wt%)+Mg(wt%)×(110+60/Mg(wt%))
【0018】
更に、本願発明のアルミニウム合金長尺体は、上記のアルミニウム合金の成分とともに、組織に特徴がある。すなわち、本願発明のアルミニウム合金長尺体内部に存在するSi粒の大きさは、平均20μm以下であり、かつ、最大のSi粒の大きさを40μmまで許容できる。このように大きなSi粒分布を有しながらも、良好な機械的特性と冷間加工性を維持しているのは、その組織が、熱間圧延組織、あるいは再結晶組織、あるいは熱間圧延組織と再結晶組織の混合組織から形成されているためである。
従来のアルミニウム合金は、鋳造組織が残存しており冷間加工性が悪いが、本願発明のアルミニウム合金長尺体の組織は、熱間圧延組織、あるいは再結晶組織、あるいは熱間圧延組織と再結晶組織の混合組織であり、鋳造組織に比べ、冷間加工性に優れている。
【0019】
上記本願発明に係わるアルミニウム合金を溶解後、鋳造時のアルミニウム合金溶湯中の100g当たりの水素量を0.2cc/100gAl以下にすることが好ましい。これは、アルミニウム合金溶湯中に0.2cc/100gAl以上の水素を含むとアルミニウム合金の機械的特性や冷間加工性の低下、また、ブリスターの発生等の問題が生じやすくなるためである。
【0020】
また、本願発明に係わるアルミニウム合金の鋳造温度は、650℃〜690℃の温度範囲が望ましい。その後の凝固の操作は、鋳造材の最も冷却の遅い部分のデンドライト2次枝間隔が、50μm以下となる冷却速度で行う。その理由は、これより大きいデンドライト2次枝間隔であると、熱間圧延終了後に最大粒径が40μmより大きなSi粒が残存するとともに、Si粒の平均粒径が20μmより大きくなり、機械的特性及び冷間加工性が低下するからである。Fe、Mn、Cr系晶析出物は、デンドライト2次枝間隔を50μm以下としている限り、それぞれの添加元素量を低く抑えてあるため粗大にはならない。なお、Cu系晶析出物は、Fe、Mn、Cr系晶析出物よりも大きく生成する傾向があるが、30μmを越える粗大な晶析出物は生じない。
【0021】
得られた本願発明に係わるアルミニウム合金の鋳造材は、引き続き、350〜520℃の温度範囲で、加工度40%以上の熱間圧延を実施する。温度を350〜520℃と規定したのは、350℃以下では鋳造材の圧延加工が困難であり、520℃以上では、粒界割れを生じ熱間圧延が困難になるためである。40%以上の加工度としたのは、鋳造組織を鍛錬して、冷間加工性に優れる熱間圧延組織に変えるのに必要な加工度であるからである。
【0022】
本願発明に係わるアルミニウム合金の鋳造から熱間圧延までは、連続して行うことが望ましい。これは、熱間圧延後に熱処理を実施する場合、本願発明に係わるアルミニウム合金では、添加元素のFe、Mn、Cr等の添加量を少なく抑えているため、熱間圧延温度での加熱時間が長くなると、鋳造時に過飽和に固溶した添加元素のFe、Mn、Cr等が析出して、再結晶抑制に寄与しなくなり、粗大結晶粒が生成するからである。上記の熱間圧延温度での加熱時間は、2h以内、望ましくは、10min以内が良い。
【0023】
熱間圧延の終了後、長尺体となったアルミニウム合金は、コイルに巻き取ってもよい、あるいは、定尺に切断して棒材とすることも可能である。
上述の製造方法を具体的に実現する設備には、生産性の高いプロペルチ式連続鋳造圧延設備を用いることができる。しかし、同様の製造条件を達成できる設備であれば、本願発明のアルミニウム合金長尺体の製造が可能である。
【0024】
更に、コイル、棒材となった本願発明のアルミニウム合金長尺体を調質するため、熱間圧延後に熱処理を施す。熱処理は、350〜520℃の温度範囲で、2〜50hの加熱を行う。本願発明における熱間圧延後の熱処理は、次に示す効果がある。
【0025】
第1の効果は、アルミニウム合金長尺体のSi粒の制御ができることである。先にも述べたように、本願発明に係わるアルミニウム合金の鋳造時において、鋳造材中には冷却速度の分布が生じている。鋳造材の冷却速度が遅い箇所と速い箇所では、Si粒の大きさに分布を生じる。しかし、Srを添加して微細化したSi粒は、オストワルド成長と考えられる現象により、熱処理を実施すると小さいSi粒ほど早く成長し、温度、時間依存性が認められるものの、粒径が15〜20μm程度になると成長が鈍化する。本願発明における熱処理は、この現象を利用したもので、本願発明に係わるアルミニウム合金のSi粒の粒度分布を制御することで、良好な機械的特性と冷間加工性を有するアルミニウム合金長尺体を得ることができる。本願発明において、熱処理温度の上限を520℃としたのは、Si粒の成長速度は、熱処理温度が高いほど速いが、520℃より高い熱処理を実施するとSi粒径が平均20μm以上に成長する箇所が生じるため、好ましくないからである。一方、熱処理温度の下限を350℃としたのは、アルミニウム合金長尺体のSi粒は、350℃より低い温度では有効な成長が認められないからである。なお、熱処理時間は、350〜520℃の温度範囲で、熱処理時間2h以上の熱処理であれば有効なSi粒の成長が見られるが、50hを越えた熱処理を行っても、その効果は小さいため、生産性を考慮すれば、熱処理時間として、2〜50hが好ましい。
【0026】
第2の効果は、アルミニウム合金長尺体の均質化の効果があることである。一般に、鋳造後の鋳塊にマクロ偏析があると冷間加工性が悪いが、本願発明は、熱間圧延後に熱処理を行うので、熱間圧延後も残っているマクロ偏析を解消し、冷間加工性を向上させる効果がある。
【0027】
第3の効果は、アルミニウム合金長尺体の結晶組織の結晶粒の制御ができ、良好な機械的特性と冷間加工性を有するアルミニウム合金長尺体を得ることができることである。
熱間圧延後の熱処理によるアルミニウム合金長尺体の再結晶に関しては、十分な加工度が得られている場合、微細な結晶粒が得られ、熱間圧延組織よりも優れた冷間加工性が得られる。しかし、熱処理以前の履歴により部分的な再結晶が生じ、粗大な再結晶粒となる場合もあり、アルミニウム合金長尺体の機械的特性と冷間加工性が低下する。このような場合には、熱処理温度を低くして、アルミニウム合金長尺体の結晶組織を微細な再結晶粒と熱間圧延組織の混合組織に留めておく方が、冷間加工性が良い。
【0028】
以上、本願発明の熱間圧延後の熱処理は、アルミニウム合金長尺体のSi粒の制御、長尺体の均質化及び結晶組織の再結晶の制御を基に検討しているものであるが、最優先項目として、Si粒の制御を主として実施する。
【0029】
得られた耐摩耗性アルミニウム合金長尺体は、機械的特性、冷間加工性に優れ、例えば、鍛造用素材として用いられ、冷間鍛造加工も可能である。
以下、実施例により本願発明をより詳細に説明する。
【0030】
【実施例】
表1に本願発明材および比較材のアルミニウム合金のSi、Fe、Mn、Crの基本的な組成を示す。本願発明のアルミニウム合金長尺体と比較材は、いずれもプロペルチ連続鋳造圧延法により作製した。連続鋳造機で作製される鋳造材の断面積は3500mm2で、溶湯の鋳造機への鋳湯温度は650〜690℃とした。連続鋳造機で作製された鋳造材は、凝固完了後5min以内に420℃で熱間圧延して、直径30mmの長尺体とし、この長尺体を直径1.7mのコイルとした。このときの加工度は、減面率で80%である。続いて、長尺体をコイルの状態で450℃×15hの熱処理を施した後、長尺体の表面切削と伸直、切断を実施して、直径28mmの丸棒した。比較材も同様の製法で製造した。
【0031】
本願発明材および比較材と同一の成分のアルミニウム合金を縦型連続鋳造機により鋳造し、従来材とした。縦型連続鋳造機では、鋳造材のコイル化が不可能であるため、鋳造後、鋳造材を定尺に切断した。鋳造材の断面の直径は、30mmであり、鋳造後、450℃、13hの熱処理を施した後、鋳造材を表面切削して、直径28mmの丸棒とした。
【0032】
本願発明材、比較材および従来材の機械的強度(疲労強度)は、得られた直径28mmの棒材からダンベル試験片(平行部の直径8mm、ゲージ長(GL)=10mm)を作製し、完全両振りで、疲労試験によりS−N曲線を求めた後、105回の応力値で比較した。
冷間加工性は、直径の2倍の高さを有する円柱試験片を軸方向に圧縮し、割れが発生するまでのすえ込み率で評価した。
耐摩耗性は、ピン/ディスク式の試験機を用い、毎分600回転で回転するSUJ2製ディスクに、直径28mmの本願発明品と従来製法による試料(ピン)を490Nの力で押し当て300h経過後の摩耗重量減を測定した。
【0033】
以下、表1の組成において、Ti、Srを添加した添加元素の効果を説明する。
表1に示すSi、Fe、Mn、Crの組成のアルミニウム合金に、Srを0.02wt%添加し、Tiを0.001、0.003、0.005、0.01、0.02、0.03、0.04wt%と添加量を変化させた試料を作製し、従来製法による試料と疲労強度と耐摩耗性を比較した。本願発明材のTi添加によるα相の微細化は、0.003wt%で既に効果が確認でき、0.02wt%でほぼ効果が飽和した。
Ti添加に関しては、本願発明の比較的遅い冷却速度の鋳造、凝固を許容するため重要な役割を果たす。特にTi添加はα相の大きさに与える影響が大きい。縦型連続鋳造機の様に比較的速い冷却速度が達成できる場合、鋳造材の組織は、柱状晶となり柱状晶は微細なデンドライト組織で形成される。しかし、本願発明のように遅い冷却速度を許容する場合、柱状晶とともに等軸晶が形成される。等軸晶の内部もデンドライトで形成されるが、冷却速度が遅い場合、等軸晶が大きく成長して、α相の面積が増加する。言い換えれば、等軸晶間に形成される共晶域の間隔が大きくなる。Tiの添加は、等軸晶の数を増加させて、α相の面積を減少させ、等軸晶間に形成される共晶域の間隔が小さくなると考えられる。
一方、耐摩耗性に関しては、Tiを0.003wt%添加した試料は、耐摩耗性が従来製法に比較して低下したが、0.005wt%以上の試料では、従来製法に対して差違が認められなかった。低下の原因を調査したところ、凝着摩耗が確認された。これはα相の面積が大きいため、ディスク材と部分的な焼き付きを起こしたためと考えられる。
疲労強度に関しては、Tiが0.04wt%の試料で従来材に比較して低下が認められ、破断面にはAl-Ti系の粗大な化合物が確認された。本願発明では、比較的遅い冷却速度を許容するため、Tiを0.04wt%以上添加するとAl-Ti系の粗大な晶析出物を生じ、疲労強度が低下すると考えられる。
【0034】
Sr添加に関しては、表1に示すSi、Fe、Mn、Crの組成のアルミニウム合金にTiを0.015wt%添加し、Srを0.002、0.003、0.005、0.007、0.01、0.03、0.04wt%と添加量を変化させた試料を作製し、疲労強度、耐摩耗性を評価した。Srが0.003wt%より少ない場合、同一の組成の従来材に比べて、疲労強度と耐摩耗性の低下が観察された。
疲労破断面の観察を実施したところ、破面に粗大Si粒が確認され、鋳造後の鋳造材にも同様な粗大に成長したSi粒が認められることから、粗大Si粒が悪影響を与えたためと考えられる。
耐摩耗性に関しては、低下の原因がはっきりとしないが、粗大なSi粒が欠落し、研磨剤として寄与した可能性が考えられる。鋳造材の断面観察からSr添加の上限に関しては、0.007wt%でSi粒の微細化効果が飽和すると考えられる。
ただし、Srは溶解炉で保持すると酸化消失するため、損失を考慮し、多めに入れておく必要がある。しかし、Srを0.03wt%より多く添加すると溶湯のH2ガス吸収が大きくなり、鋳造時に鋳造割れが生じやすくなり、また、熱処理時にブリスターが生成しやすくなるため、上限は0.03wt%とするのがよいことがわかった。
【0035】
また、表2のSi、Fe、Mn、Crの組成のアルミニウム合金に、Srを0.01wt%、Tiを0.018wt%添加して、上述の工程で製造した本願発明材と比較材の耐摩耗性、疲労強度、冷間加工性を比較した結果を示す。
本願発明材は、従来製法材と同等の耐摩耗性、疲労強度を有しながら、冷間加工性に優れていることがわかった。
【0036】
また、表2に鋳造材のDAS測定値(デンドライト2次枝間隔)とアルミニウム合金長尺体の平均Si粒径、最大Si粒径を示す。本願発明材と比較材を比較すれば、Si粒を制御する本願発明材において、耐摩耗性、疲労強度および冷間加工性が優れていることがわかった。
【0037】
同様に、表3のSi、Fe、Mn、Crの組成のアルミニウム合金に、Srを0.01wt%、Tiを0.018wt%添加して、本願発明材をプロペルチ式連続鋳造圧延機にて製造する際に、鋳造機の冷却水を絞り、鋳造時の冷却速度を小さくして作製した場合の本願発明材と比較材の疲労強度と冷間加工性の試験結果を示す。表3には併せて、鋳造材のDAS測定値(デンドライト2次枝間隔)とアルミニウム合金長尺体の平均Si粒径、最大Si粒径を示す。
これより、本願発明に係わるアルミニウム合金においても、最大Si粒径が40μmより大きくなる場合には、疲労強度、冷間加工性等が低下することがわかった。
【0038】
次に、図1に本願発明のアルミニウム合金長尺体の冷間加工性を従来材の冷間加工性と相対的に比較した結果を示す。なお、冷間加工性は、直径の2倍の高さを有する円柱試験片を軸方向に圧縮し、割れが発生するまでのすえ込み率で評価した。
表2の本願発明材のNO.3-2、13-2および21-2の組成にSrを0.01wt%、Tiを0.018wt%添加したアルミニウム合金を用い、プロペルチ鋳造機の鋳込み断面積を900〜3500mm2まで変化させて鋳造材を作製し、その後、熱間圧延を行い、最終的に直径30mmの丸棒を作製することにより、熱間圧延の加工度を変えたアルミニウム合金長尺体を作製した。また、同一組成を用い、縦型連続鋳造機により鋳造し、従来材を作製した。
図1より、本願発明に係わるアルミニウム合金を用い、連続鋳造後、40%以上の加工度の熱間圧延により得られた熱間圧延組織を有する本願発明材が、冷間加工性に優れていることがわかった。
【0039】
なお、上記耐摩耗性アルミニウム長尺体を製造するには、Siを7〜13wt%、Feを0.001〜0.2wt%、MnおよびCrの少なくとも1つを0.25wt%、Srを0.003〜0.03wt%、Tiを0.001〜0.03wt%含み、残部がAlおよび不可避不純物であるアルミニウム合金を溶解し、溶湯中に存在する水素量を0.2cc/100gAl以下にした後、デンドライト2次枝間隔が50μm以下となる様に連続鋳造により鋳塊を作製し、その後、350℃〜520℃の温度範囲で40%以上の熱間圧延が必要であった。圧延温度を350〜520℃としたのは、350℃未満の温度では、40%以上の圧延加工が不可能であり、520℃を越える温度では、粒界割れを生じるため、圧延加工が困難なためである。また、熱間圧延は、鋳造後、連続して行うのが良い。これは、連続鋳造後、熱間圧延温度に2h以上保持すると、熱間圧延終了後に行う熱処理時に再結晶粒が粗大となり、冷間加工性向上の効果が小さくなるためである。
【0040】
次に、熱間圧延終了後の熱処理によるSi粒の制御の効果を図2に示す。図2には、本願発明の試料NO.21-2の組成にSrを0.01wt%、Tiを0.018wt%添加したアルミニウム合金及び同合金においてSrを添加していないアルミニウム合金を用いた、直径30mmの丸棒試料の熱処理による平均Si粒径の断面径方向の分布を示した。
Srを添加していないアルミニウム合金では、破線で示すように熱処理前と熱処理後でSi粒の分布が変わらず、冷却速度の分布が比較的大きい方法で製造すると、試料内部と外部でSi粒の分布を生じることがわかった。
一方、Srを添加した本願発明のアルミニウム合金(試料NO.21-2)では、熱処理前にはSi粒の分布があるが、熱処理を施すことにより、小さいSi粒が成長し、直径約20μmまで成長すると成長速度が低下する。また、Si粒の成長は、熱処理温度350℃から生じることがわかった。ただし、520℃より高い温度で熱処理を実施するとSi粒の成長が20μm以上に成長するので、熱処理温度を520℃以下で実施する必要がある。350℃より低い熱処理温度では、Si粒が成長するために長時間を要し、生産性の面から工業的に適切な処理と言えない。Si粒を均一に分散させるために、必要な熱処理条件は、生産性を考慮して350〜520℃の温度範囲で2〜50hの熱処理時間であることがわかった。
【0041】
本願発明において行われる熱処理は、Si粒の制御を主とする熱処理であるが、同時に熱間圧延組織から再結晶組織へと組織が変化する場合、すなわち、第2の効果が認められた。図3は、熱処理時間に対する冷間加工性の変化を示す図である。図3に示す様に、熱間圧延後の熱処理による再結晶組織の生成により、冷間加工性が向上することがわかった。
しかし、長時間の熱処理は、結晶粒の成長を招き、冷間加工性が低下する。また、熱間加工度が比較的小さい、例えば、加工度40%未満の場合、部分的な再結晶を生じ粗大粒が生じやすく、冷間加工性が低下する。このように結晶粒の成長を伴う場合には、冷間加工性が低下するので、Si粒を制御できる範囲で、短時間、低温で熱処理を実施することにより、熱間圧延組織が維持された方が冷間加工性が良いことがわかった。なお、冷間加工性に低下が認められるのは、アルミニウム長尺体の断面内に、約5〜7mm以上の結晶粒径が認められた段階であることがわかった。
【0042】
また、図4は、熱間圧延前の加熱温度350℃における加熱時間の長さによる冷間加工性の変化を示す図である。熱間圧延組織の再結晶に対し、熱間圧延前の熱履歴は重要であり、図4に示すように、連続鋳造の終了後、1min以内に熱間圧延した際の冷間加工性を100とすると、熱間圧延前の加熱時間が長い場合、すなわち、熱間圧延前の熱履歴が大きい場合、冷間加工性が低下することがわかった。これは、Si粒の成長とは異なり、熱間圧延組織の再結晶は、熱間圧延後の熱処理の初期の段階(通常1h以下)で生じるが、本願発明のアルミニウム合金では、Fe、Mn、Crといった添加元素量を少なく抑えているため、熱間圧延の実施前に350〜520℃の温度域に長時間保持すると、これら元素の析出が進行し、熱間圧延後の熱処理時に再結晶の抑制に有効に寄与しなくなるためと考えられる。熱間圧延前の熱履歴は、熱間圧延が可能な加熱温度域で2h以下の保持、望ましくは10min以下の保持とすることが良いことがわかった。
【0043】
次に、本願発明に係わるアルミニウム合金にCu、Mg元素を添加し、冷間加工性を調査した。表1の試料NO.1-1〜1-24に対して、更にCuを1、2、3、4、5、6wt%、Mgを0.2、0.4、0.8、1.0、1.2wt%をそれぞれ加えた試料、またCuとMgを組み合わせた試料を表1と同様の製法で作製した。また、同一成分の材料を用い、縦型連続鋳造機により鋳造し、従来材を作製した。
Cuを6wt%添加した本願発明材は、Al-Cu系の粗大晶析出物が存在し、従来材に対して冷間加工性が低下した。また、Mgを1wt%加えた本願発明は、従来製法とほぼ同等の冷間加工性となり、1.2wt%加えた試料では冷間加工性が低下した。
一方、その他の本願発明材は、いずれも従来材に比較して冷間加工性が向上し、耐摩耗性、疲労強度共に従来材と同等以上の特性を示した。Mgを添加した本願発明材に関しては、鋳造時にアルミニウム合金初晶(α相)の微細効果が確認された。上記範囲内では、添加量が増えるほど、耐摩耗性が従来材と比較して相対的に優れる結果が得られた。Mgの添加は、アルミニウム合金自体の強度向上とともに、α相微細化による耐摩耗性向上の効果があることがわかった。
Cu、Mgを添加したアルミニウム合金は、時効処理を施すことにより強度を向上させることができる。Cu、Mg添加元素を含む本願発明材を冷間加工性試験において60%圧縮した試料と冷間圧縮加工が不可能であったため、325℃で60%の温間圧縮加工により作製した従来材を、溶体化処理(495℃×3h熱処理後、水冷)した後、時効熱処理(175℃×8h)した。
これらの試料の耐摩耗性、疲労強度を比較すると、本願発明材は、耐摩耗性、疲労強度ともに、同一組成の従来材に比較して優れていることがわかった。
なお、Cu、Mg添加を含むアルミニウム合金の上記溶体化、T6熱処理後の引張強さは、概略次式で表すことができた。
【0044】
σb(N/mm2)=180(±60)+50×Cu(wt%)+Mg(wt%)×(110+60/Mg(wt%))
【0045】
【発明の効果】
以上述べたように、本願発明に係わるアルミニウム合金を連続鋳造し、熱間圧延、熱処理を行うことにより、機械的特性、冷間加工性に優れた耐摩耗性アルミニウム合金長尺体を得ることができる。また、耐摩耗性アルミニウム合金長尺体をコイルの状態で供給が可能であり、さらに、冷間加工性に優れることから、加工する際に素材を加熱することが不要であり、冷間鍛造加工と組み合わせ、素材から部品を連続して作製することができるという工業上顕著な効果を奏するものである。
【0046】
【表1】

Figure 0004145454
【0047】
【表2】
Figure 0004145454
【0048】
【表3】
Figure 0004145454
【0049】
【図面の簡単な説明】
【図1】本願発明のアルミニウム合金長尺体と従来材の加工度に対する冷間加工性の関係を示した図である。
【図2】本願発明のアルミニウム合金とSrを添加していないことを除き同一成分のアルミニウム合金を用いた丸棒試料の熱処理による平均Si粒径の断面径方向の分布を示した図である。
【図3】本願発明のアルミニウム合金長尺体と従来材についての熱間圧延後の熱処理時間に対する冷間加工性の関係を示す図である。
【図4】本願発明のアルミニウム合金長尺体の熱間圧延前の熱履歴による冷間加工性を示す図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a long wear-resistant aluminum alloy having excellent mechanical properties and cold workability, and a method for producing the same. In particular, the wear-resistant aluminum alloy is effective when used as a material for cold work products. The present invention relates to a long body and its manufacture.
[0002]
[Prior art]
Alloys with components that do not produce coarse Si grains that adversely affect the mechanical properties of Al-Si alloys and produce fine Si grain structures are known as aluminum alloys that achieve both mechanical properties and wear resistance. Yes. However, it is also known that even with such an Al-Si alloy, mechanical properties deteriorate when Si grains grow large in the manufacturing process.
[0003]
Conventionally, these Al-Si alloys have been manufactured by melting and casting an alloy having a desired component and then extruding. In this method, generally, Si grains are largely crystallized during casting, so that mechanical properties are deteriorated and extrusion is difficult.
Conventionally, elements such as Fe, Mn, and Cr have been added to the Al-Si alloy to improve wear resistance. However, the addition of Fe, Mn, Cr and the like resulted in the formation of these crystal precipitates, and when these crystal precipitates grew coarsely, the mechanical properties were adversely affected more than the coarse Si grains.
[0004]
As an aluminum alloy proposed for solving this problem and a method for producing the same, there are inventions disclosed in, for example, Japanese Patent Application Laid-Open No. 64-17834 and Japanese Patent Publication No. 7-62200. First, both inventions present a relatively fast cooling rate for controlling crystallized substances such as Si grains. According to Japanese Patent Publication No. 7-62200, the dendrite secondary branch interval of the cast alloy is 10 μm or less, and a cooling rate of 5 ° C./sec or more is necessary to achieve this. Japanese Patent Application Laid-Open No. 64-17834 discloses a dendrite secondary branch interval of a cast alloy, but indicates a cooling rate of 4 ° C./sec or more. That is, in order to obtain good mechanical properties, a high cooling rate is required so that the dendrite secondary branch spacing of the cast alloy is 10 μm or less. Furthermore, Japanese Patent Publication No. 7-62200 discloses the refinement of Si grains by adding Sr. However, due to the addition of Fe, Mn, Cr, etc., in the case of a relatively fast cooling rate as in the case of Japanese Patent Publication No. 7-62200, the Fe, Mn, Cr-based crystal precipitates are reduced, but the cooling rate is reduced. When it slows down, in other words, when the dendrite secondary branch interval becomes large, it forms as a coarse compound at the time of solidification, which causes a decrease in mechanical properties.
[0005]
[Problems to be solved by the invention]
Thus, in the conventionally proposed aluminum alloy and manufacturing method, it is necessary to secure a fast cooling rate in order to obtain good mechanical properties, and as a manufacturing method, when a hot top casting machine is used, it is fast. Although a cooling rate was obtained, there was a problem of low productivity. Even when a hot top casting machine is used, the size of the cast material is limited to a relatively small size in order to secure a high cooling rate. Therefore, the cast material after casting has been used as a forging material directly or after heat treatment of the cast material. Further, as a forging material having a cast structure, cold working is difficult, and forging needs to be performed by hot working.
[0006]
Accordingly, the present invention provides a long aluminum alloy body having excellent mechanical properties, excellent workability, and particularly excellent wear resistance that can be cold worked, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention includes 7 to 13 wt% Si, 0.001 to 0.2 wt% Fe, 0.001 to 0.25 wt% at least one of Mn and Cr, 0.003 to 0.03 wt% Sr, 0.005 to 0.03 wt% Ti, The balance is Al and an aluminum alloy that is an inevitable impurity, the average size of Si grains existing inside is 20 μm or less, the maximum size of Si grains is 40 μm or less, and the crystal structure is Cold rolled structure, or Obtained by heat treatment after hot rolling The above object is achieved by using a recrystallized structure or an aluminum alloy long body composed of a mixed structure of a hot rolled structure and a recrystallized structure. The aluminum alloy according to the present invention may further contain 0.001 to 5 wt% of Cu. Moreover, you may contain 0.001-1 wt% of Mg.
[0008]
Further, the aluminum alloy according to the present invention is melted, an ingot is produced by continuous casting, and then hot rolling with a workability of 40% or more in a temperature range of 350 ° C. to 520 ° C. Obtainable.
The amount of hydrogen present in the molten metal during continuous casting of the aluminum alloy is 0.2 cc / 100 gAl or less, and the dendrite secondary branch interval of the cast aluminum alloy is 50 μm or less.
Wear-resistant aluminum alloy with excellent mechanical properties and cold workability by continuous casting of the aluminum alloy according to the present invention, hot rolling, and heat treatment for 2 to 50 hours in a temperature range of 350 to 520 ° C. A scale can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Below, the manufacturing method for obtaining the aluminum alloy elongate body of this invention is described. In the aluminum alloy according to the present invention, Si is an additive element related to mechanical properties and wear resistance, and an expansion of the eutectic point is observed in solidification in a non-equilibrium state. By applying the method for producing an aluminum alloy proposed by the present invention, if Si is 13 wt% or less, coarse Si primary crystal grains are not recognized, so in terms of mechanical properties and wear resistance, 13 wt% % Is the upper limit of Si addition. On the other hand, when the Si addition amount is small, the aluminum alloy primary crystal (α phase) becomes large, and since there are no Si grains in the aluminum alloy primary crystal region, the mechanical properties and wear resistance are lowered. For this reason, in the aluminum alloy according to the present invention, the amount of Si added so that the α phase does not affect the mechanical properties and wear resistance is set to 7 wt% or more.
[0010]
Further, when Fe is added to the aluminum alloy, an Fe-based compound is formed with other additive elements Si, Mn, Cu and the like. Coarse precipitates of Fe-based compounds generated during solidification adversely affect the mechanical properties. Therefore, the aluminum alloy according to the present invention is required to suppress the precipitation of coarse Fe-based compounds to prevent deterioration of mechanical properties rather than to improve the wear resistance by Fe-based compounds. The upper limit of the addition amount is 0.2 wt%. The lower limit of the amount of Fe added may be 0.001 wt% of the ingot impurity level.
[0011]
When Mn is added to the aluminum alloy, Mn forms a compound with other additive elements of the aluminum alloy, mainly Fe. Fe and Mn compounds, which are coarse, deteriorate the mechanical properties, but generally have less influence on mechanical properties than Al-Fe and Al-Fe-Si compounds. For this reason, the upper limit of the Mn addition amount of the aluminum alloy according to the present invention is allowed to be 0.25 wt%.
[0012]
When Cr is added to the aluminum alloy, Cr brings about the same effect as Mn. The addition amount of Cr in the aluminum alloy according to the present invention can be tolerated up to 0.25 wt%, similar to Mn. When the aluminum alloy according to the present invention contains Mn and Cr, the total of Mn and Cr can be allowed up to 0.25 wt%.
[0013]
When Sr is added to the aluminum alloy, Si grains can be crystallized finely. However, in the aluminum alloy according to the present invention, there is no effect if the amount of Sr added is less than 0.003 wt%, and if it is added more than 0.03 wt%, the absorption of hydrogen gas in the molten metal becomes intense and degassing becomes difficult. Since the problem that it is likely to occur occurs, the upper limit of the amount of Sr added is 0.03 wt%.
[0014]
When Ti is added to the aluminum alloy, the α phase can be finely generated. In the aluminum alloy according to the present invention, as a method of adding Ti, a master alloy and a Ti-B wire are used. In order to refine the α phase, 0.003 wt% or more is necessary. However, even if Ti is added over 0.03 wt%, the effect of addition is small, so the upper limit of Ti addition may be 0.03 wt%.
[0015]
The additive element Cu in the aluminum alloy affects the wear resistance and mechanical properties, in particular the strength. As the amount of Cu increases, wear resistance and strength improve due to solid solution strengthening and precipitation strengthening. However, when Cu is added to the aluminum alloy according to the present invention, a complex compound is formed with other additive elements. In particular, Al-Cu-based and Al-Fe-Mn-Cu-based compounds produced during casting are coarsely crystallized when added in an amount of more than 5 wt% in the manufacturing method of the present invention, and exhibit mechanical properties and cold workability. In order to decrease the upper limit, the upper limit of Cu addition is 5 wt%. On the other hand, the lower limit is set to 0.001 wt% of the impurity level of the ingot. The additive element Cu is added as necessary to obtain predetermined mechanical properties, particularly strength.
[0016]
In the aluminum alloy according to the present invention, when Mg is added, there is an effect of refining the α phase, but further, the effect of refining the α phase by adding Ti is also promoted. For this reason, compared with addition of Cu, the effect of strength improvement by Mg addition is large. However, if it is added in an amount of more than 1 wt%, it exhibits embrittlement behavior and cold workability decreases, so the upper limit of Mg addition is 1 wt%. On the other hand, the lower limit is set to 0.001% of the impurity level.
The aluminum alloy according to the present invention may contain inevitable impurities in addition to the above-described additive elements.
In addition, strength σ after T6 heat treatment with respect to Cu addition (wt%) and Mg addition (wt%) b (N / mm 2 ) Is expressed by the following equation.
[0017]
σ b (N / mm 2 ) = 180 (± 60) + 50 × Cu (wt%) + Mg (wt%) × (110 + 60 / Mg (wt%))
[0018]
Further, the long aluminum alloy body of the present invention is characterized by the structure together with the components of the above aluminum alloy. That is, the size of the Si grains existing inside the long aluminum alloy body of the present invention is an average of 20 μm or less, and the maximum Si grain size can be allowed up to 40 μm. While maintaining such a large Si grain distribution, good mechanical properties and cold workability are maintained because the structure is a hot rolled structure, recrystallized structure, or hot rolled structure. This is because it is formed from a mixed structure of the recrystallized structure.
The conventional aluminum alloy has a cast structure remaining and has poor cold workability. However, the structure of the long aluminum alloy of the present invention is a hot rolled structure, a recrystallized structure, or a hot rolled structure. It is a mixed structure of crystal structure and is excellent in cold workability as compared with a cast structure.
[0019]
After melting the aluminum alloy according to the present invention, the amount of hydrogen per 100 g in the molten aluminum alloy during casting is preferably 0.2 cc / 100 g Al or less. This is because if the molten aluminum alloy contains hydrogen of 0.2 cc / 100 g Al or more, problems such as deterioration of mechanical properties and cold workability of the aluminum alloy and generation of blisters are likely to occur.
[0020]
The casting temperature of the aluminum alloy according to the present invention is preferably in the temperature range of 650 ° C to 690 ° C. The subsequent solidification operation is performed at a cooling rate at which the dendrite secondary branch interval in the slowest cooling portion of the cast material is 50 μm or less. The reason for this is that if the dendrite secondary branch spacing is larger than this, Si grains with a maximum grain size of more than 40 μm remain after hot rolling ends, and the average grain size of the Si grains becomes larger than 20 μm, resulting in mechanical properties. This is because the cold workability is lowered. As long as the dendrite secondary branch spacing is 50 μm or less, the Fe, Mn, and Cr-based crystal precipitates do not become coarse because the amount of each additive element is kept low. Although Cu-based crystal precipitates tend to be larger than Fe, Mn, and Cr-based crystal precipitates, coarse crystal precipitates exceeding 30 μm are not generated.
[0021]
The obtained cast aluminum alloy according to the present invention is subsequently subjected to hot rolling at a working degree of 40% or more in a temperature range of 350 to 520 ° C. The reason why the temperature is defined as 350 to 520 ° C. is that rolling of the cast material is difficult at 350 ° C. or less, and when it is 520 ° C. or more, grain boundary cracking occurs and hot rolling becomes difficult. The reason why the workability is 40% or more is that the workability is required to change the cast structure to a hot-rolled structure excellent in cold workability.
[0022]
It is desirable to carry out continuously from the casting of the aluminum alloy according to the present invention to the hot rolling. This is because when the heat treatment is performed after hot rolling, the amount of additive elements such as Fe, Mn, and Cr in the aluminum alloy according to the present invention is reduced, so that the heating time at the hot rolling temperature is long. This is because additive elements such as Fe, Mn, Cr, etc., which are dissolved in supersaturation during casting, precipitate and do not contribute to recrystallization suppression, and coarse crystal grains are generated. The heating time at the above hot rolling temperature is within 2 hours, preferably within 10 minutes.
[0023]
After completion of the hot rolling, the aluminum alloy that has become a long body may be wound around a coil, or may be cut into a fixed length to form a bar.
As a facility that specifically realizes the above-described manufacturing method, a Properti type continuous casting and rolling facility with high productivity can be used. However, if the equipment can achieve the same manufacturing conditions, the aluminum alloy elongated body of the present invention can be manufactured.
[0024]
Furthermore, heat treatment is performed after hot rolling in order to temper the aluminum alloy elongated body of the present invention that has become a coil or bar. The heat treatment is performed in a temperature range of 350 to 520 ° C. for 2 to 50 hours. The heat treatment after hot rolling in the present invention has the following effects.
[0025]
The first effect is that the Si grains of the aluminum alloy long body can be controlled. As described above, at the time of casting the aluminum alloy according to the present invention, a distribution of the cooling rate occurs in the cast material. Distribution occurs in the size of the Si grains at the places where the cooling rate of the cast material is slow and the places where it is fast. However, the Si grain refined by adding Sr grows faster as heat treatment is performed due to the phenomenon thought to be Ostwald growth, and although the temperature and time dependence are recognized, the grain size is 15-20 μm. Growth will slow down to the extent. The heat treatment in the present invention utilizes this phenomenon, and by controlling the particle size distribution of the Si grains of the aluminum alloy according to the present invention, an aluminum alloy long body having good mechanical properties and cold workability can be obtained. Obtainable. In the present invention, the upper limit of the heat treatment temperature is set to 520 ° C. The Si grain growth rate is faster as the heat treatment temperature is higher, but when the heat treatment higher than 520 ° C. is performed, the Si grain size grows to an average of 20 μm or more. This is because it is not preferable. On the other hand, the lower limit of the heat treatment temperature is set to 350 ° C., because the Si grains of the aluminum alloy long body cannot be effectively grown at a temperature lower than 350 ° C. In addition, if the heat treatment time is within the temperature range of 350 to 520 ° C. and the heat treatment time is 2 hours or longer, effective Si grain growth can be seen, but even if heat treatment exceeding 50 hours is performed, the effect is small. In consideration of productivity, the heat treatment time is preferably 2 to 50 hours.
[0026]
The second effect is that there is an effect of homogenizing the long aluminum alloy body. Generally, if there is macrosegregation in the ingot after casting, cold workability is poor, but since the present invention performs heat treatment after hot rolling, the macrosegregation remaining after hot rolling is eliminated, There is an effect of improving workability.
[0027]
The third effect is that the crystal grain of the crystal structure of the aluminum alloy long body can be controlled, and an aluminum alloy long body having good mechanical properties and cold workability can be obtained.
Regarding recrystallization of long aluminum alloy by heat treatment after hot rolling, if sufficient workability is obtained, fine crystal grains are obtained, and cold workability superior to hot rolling structure is obtained. can get. However, partial recrystallization may occur due to the history before the heat treatment, resulting in coarse recrystallized grains, which deteriorates the mechanical properties and cold workability of the long aluminum alloy. In such a case, the cold workability is better when the heat treatment temperature is lowered and the crystal structure of the long aluminum alloy body is kept in a mixed structure of fine recrystallized grains and a hot-rolled structure.
[0028]
As mentioned above, the heat treatment after hot rolling of the present invention is examined based on the control of Si grains of the aluminum alloy long body, the homogenization of the long body, and the control of recrystallization of the crystal structure, As a top priority item, Si grain control is mainly implemented.
[0029]
The obtained wear-resistant aluminum alloy long body is excellent in mechanical properties and cold workability, and is used, for example, as a forging material and can be cold forged.
Hereinafter, the present invention will be described in more detail by way of examples.
[0030]
【Example】
Table 1 shows the basic composition of Si, Fe, Mn, and Cr of the inventive aluminum alloy and the comparative aluminum alloy. Both the aluminum alloy elongated body and the comparative material of the present invention were produced by the Properti continuous casting and rolling method. The cross-sectional area of the cast material produced by the continuous casting machine is 3500mm 2 Thus, the casting temperature of the molten metal to the casting machine was 650 to 690 ° C. The cast material produced by the continuous casting machine was hot-rolled at 420 ° C. within 5 minutes after completion of solidification to form a long body having a diameter of 30 mm, and this long body was formed into a coil having a diameter of 1.7 m. The degree of processing at this time is 80% in terms of area reduction. Subsequently, the long body was heat-treated at 450 ° C. for 15 hours in a coil state, and then the surface of the long body was cut, straightened, and cut to form a round bar having a diameter of 28 mm. The comparative material was also manufactured by the same manufacturing method.
[0031]
An aluminum alloy having the same components as those of the present invention material and the comparative material was cast by a vertical continuous casting machine to obtain a conventional material. In the vertical continuous casting machine, since it is impossible to coil the cast material, the cast material was cut to a regular size after casting. The diameter of the cross section of the cast material was 30 mm. After casting, the cast material was subjected to heat treatment at 450 ° C. for 13 hours, and then the surface of the cast material was cut into a round bar with a diameter of 28 mm.
[0032]
The mechanical strength (fatigue strength) of the invention material of the present invention, the comparative material, and the conventional material is a dumbbell test piece (parallel portion diameter 8 mm, gauge length (GL) = 10 mm) from the obtained bar material having a diameter of 28 mm, After determining the SN curve by fatigue test with full swing, 10 Five Comparison was made by the stress value of the times.
Cold workability was evaluated based on the upsetting rate until a cylindrical test piece having a height twice the diameter was compressed in the axial direction and cracking occurred.
Abrasion resistance was measured using a pin / disk type tester and a SUJ2 disk rotating at 600 revolutions per minute against a 28 mm diameter sample of the present invention and a sample (pin) manufactured by the conventional method with a force of 490 N for 300 hours. Later wear weight loss was measured.
[0033]
Hereinafter, the effect of the additive element to which Ti and Sr are added in the composition of Table 1 will be described.
To the aluminum alloy having the composition of Si, Fe, Mn, and Cr shown in Table 1, 0.02 wt% of Sr was added, and the addition amount was changed to 0.001, 0.003, 0.005, 0.01, 0.02, 0.03, 0.04 wt% of Ti. Samples were prepared, and the fatigue strength and wear resistance were compared with those obtained by the conventional manufacturing method. The effect of refining the α phase by adding Ti in the present invention material was already confirmed at 0.003 wt%, and the effect was almost saturated at 0.02 wt%.
The addition of Ti plays an important role to allow casting and solidification at a relatively slow cooling rate of the present invention. In particular, the addition of Ti has a large effect on the size of the α phase. When a relatively fast cooling rate can be achieved as in a vertical continuous casting machine, the structure of the cast material becomes columnar crystals, and the columnar crystals are formed with a fine dendrite structure. However, when a slow cooling rate is allowed as in the present invention, equiaxed crystals are formed along with columnar crystals. The inside of the equiaxed crystal is also formed by dendrite, but when the cooling rate is slow, the equiaxed crystal grows large and the area of the α phase increases. In other words, the interval between eutectic regions formed between equiaxed crystals is increased. The addition of Ti is considered to increase the number of equiaxed crystals, reduce the area of the α phase, and reduce the interval between eutectic regions formed between equiaxed crystals.
On the other hand, regarding the wear resistance, the sample with 0.003 wt% of Ti decreased in wear resistance compared to the conventional method, but the sample with 0.005 wt% or more showed no difference from the conventional method. It was. When the cause of the decrease was investigated, adhesive wear was confirmed. This is thought to be due to partial seizure with the disk material due to the large area of the α phase.
Regarding the fatigue strength, a decrease in Ti was 0.04 wt% compared to the conventional material, and a coarse Al-Ti compound was confirmed on the fracture surface. In the present invention, in order to allow a relatively slow cooling rate, it is considered that when Ti is added in an amount of 0.04 wt% or more, coarse Al—Ti based crystal precipitates are formed, and the fatigue strength is lowered.
[0034]
Regarding Sr addition, 0.015 wt% of Ti is added to the aluminum alloy having the composition of Si, Fe, Mn, and Cr shown in Table 1, and Sr is added as 0.002, 0.003, 0.005, 0.007, 0.01, 0.03, 0.04 wt%. Samples with different values were prepared, and fatigue strength and wear resistance were evaluated. When Sr was less than 0.003 wt%, a decrease in fatigue strength and wear resistance was observed compared to a conventional material having the same composition.
When the fatigue fracture surface was observed, coarse Si grains were confirmed on the fracture surface, and the same coarsely grown Si grains were found in the cast material after casting. Conceivable.
Regarding the wear resistance, the cause of the decrease is not clear, but it is possible that coarse Si grains were missing and contributed as an abrasive. From the cross-sectional observation of the cast material, regarding the upper limit of Sr addition, it is considered that the effect of Si grain refinement is saturated at 0.007 wt%.
However, since Sr is oxidized and lost when it is held in the melting furnace, it is necessary to add more in consideration of the loss. However, if Sr is added more than 0.03wt%, H 2 It was found that the upper limit should be 0.03 wt% because gas absorption is increased, casting cracks are likely to occur during casting, and blisters are easily formed during heat treatment.
[0035]
In addition, the wear resistance of the present invention material and the comparative material manufactured in the above-mentioned process by adding 0.01 wt% of Sr and 0.018 wt% of Ti to the aluminum alloy having the composition of Si, Fe, Mn, and Cr in Table 2. The results of comparing fatigue strength and cold workability are shown.
It has been found that the present invention material is excellent in cold workability while having wear resistance and fatigue strength equivalent to those of conventional manufacturing materials.
[0036]
Table 2 shows the DAS measurement values (dendritic secondary branch spacing) of the cast material, the average Si particle size, and the maximum Si particle size of the aluminum alloy long body. Comparing the present invention material and the comparative material, it was found that the present invention material for controlling Si grains is excellent in wear resistance, fatigue strength, and cold workability.
[0037]
Similarly, when manufacturing the material of the present invention in a Properti type continuous cast rolling mill by adding 0.01 wt% of Sr and 0.018 wt% of Ti to an aluminum alloy having the composition of Si, Fe, Mn, and Cr in Table 3. Table 3 shows the test results of fatigue strength and cold workability of the inventive material of the present invention and the comparative material when the cooling water of the casting machine is reduced and the cooling rate during casting is reduced. Table 3 also shows the DAS measurement value (dendritic secondary branch interval) of the cast material, the average Si particle size, and the maximum Si particle size of the aluminum alloy long body.
From this, it was found that also in the aluminum alloy according to the present invention, when the maximum Si particle size is larger than 40 μm, the fatigue strength, cold workability and the like are lowered.
[0038]
Next, FIG. 1 shows the result of relatively comparing the cold workability of the long aluminum alloy of the present invention with the cold workability of the conventional material. The cold workability was evaluated by the upsetting rate until a cylindrical test piece having a height twice the diameter was compressed in the axial direction and cracking occurred.
The aluminum alloy with 0.01 wt% Sr and 0.018 wt% Ti added to the composition of Nos. 3-2, 13-2 and 21-2 of the present invention material in Table 2 was used, and the casting cross-sectional area of the Properti casting machine was 900 ~ 3500mm 2 The cast material was produced by varying the thickness of the aluminum alloy, and thereafter, hot rolling was performed, and finally a round bar having a diameter of 30 mm was produced, thereby producing a long aluminum alloy body having a different degree of hot rolling. Further, the same composition was used and cast by a vertical continuous casting machine to produce a conventional material.
From FIG. 1, the material of the present invention having a hot rolled structure obtained by hot rolling with a workability of 40% or more after the continuous casting using the aluminum alloy according to the present invention is excellent in cold workability. I understood it.
[0039]
In order to produce the above wear-resistant aluminum long body, Si is 7 to 13 wt%, Fe is 0.001 to 0.2 wt%, at least one of Mn and Cr is 0.25 wt%, and Sr is 0.003 to 0.03 wt%. After melting aluminum alloy containing 0.001-0.03wt% of Ti and the balance being Al and unavoidable impurities, the amount of hydrogen present in the molten metal is 0.2 cc / 100 g Al or less, and the dendrite secondary branch interval is 50 μm or less Thus, an ingot was produced by continuous casting, and then hot rolling of 40% or more was necessary in a temperature range of 350 ° C to 520 ° C. The rolling temperature is set to 350 to 520 ° C. When the temperature is lower than 350 ° C, 40% or more of the rolling process is impossible, and when the temperature exceeds 520 ° C, grain boundary cracking occurs, so the rolling process is difficult. Because. Moreover, it is good to perform hot rolling continuously after casting. This is because, if the hot rolling temperature is maintained for 2 hours or more after continuous casting, the recrystallized grains become coarse during the heat treatment performed after the hot rolling is completed, and the effect of improving the cold workability is reduced.
[0040]
Next, the effect of Si grain control by heat treatment after the end of hot rolling is shown in FIG. FIG. 2 shows the composition of sample No. 21-2 of the present invention using an aluminum alloy with 0.01 wt% Sr and 0.018 wt% Ti, and an aluminum alloy with no Sr added in the same alloy with a diameter of 30 mm. The distribution of average Si grain size in the cross-sectional diameter direction by heat treatment of the round bar sample was shown.
In an aluminum alloy not containing Sr, as shown by the broken line, the Si grain distribution before and after the heat treatment does not change and the cooling rate distribution is relatively large. It was found to produce a distribution.
On the other hand, in the aluminum alloy of the present invention to which Sr is added (sample No. 21-2), there is a distribution of Si grains before the heat treatment, but by performing the heat treatment, small Si grains grow to a diameter of about 20 μm. When growing, the growth rate decreases. It was also found that Si grain growth occurred at a heat treatment temperature of 350 ° C. However, if heat treatment is performed at a temperature higher than 520 ° C., the growth of Si grains grows to 20 μm or more, so it is necessary to perform the heat treatment at a temperature of 520 ° C. or lower. At a heat treatment temperature lower than 350 ° C., it takes a long time for Si grains to grow, and it cannot be said that the process is industrially appropriate from the viewpoint of productivity. In order to uniformly disperse the Si grains, it was found that the necessary heat treatment condition was a heat treatment time of 2 to 50 hours in a temperature range of 350 to 520 ° C. in consideration of productivity.
[0041]
The heat treatment performed in the present invention is a heat treatment mainly for control of Si grains, but at the same time, when the structure changes from a hot rolled structure to a recrystallized structure, that is, a second effect is recognized. FIG. 3 is a diagram showing changes in cold workability with respect to heat treatment time. As shown in FIG. 3, it was found that the cold workability is improved by the generation of the recrystallized structure by the heat treatment after the hot rolling.
However, long-time heat treatment causes crystal grain growth and cold workability is reduced. Further, when the hot workability is relatively small, for example, less than 40%, the recrystallization is likely to occur and coarse grains are likely to be produced, and the cold workability is lowered. In this way, when accompanied by the growth of crystal grains, the cold workability is reduced, so that the hot rolled structure was maintained by performing heat treatment at a low temperature for a short time within a range in which Si grains can be controlled. It was found that the cold workability was better. In addition, it was found that the decrease in cold workability was observed when a crystal grain size of about 5 to 7 mm or more was observed in the cross section of the long aluminum body.
[0042]
Moreover, FIG. 4 is a figure which shows the change of the cold workability by the length of the heating time in the heating temperature 350 degreeC before hot rolling. The heat history before hot rolling is important for recrystallization of the hot rolled structure. As shown in FIG. 4, the cold workability when hot rolled within 100 minutes after the end of continuous casting is 100%. Then, it was found that when the heating time before hot rolling is long, that is, when the heat history before hot rolling is large, the cold workability deteriorates. This is different from the growth of Si grains, in which recrystallization of the hot rolled structure occurs in the initial stage of heat treatment after hot rolling (usually 1 h or less). In the aluminum alloy of the present invention, Fe, Mn, Since the amount of added elements such as Cr is kept low, precipitation of these elements proceeds when kept in a temperature range of 350 to 520 ° C. for a long time before hot rolling, and recrystallization occurs during heat treatment after hot rolling. This is thought to be because it does not contribute effectively to suppression. It was found that the heat history before hot rolling should be maintained at 2 h or less, preferably 10 min or less in the heating temperature range where hot rolling is possible.
[0043]
Next, Cu and Mg elements were added to the aluminum alloy according to the present invention, and the cold workability was investigated. To samples Nos. 1-1 to 1-24 in Table 1, Cu was added in amounts of 1, 2, 3, 4, 5, 6 wt%, and Mg was added in amounts of 0.2, 0.4, 0.8, 1.0, and 1.2 wt%, respectively. Samples and a combination of Cu and Mg were produced by the same manufacturing method as in Table 1. In addition, conventional materials were produced by casting with a vertical continuous casting machine using materials of the same component.
The invention of the present invention to which 6 wt% of Cu is added has Al—Cu coarse crystal precipitates, and the cold workability is lower than that of the conventional material. In addition, the present invention to which 1 wt% of Mg was added exhibited a cold workability substantially equivalent to that of the conventional production method, and the cold workability was lowered in the sample to which 1.2 wt% was added.
On the other hand, all the other invention materials of the present invention have improved cold workability as compared with the conventional material, and both the wear resistance and the fatigue strength showed the same or better properties than the conventional material. Regarding the present invention material to which Mg was added, the fine effect of the aluminum alloy primary crystal (α phase) was confirmed during casting. Within the above range, as the addition amount increased, a result that the wear resistance was relatively superior as compared with the conventional material was obtained. It has been found that the addition of Mg has the effect of improving the wear resistance due to the α phase refinement as well as improving the strength of the aluminum alloy itself.
Aluminum alloys to which Cu and Mg are added can be improved in strength by aging treatment. Since the material of the present invention containing Cu and Mg added elements was compressed 60% in the cold workability test and the cold compression process was not possible, the conventional material produced by 60% warm compression at 325 ° C After solution treatment (495 ° C. × 3 h after heat treatment, water cooling), aging heat treatment (175 ° C. × 8 h) was performed.
Comparing the wear resistance and fatigue strength of these samples, it was found that the material of the present invention is superior to the conventional material having the same composition in both wear resistance and fatigue strength.
In addition, the tensile strength after the above-mentioned solution treatment of the aluminum alloy containing Cu and Mg addition and T6 heat treatment could be roughly expressed by the following equation.
[0044]
σ b (N / mm 2 ) = 180 (± 60) + 50 × Cu (wt%) + Mg (wt%) × (110 + 60 / Mg (wt%))
[0045]
【The invention's effect】
As described above, by continuously casting the aluminum alloy according to the present invention, hot rolling and heat treatment, it is possible to obtain a wear-resistant aluminum alloy long body excellent in mechanical properties and cold workability. it can. In addition, it is possible to supply a long wear-resistant aluminum alloy in the form of a coil, and since it is excellent in cold workability, it is not necessary to heat the material when processing, cold forging processing In combination with the above, there is an industrially significant effect that parts can be continuously produced from the material.
[0046]
[Table 1]
Figure 0004145454
[0047]
[Table 2]
Figure 0004145454
[0048]
[Table 3]
Figure 0004145454
[0049]
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the relationship between the workability of a long aluminum alloy body of the present invention and the conventional material with respect to the workability.
FIG. 2 is a diagram showing the distribution in the cross-sectional diameter direction of the average Si particle size by heat treatment of a round bar sample using the aluminum alloy of the same component except that the aluminum alloy of the present invention and Sr are not added.
FIG. 3 is a diagram showing the relationship between the cold workability and the heat treatment time after hot rolling for the aluminum alloy elongated body of the present invention and a conventional material.
FIG. 4 is a diagram showing the cold workability of a long aluminum alloy body of the present invention based on the heat history before hot rolling.

Claims (9)

Siを7〜13wt%、Feを0.001〜0.2wt%、MnおよびCrの少なくとも1つを0.001〜0.25wt%、Srを0.003〜0.03wt%、Tiを0.005〜0.03wt%含み、残部がAlおよび不可避不純物であるアルミニウム合金であり、内部に存在するSi粒の大きさが平均20μm以下であり、かつ、最大のSi粒の大きさが40μm以下であり、更に、結晶組織が熱間圧延組織、あるいは熱間圧延後の熱処理により得られる再結晶組織、あるいは前記熱間圧延組織と前記再結晶組織の混合組織からなることを特徴とする耐摩耗性アルミニウム合金長尺体。7 to 13 wt% of Si, 0.001 to 0.2 wt% of Fe, 0.001 to 0.25 wt% of at least one of Mn and Cr, 0.003 to 0.03 wt% of Sr, 0.005 to 0.03 wt% of Ti, the balance being Al and It is an aluminum alloy that is an inevitable impurity, the size of the Si grains existing inside is 20 μm or less on average, the size of the largest Si grain is 40 μm or less, and the crystal structure is a hot rolled structure, Alternatively recrystallized structure obtained by heat treatment after hot rolling, or wear-resistant aluminum alloy elongated body characterized by comprising a mixed structure of the recrystallized structure and the hot rolled structure. 前記アルミニウム合金は、Cuを0.001〜5wt%含むことを特徴とする請求項1に記載の耐摩耗性アルミニウム合金長尺体。  The wear-resistant aluminum alloy elongated body according to claim 1, wherein the aluminum alloy contains 0.001 to 5 wt% of Cu. 前記アルミニウム合金は、Mgを0.001〜1wt%含むことを特徴とする請求項1または2に記載の耐摩耗性アルミニウム合金長尺体。  The wear-resistant aluminum alloy elongated body according to claim 1 or 2, wherein the aluminum alloy contains 0.001 to 1 wt% of Mg. Siを7〜13wt%、Feを0.001〜0.2wt%、MnおよびCrの少なくとも1つを0.001〜0.25wt%、Srを0.003〜0.03wt%、Tiを0.005〜0.03wt%含み、残部がAlおよび不可避不純物であるアルミニウム合金を溶解し、連続鋳造により鋳塊を作製し、その後350℃〜520℃の温度範囲で、加工度40%以上の熱間圧延を施すことを特徴とする耐摩耗性アルミニウム合金長尺体の製造方法。  7 to 13 wt% of Si, 0.001 to 0.2 wt% of Fe, 0.001 to 0.25 wt% of at least one of Mn and Cr, 0.003 to 0.03 wt% of Sr, 0.005 to 0.03 wt% of Ti, the balance being Al and Aluminium that is an inevitable impurity is melted, an ingot is produced by continuous casting, and then subjected to hot rolling at a working degree of 40% or more in a temperature range of 350 ° C. to 520 ° C. A method for producing a long alloy body. 前記アルミニウム合金の連続鋳造によるアルミニウム合金のデンドライト2次枝間隔が50μm以下であることを特徴とする請求項4に記載の耐摩耗性アルミニウム合金長尺体の製造方法。  5. The method for producing a long wear-resistant aluminum alloy according to claim 4, wherein a dendrite secondary branch interval of the aluminum alloy by continuous casting of the aluminum alloy is 50 μm or less. 前記アルミニウム合金の連続鋳造時の溶湯中に存在する水素量が0.2cc/100gAl以下であることを特徴とする請求項4に記載の耐摩耗性アルミニウム合金長尺体の製造方法。  The method for producing a long wear-resistant aluminum alloy according to claim 4, wherein the amount of hydrogen present in the molten metal during continuous casting of the aluminum alloy is 0.2 cc / 100 gAl or less. 前記アルミニウム合金は、Cuを0.001〜5wt%含むことを特徴とする請求項4に記載の耐摩耗性アルミニウム合金長尺体の製造方法。  The said aluminum alloy contains 0.001-5 wt% of Cu, The manufacturing method of the wear-resistant aluminum alloy elongate body of Claim 4 characterized by the above-mentioned. 前記アルミニウム合金は、Mgを0.001〜1wt%含むことを特徴とする請求項4または7に記載の耐摩耗性アルミニウム合金長尺体の製造方法。  The said aluminum alloy contains 0.001-1 wt% of Mg, The manufacturing method of the abrasion-resistant aluminum alloy elongate body of Claim 4 or 7 characterized by the above-mentioned. 前記アルミニウム合金を連続鋳造し、熱間圧延後、350〜520℃の温度範囲で2〜50hの熱処理を施すことを特徴とする請求項4に記載の耐摩耗性アルミニウム合金長尺体の製造方法。  5. The method for producing a long wear-resistant aluminum alloy according to claim 4, wherein the aluminum alloy is continuously cast, and after the hot rolling, heat treatment is performed at a temperature range of 350 to 520 ° C. for 2 to 50 hours. .
JP2000008680A 2000-01-18 2000-01-18 Wear-resistant aluminum alloy elongated body and method for producing the same Expired - Fee Related JP4145454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008680A JP4145454B2 (en) 2000-01-18 2000-01-18 Wear-resistant aluminum alloy elongated body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008680A JP4145454B2 (en) 2000-01-18 2000-01-18 Wear-resistant aluminum alloy elongated body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001200326A JP2001200326A (en) 2001-07-24
JP4145454B2 true JP4145454B2 (en) 2008-09-03

Family

ID=18536912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008680A Expired - Fee Related JP4145454B2 (en) 2000-01-18 2000-01-18 Wear-resistant aluminum alloy elongated body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4145454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027171A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy long-length body, production method therefor and piston for car air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719731B2 (en) * 2007-11-22 2011-07-06 住友電気工業株式会社 Aluminum alloy rolled material with excellent machinability and method for producing the same
KR101935243B1 (en) * 2014-10-23 2019-01-04 가부시키가이샤 다이키 알루미늄 코교쇼 Aluminum alloy for die casting, and aluminum alloy die-cast product using same
US20180057913A1 (en) * 2015-03-19 2018-03-01 GM Global Technology Operations LLC Alloy composition
WO2018161311A1 (en) 2017-03-09 2018-09-13 GM Global Technology Operations LLC Aluminum alloys
US10801095B2 (en) * 2018-01-10 2020-10-13 GM Global Technology Operations LLC Aluminum alloy and method of manufacturing
CN114250386B (en) * 2020-09-23 2023-02-10 比亚迪股份有限公司 Aluminum alloy and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621839A (en) * 1985-06-26 1987-01-07 Sky Alum Co Ltd Wear resistant rolled aluminum alloy plate
JPH0762200B2 (en) * 1987-08-03 1995-07-05 株式会社神戸製鋼所 Abrasion resistant aluminum alloy casting rod for forging and its manufacturing method
JPH01147039A (en) * 1987-12-02 1989-06-08 Kobe Steel Ltd Wear-resistant aluminum alloy and its manufacture
JPH01152235A (en) * 1987-12-09 1989-06-14 Kobe Steel Ltd High-strength and wear-resistant aluminum alloy continuous cast material
JPH0734169A (en) * 1993-07-14 1995-02-03 Mitsubishi Alum Co Ltd Wear resistant aluminum alloy excellent in strength
JPH07197164A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Aluminum alloy having high strength and high workability and its production
JPH09209069A (en) * 1995-11-29 1997-08-12 Furukawa Electric Co Ltd:The Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
JPH10130764A (en) * 1996-10-31 1998-05-19 Kobe Steel Ltd Forged scroll member made of aluminum alloy
JP3261056B2 (en) * 1997-01-14 2002-02-25 住友軽金属工業株式会社 High-strength wear-resistant aluminum alloy extruded material excellent in ease of forming anodized film and uniformity of film thickness and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027171A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy long-length body, production method therefor and piston for car air conditioner
JP4633972B2 (en) * 2001-07-17 2011-02-16 住友電気工業株式会社 Wear-resistant aluminum alloy elongated body, manufacturing method thereof, and piston for car air conditioner

Also Published As

Publication number Publication date
JP2001200326A (en) 2001-07-24

Similar Documents

Publication Publication Date Title
JP5561846B2 (en) High strength aluminum alloy material and manufacturing method thereof
JP4708485B2 (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6057855B2 (en) Aluminum alloy extruded material for cutting
US20110116966A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
CN106065443B (en) Copper alloy and method for producing same
EP1737995A1 (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
JPH0559477A (en) Aluminum alloy for forging
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP2017128789A (en) Heat resistant aluminum alloy shape material and aluminum alloy member
JP3505825B2 (en) Aluminum alloy heat exchanger fin material that retains high fatigue strength after brazing
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
US20220136087A1 (en) Bar
JP2002348630A (en) Aluminum forged component and manufacturing method therefor
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JP4145454B2 (en) Wear-resistant aluminum alloy elongated body and method for producing the same
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4065758B2 (en) Wear-resistant aluminum alloy elongated body and method for producing the same
JPH07145440A (en) Aluminum alloy forging stock
JPH0457738B2 (en)
EP2006404A1 (en) 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees