JP4144071B2 - Alumina powder for filling metal composite material and method for producing the same - Google Patents

Alumina powder for filling metal composite material and method for producing the same Download PDF

Info

Publication number
JP4144071B2
JP4144071B2 JP18878898A JP18878898A JP4144071B2 JP 4144071 B2 JP4144071 B2 JP 4144071B2 JP 18878898 A JP18878898 A JP 18878898A JP 18878898 A JP18878898 A JP 18878898A JP 4144071 B2 JP4144071 B2 JP 4144071B2
Authority
JP
Japan
Prior art keywords
alumina powder
alumina
powder
composite material
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18878898A
Other languages
Japanese (ja)
Other versions
JP2000016862A (en
Inventor
績 亀田
清 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP18878898A priority Critical patent/JP4144071B2/en
Publication of JP2000016862A publication Critical patent/JP2000016862A/en
Application granted granted Critical
Publication of JP4144071B2 publication Critical patent/JP4144071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属複合材料充填用アルミナ粉末及びその製造方法に関する。詳細には、粗粒篩別工程を有する金属複合材料充填用アルミナ粉末の製造方法に於いて、粗粒篩別工程の処理速度を高めることが可能な金属複合材料充填用アルミナ粉末及びその製造方法に関する。
【0002】
【従来の技術】
アルミナ粉末を金属複合材料等の充填材として用いることは公知である。従来より、金属複合材料の機械的強度に対して、粗粒が悪影響を及ぼすことは知られており、充填材であるアルミナ粉末についても粗粒の低減が要求されてきた。通常、アルミナ粉末の粗粒の低減は、篩別により行われる。しかしながら、アルミナ粉末は篩別時に目詰まりが発生しやすく、十分な篩別処理速度を得ることができなかった。
【0003】
【発明が解決しようとする課題】
かかる事情下に鑑み,本発明者等は、粗粒篩別工程を有する金属複合材料充填用アルミナ粉末の製造方法において、篩別処理工程に於ける篩別処理速度の向上について鋭意検討した結果、アルミナ粉末に対して特定の平均粒子径、嵩密度、差角を有する微粒無機粉末を特定量存在せしめる場合には、十分な篩別処理速度を有する金属複合材料充填用アルミナ粉末が得られることを見出し、本発明を完成するに至った.
【0004】
【課題を解決するための手段】
すなわち、本発明の第1は、アルミナ粉末100重量部に対して、平均粒子径が1μm未満、嵩密度が0.01g/cm3〜1.0g/cm3、差角が15°〜30°である微粒無機粉末を少なくとも0.01重量部含有してなる金属複合材料充填用アルミナ粉末を提供するにある。
【0005】
本発明の第2は、粗粒篩別工程を有する金属複合材料充填用アルミナ粉末の製造方法において、アルミナ粉末100重量部に対して、平均粒子径が1μm未満、嵩密度が0.01g/cm3〜1.0g/cm3、差角が15°〜30°である微粒無機粉末を少なくとも0.01重量部添加混合した後、篩別することを特徴とする金属複合材料充填用アルミナ粉末の製造方法を提供するにある。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明のアルミナ粉末は、特に制限されるものではなく、従来公知のアルミナ粉末であれば良い。特に、バイヤー法により得られるアルミナ粉末は、安価であると共に各種粒子径のものが入手可能であることからその適用が推奨される。結晶形としてはαアルミナ単独であることが好ましいが、γアルミナ、κアルミナ、δアルミナ、θアルミナ、ηアルミナ、χアルミナ、ρアルミナ等が共存していても良い。また、アルミナ粉末の平均粒子径が小さくなると、金属への均一充填が困難になることから、通常、アルミナ粉末の平均粒子径は約1μm〜約10μmである。アルミナ粉末の高温揮発成分は成形時の欠陥等の発生原因となるため、アルミナ粉末の水分は0.1%以下であり、Na2Oは0.4%以下であることが好ましい。
【0007】
本発明の微粒無機粉末は、平均粒子径が1μm未満、好ましくは0.001μm〜0.5μm、嵩密度が0.01g/cm3〜1.0g/cm3、差角が15°〜30°、好ましくは18°〜28°であることを特徴とする。微粒無機粉末の平均粒子径が1μm以上の場合、十分な篩別処理速度が得られない。平均粒子径の下限は特にないが、小さくなると混合時等に飛散しやすくなり、ハンドリング性が低下する。微粒無機粉末の嵩密度が0.01g/cm3〜1.0g/cm3の範囲を外れる場合、その理由は詳らかではないが、十分な篩別処理速度を得ることができない。また、微粒無機粉末の差角が15°〜30°の範囲を外れる場合にも、十分な篩別処理速度を得ることができない。
【0008】
該微粒無機粉末は、前述の平均粒子径、嵩密度、差角を満足するものであれば特に限定されないが、通常、酸化珪素、アルミナ、酸化チタン、酸化ジルコニウムからなる群より選ばれた少なくとも1種であり、好ましくは酸化珪素またはアルミナである。
【0009】
該微粒無機粉末の含有量は、アルミナ粉末100重量部に対して少なくとも0.01重量部、好ましくは0.01重量〜1重量部である。含有量が0.01重量部より少ない場合、微粒無機粉末の添加による篩別処理速度の改良効果が十分でない。一方、微粒無機粉末の含有量の上限は特にないが、通常、微粒無機粉末はBET比表面積が高いので、含有量が多くなるにつれて、アルミナ粉末のBET比表面積が高くなり、吸湿しやすくなる。
【0010】
本発明の金属複合材料充填用アルミナ粉末において、アルミナ粉末に対して微粒無機粉末を含有せしめる方法としては、例えば、水平円筒型混合機、V型混合機、二重円錐型混合機、リボン型混合機、スクリュー型混合機、高速流動型混合機、回転円板型混合機、気流攪拌型混合機、重力落下混合機等の混合機を用いる方法がある。
【0011】
本発明の金属複合材料充填用アルミナ粉末は、十分な篩別処理速度を有するものであり、その粉体物性は一義的ではないが、通常、平均粒子径が1μm〜10μm、好ましくは2μm〜5μmであり、BET比表面積が0.2m2/g〜10m2/g、好ましくは0.5m2/g〜5m2/gであり、嵩密度が1.0g/cm3〜1.5g/cm3であり、差角が5°以上、好ましくは10°〜25°である。
【0012】
本発明の第2の金属複合材料充填用アルミナ粉末の製造方法は、アルミナ粉末100重量部に対して、平均粒子径が1μm未満、嵩密度が0.01g/cm3〜1.0g/cm3、差角が15°〜30°である微粒無機粉末を少なくとも0.01重量部添加混合した後、篩別することを特徴とする。
【0013】
本発明のアルミナ粉末は、特に制限されるものではなく、従来公知のアルミナ粉末であれば良い。特に、バイヤー法により得られるアルミナ粉末は、安価であると共に各種粒子径のものが入手可能であることからその適用が推奨される。結晶形としてはαアルミナ単独であることが好ましいが、γアルミナ、κアルミナ、δアルミナ、θアルミナ、ηアルミナ、χアルミナ、ρアルミナ等が共存していても良い。また、アルミナ粉末の平均粒子径が小さくなると、金属への均一充填が困難になることから、通常、アルミナ粉末の平均粒子径は約1μm〜約10μmである。アルミナ粉末の高温揮発成分は成形時の欠陥等の発生原因となり、得られる金属複合材料充填用アルミナ粉末の機械的強度を低下させるため、アルミナ粉末の水分は0.1%以下であり、Na2Oは0.4%以下であることが好ましい。
【0014】
本発明の微粒無機粉末は、平均粒子径が1μm未満、好ましくは0.001μm〜0.5μm、嵩密度が0.01g/cm3〜1.0g/cm3、差角が15°〜30°、好ましくは18°〜28°であることを特徴とする微粒無機粉末である。微粒無機粉末の平均粒子径が1μm以上の場合、金属複合材料充填用アルミナ粉末の製造に際して十分な篩別処理速度が得られない。平均粒子径の下限は特にないが、小さくなると混合時等に飛散しやすくなり、ハンドリング性が低下する。微粒無機粉末の嵩密度が0.01g/cm3〜1.0g/cm3の範囲を外れる場合、その理由は詳らかではないが、金属複合材料充填用アルミナ粉末の製造に際して十分な篩別処理速度を得ることができない。また、微粒無機粉末の差角が15°〜30°の範囲を外れる場合にも、金属複合材料充填用アルミナ粉末の製造に際して十分な篩別処理速度を得ることができない。
【0015】
該微粒無機粉末の添加量は、通常、アルミナ粉末100重量部に対して、少なくとも0.01重量部、好ましくは0.01重量〜1重量部である。添加量が0.01重量部より少ない場合、微粒無機粉末の添加による篩別処理速度の改良効果が十分でない。一方、微粒無機粉末の添加量に上限は特にないが、通常、微粒無機粉末はBET比表面積が高いので、添加量が多くなるにつれて、金属複合材料充填用アルミナ粉末のBET比表面積が高くなり、吸湿しやすくなることから、金属複合材料充填用アルミナ粉末を充填し得られた金属複合材料の機械的強度が低下する場合がある。
【0016】
本発明のアルミナ粉末と微粒無機粉末との混合は、従来公知の方法であれば良く特に限定はない。例えば、水平円筒型混合機、V型混合機、二重円錐型混合機、リボン型混合機、スクリュー型混合機、高速流動型混合機、回転円板型混合機、気流攪拌型混合機、重力落下混合機等が適用可能である。混合に際しては、アルミナ粉末と微粒無機粉末を混合機を用いて添加混合すればよい。
【0017】
本発明の篩別は、網面固定式篩分け機、網面運動式篩分け機等の従来公知の篩別機が適用できる。
【0018】
本発明の金属複合材料充填用アルミナ粉末の製造に際しては、アルミナ粉末と微粒無機粉末を混合機に添加混合した後、篩別機により篩別する方法で行うが、、添加混合を篩別機にアルミナ粉末と微粒無機粉末を併注する方法で行ってもよい。また、必要に応じて、篩別を2段以上に分けて行ってもよいし、さらに分級操作を組み合わせて行ってもよい。
【0019】
本発明の第2の金属複合材料充填用アルミナ粉末の製造方法により得られる金属複合材料充填用アルミナ粉末は、十分な篩別処理速度を有し、かつ粗粒を低減した金属複合材料充填用アルミナ粉末であり、通常、平均粒子径が1μm〜10μm、好ましくは2μm〜5μmであり、BET比表面積が0.2m2/g〜10m2/g、好ましくは0.5m2/g〜5m2/gであり、嵩密度が1.0g/cm3〜1.5g/cm3であり、差角が5°以上、好ましくは10°〜25°である。
【0020】
【発明の効果】
以上詳述した如く、本発明の金属複合材料充填用アルミナ粉末は、粗粒篩別工程に於いて高い篩別処理速度を有するものであり、かかる金属複合材料充填用アルミナ粉末を篩別することにより、粗粒を低減した金属複合材料充填用アルミナ粉末を効率良く供給できることから、その産業上の利用価値は大なるものである。
【0021】
【実施例】
以下に実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により制限を受けるものではない。尚、本発明において、平均粒子径、BET比表面積、水分、嵩密度、差角、Na2O、篩別速度は以下の方法で行った。
【0022】
平均粒子径D50(μm):レーザー散乱式粒度分布計〔リード アンド ノースラップ(LEED&NORTHRUP)社製マイクロトラックHRA)により測定した。
BET比表面積(m2/g):窒素吸着法により測定した。
水分(%) :110℃、24hr加熱時の重量減少より求めた。
嵩密度(g/cm3) :200mlメスシリンダー中に粉末を流し込んだ後、100回タッピングして得らた粉末の嵩密度を測定する。
差角(°) :パウダーテスターPT−E型(ホソカワミクロン株式会社製)を使って測定した安息角と崩潰角の差より求めた。
Na2O(%) :JIS H1901に従う。
篩別速度(kg/hr・m2):試料を供給装置により、振動型篩別機502型〔株式会社ダルトン製、ウエイトの位相角60°、篩い(JIS Z8801旧規格 目開き350メッシュ44μm、有効網径450mmφ)〕へ定量供給し、篩を通過する試料の重量より篩別速度を求めた。尚、試料の供給は、篩上の粉末により作られる円形が有効網径の1/2(220mmφ〜230mmφ)となる最大供給量で行った。
【0023】
実施例1、2
バイヤー法により得られたアルミナA(中心粒子径2.9μm、BET比表面積1.3m2/g、嵩密度1.27g/cm3、安息角48°、差角3°、Na2O 0.04%、水分0.06%)と、気相法により得られたアルミナB(中心粒子径0.1μm未満、BET比表面積100m2/g、嵩密度0.05g/cm3、差角21°)を表1の条件にて添加混合し、得られた混合粉末の物性及び篩別速度を求めた。結果を表1に示す。尚、得られた混合粉末は、粗粒が低減されていた。
【0024】
実施例3
バイヤー法により得られたアルミナAと、気相法により得られたシリカA(中心粒子径0.1μm未満、BET比表面積110m2/g、嵩密度0.05g/cm3、差角21°)を表1に示す条件にて添加混合し、得られた混合粉末の物性及び篩別速度を求めた。結果を表1に示す。
【0025】
実施例4、5
バイヤー法により得られたアルミナAと、アルコキシド法により得られたアルミナC(中心粒子径0.1μm未満、BET比表面積140m2/g、嵩密度0.10g/cm3、差角23°)を表1に示す条件にて添加混合し、得られた混合粉末の物性及び篩別速度を求めた。結果を表1に示す。
【0026】
比較例1
アルミナAの篩別速度を求めた。結果を表1に示す。
【0027】
比較例2
アルミナBの篩別速度を求めた。結果を表1に示す。
【0028】
比較例3
アルミナCの篩別速度を求めた。結果を表1に示す。
【0029】
比較例4
シリカAの篩別速度を求めた。結果を表1に示す。
【0030】
【表1】

Figure 0004144071
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alumina powder for filling a metal composite material and a method for producing the same. In detail, in the manufacturing method of the alumina powder for metal composite material filling which has a coarse sieving process, the alumina powder for metal composite material filling which can raise the processing speed of a coarse sieving process, and its manufacturing method About.
[0002]
[Prior art]
The use of alumina powder as a filler such as a metal composite material is known. Conventionally, it has been known that coarse particles have an adverse effect on the mechanical strength of a metal composite material, and alumina powder as a filler has been required to be reduced. Usually, the coarse particles of alumina powder are reduced by sieving. However, the alumina powder is likely to be clogged during sieving, and a sufficient sieving speed could not be obtained.
[0003]
[Problems to be solved by the invention]
In view of such circumstances, the present inventors, as a result of earnestly examining the improvement of the sieving treatment speed in the sieving treatment step, in the method for producing an alumina powder for filling a metal composite material having a coarse sieving step, When a specific amount of fine inorganic powder having a specific average particle diameter, bulk density, and difference angle is present with respect to the alumina powder, an alumina powder for filling a metal composite material having a sufficient sieving speed can be obtained. The headline and the present invention were completed.
[0004]
[Means for Solving the Problems]
That is, according to the first aspect of the present invention, the average particle diameter is less than 1 μm, the bulk density is 0.01 g / cm 3 to 1.0 g / cm 3 , and the difference angle is 15 ° to 30 ° with respect to 100 parts by weight of the alumina powder. It is another object of the present invention to provide an alumina powder for filling a metal composite material containing at least 0.01 part by weight of a fine inorganic powder.
[0005]
A second aspect of the present invention is a method for producing an alumina powder for filling a metal composite material having a coarse sieving step, wherein the average particle diameter is less than 1 μm and the bulk density is 0.01 g / cm with respect to 100 parts by weight of the alumina powder. 3 ~1.0g / cm 3, after the difference angle is mixed for at least 0.01 part by weight added fine inorganic powder is 15 ° to 30 °, the metal composite filling alumina powder characterized by sieved To provide a manufacturing method.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The alumina powder of the present invention is not particularly limited and may be any conventionally known alumina powder. In particular, the alumina powder obtained by the Bayer method is recommended because of its low cost and availability of various particle sizes. The crystal form is preferably α-alumina alone, but γ-alumina, κ-alumina, δ-alumina, θ-alumina, η-alumina, χ-alumina, ρ-alumina, etc. may coexist. In addition, when the average particle size of the alumina powder becomes small, it becomes difficult to uniformly fill the metal. Therefore, the average particle size of the alumina powder is usually about 1 μm to about 10 μm. Since the high-temperature volatile component of the alumina powder causes generation of defects and the like during molding, the moisture of the alumina powder is preferably 0.1% or less, and Na 2 O is preferably 0.4% or less.
[0007]
The fine inorganic powder of the present invention has an average particle size of less than 1 μm, preferably 0.001 μm to 0.5 μm, a bulk density of 0.01 g / cm 3 to 1.0 g / cm 3 , and a difference angle of 15 ° to 30 °. , Preferably 18 ° to 28 °. When the average particle size of the fine inorganic powder is 1 μm or more, a sufficient sieving speed cannot be obtained. The lower limit of the average particle diameter is not particularly limited, but if it becomes smaller, it tends to scatter during mixing, etc., and the handling property is lowered. If the bulk density of the fine inorganic powder is out of the range of 0.01g / cm 3 ~1.0g / cm 3 , although the reason is not Tsumabiraka, not possible to obtain sufficient sieving processing speed. In addition, even when the difference angle of the fine inorganic powder is outside the range of 15 ° to 30 °, a sufficient sieving treatment speed cannot be obtained.
[0008]
The fine inorganic powder is not particularly limited as long as it satisfies the aforementioned average particle diameter, bulk density, and difference angle, but is usually at least one selected from the group consisting of silicon oxide, alumina, titanium oxide, and zirconium oxide. Seed, preferably silicon oxide or alumina.
[0009]
The content of the fine inorganic powder is at least 0.01 parts by weight, preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the alumina powder. When the content is less than 0.01 parts by weight, the effect of improving the sieving treatment speed by adding the fine inorganic powder is not sufficient. On the other hand, the upper limit of the content of the fine inorganic powder is not particularly limited, but usually, the fine inorganic powder has a high BET specific surface area. Therefore, as the content increases, the BET specific surface area of the alumina powder increases and it becomes easy to absorb moisture.
[0010]
In the alumina powder for filling a metal composite material of the present invention, for example, a horizontal cylindrical mixer, a V-type mixer, a double-cone mixer, a ribbon-type mixer can be used as a method for adding fine inorganic powder to the alumina powder. There are methods using a mixer such as a machine, a screw type mixer, a high-speed fluidized type mixer, a rotating disk type mixer, an airflow stirring type mixer, a gravity drop mixer and the like.
[0011]
The alumina powder for filling a metal composite material of the present invention has a sufficient sieving speed and its powder physical properties are not unambiguous, but usually the average particle diameter is 1 μm to 10 μm, preferably 2 μm to 5 μm. in and, BET specific surface area of 0.2m 2 / g~10m 2 / g, preferably 0.5m 2 / g~5m 2 / g, bulk density 1.0g / cm 3 ~1.5g / cm 3. The difference angle is 5 ° or more, preferably 10 ° to 25 °.
[0012]
Second method for manufacturing a metallic composite material filling alumina powder of the present invention, based on the alumina powder 100 parts by weight, an average particle size of less than 1 [mu] m, a bulk density of 0.01g / cm 3 ~1.0g / cm 3 In addition, at least 0.01 part by weight of fine inorganic powder having a difference angle of 15 ° to 30 ° is added and mixed, and then sieved.
[0013]
The alumina powder of the present invention is not particularly limited and may be any conventionally known alumina powder. In particular, the alumina powder obtained by the Bayer method is recommended because of its low cost and availability of various particle sizes. The crystal form is preferably α-alumina alone, but γ-alumina, κ-alumina, δ-alumina, θ-alumina, η-alumina, χ-alumina, ρ-alumina, etc. may coexist. In addition, when the average particle size of the alumina powder becomes small, it becomes difficult to uniformly fill the metal. Therefore, the average particle size of the alumina powder is usually about 1 μm to about 10 μm. The high-temperature volatile component of the alumina powder causes defects during molding, etc., and reduces the mechanical strength of the resulting alumina powder for filling a metal composite material. Therefore, the moisture of the alumina powder is 0.1% or less, Na 2 O is preferably 0.4% or less.
[0014]
The fine inorganic powder of the present invention has an average particle size of less than 1 μm, preferably 0.001 μm to 0.5 μm, a bulk density of 0.01 g / cm 3 to 1.0 g / cm 3 , and a difference angle of 15 ° to 30 °. The fine inorganic powder is preferably 18 ° to 28 °. When the average particle diameter of the fine inorganic powder is 1 μm or more, a sufficient sieving speed cannot be obtained in the production of the alumina powder for filling a metal composite material. The lower limit of the average particle diameter is not particularly limited, but if it becomes smaller, it tends to scatter during mixing, etc., and the handling property is lowered. If the bulk density of the fine inorganic powder is out of the range of 0.01g / cm 3 ~1.0g / cm 3 , although the reason is not Tsumabiraka sufficient sieving processing speed in the production of metal composite material filling alumina powder Can't get. Further, even when the difference angle of the fine inorganic powder is out of the range of 15 ° to 30 °, it is not possible to obtain a sufficient sieving speed in the production of the alumina powder for filling the metal composite material.
[0015]
The addition amount of the fine inorganic powder is usually at least 0.01 parts by weight, preferably 0.01 to 1 part by weight, with respect to 100 parts by weight of the alumina powder. When the addition amount is less than 0.01 parts by weight, the effect of improving the sieving process speed by adding the fine inorganic powder is not sufficient. On the other hand, although there is no particular upper limit to the amount of fine inorganic powder added, since the fine inorganic powder usually has a high BET specific surface area, as the amount of addition increases, the BET specific surface area of the metal composite filling alumina powder increases. Since it becomes easy to absorb moisture, the mechanical strength of the metal composite material obtained by filling the alumina powder for filling the metal composite material may decrease.
[0016]
The mixing of the alumina powder and the fine inorganic powder of the present invention is not particularly limited as long as it is a conventionally known method. For example, horizontal cylindrical mixer, V type mixer, double cone type mixer, ribbon type mixer, screw type mixer, high-speed fluid type mixer, rotating disk type mixer, air flow stirring type mixer, gravity A drop mixer or the like is applicable. In mixing, the alumina powder and the fine inorganic powder may be added and mixed using a mixer.
[0017]
For the sieving of the present invention, a conventionally known sieving machine such as a fixed screen sieving machine or a screen sieving machine can be applied.
[0018]
In the production of the alumina powder for filling a metal composite material of the present invention, the alumina powder and the fine inorganic powder are added and mixed in a mixer and then sieved by a sieving machine. You may carry out by the method of pouring together an alumina powder and a fine inorganic powder. If necessary, sieving may be performed in two or more stages, or classification operations may be further combined.
[0019]
The alumina powder for filling a metal composite material obtained by the second method for producing an alumina powder for filling a metal composite material of the present invention has a sufficient sieving speed and reduced coarse particles. a powder, typically having an average particle diameter of 1 m to 10 m, preferably 2Myuemu~5myuemu, BET specific surface area of 0.2m 2 / g~10m 2 / g, preferably 0.5m 2 / g~5m 2 / g, and a bulk density of 1.0g / cm 3 ~1.5g / cm 3 , the difference angle is 5 ° or more, preferably 10 ° to 25 °.
[0020]
【The invention's effect】
As described above in detail, the alumina powder for filling a metal composite material of the present invention has a high sieving speed in the coarse sieving step, and the alumina powder for filling a metal composite material is sieved. Thus, it is possible to efficiently supply the alumina powder for filling a metal composite material with reduced coarse particles, and its industrial utility value is great.
[0021]
【Example】
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by the examples. In the present invention, the average particle diameter, BET specific surface area, moisture, bulk density, difference angle, Na 2 O, and sieving speed were measured by the following methods.
[0022]
Average particle diameter D 50 (μm): Measured with a laser scattering particle size distribution meter (Microtrac HRA manufactured by LEED & NORTHHRUP).
BET specific surface area (m 2 / g): Measured by nitrogen adsorption method.
Moisture (%): Obtained from weight loss during heating at 110 ° C. for 24 hours.
Bulk density (g / cm 3 ): After pouring the powder into a 200 ml graduated cylinder, the bulk density of the powder obtained by tapping 100 times is measured.
Difference angle (°): Determined from the difference between the angle of repose and the collapse angle measured using a powder tester PT-E type (manufactured by Hosokawa Micron Corporation).
Na 2 O (%): according to JIS H1901.
Sieving speed (kg / hr · m 2 ): Vibrating sieving machine 502 type [manufactured by Dalton Co., Ltd., weight phase angle 60 °, sieving (JIS Z8801 old standard opening 350 mesh 44 μm, The effective mesh diameter was 450 mmφ)], and the sieving speed was determined from the weight of the sample passing through the sieve. The sample was supplied at a maximum supply amount in which a circle formed by the powder on the sieve was ½ of the effective mesh diameter (220 mmφ to 230 mmφ).
[0023]
Examples 1 and 2
Alumina A obtained by the Bayer method (center particle size 2.9 μm, BET specific surface area 1.3 m 2 / g, bulk density 1.27 g / cm 3 , angle of repose 48 °, difference angle 3 °, Na 2 O 0. 04%, moisture 0.06%) and alumina B obtained by the vapor phase method (center particle diameter less than 0.1 μm, BET specific surface area 100 m 2 / g, bulk density 0.05 g / cm 3 , difference angle 21 ° ) Were added and mixed under the conditions shown in Table 1, and the physical properties and sieving speed of the obtained mixed powder were determined. The results are shown in Table 1. In addition, coarse particles were reduced in the obtained mixed powder.
[0024]
Example 3
Alumina A obtained by the Bayer method and silica A obtained by the gas phase method (center particle diameter less than 0.1 μm, BET specific surface area 110 m 2 / g, bulk density 0.05 g / cm 3 , difference angle 21 °) Were added and mixed under the conditions shown in Table 1, and the physical properties and sieving speed of the obtained mixed powder were determined. The results are shown in Table 1.
[0025]
Examples 4 and 5
Alumina A obtained by the Bayer method and alumina C obtained by the alkoxide method (center particle diameter less than 0.1 μm, BET specific surface area 140 m 2 / g, bulk density 0.10 g / cm 3 , difference angle 23 °) It added and mixed on the conditions shown in Table 1, and calculated | required the physical property and sieving speed of the obtained mixed powder. The results are shown in Table 1.
[0026]
Comparative Example 1
The sieving speed of alumina A was determined. The results are shown in Table 1.
[0027]
Comparative Example 2
The sieving speed of alumina B was determined. The results are shown in Table 1.
[0028]
Comparative Example 3
The sieving speed of alumina C was determined. The results are shown in Table 1.
[0029]
Comparative Example 4
The sieving speed of silica A was determined. The results are shown in Table 1.
[0030]
[Table 1]
Figure 0004144071

Claims (6)

アルミナ粉末100重量部に対して、平均粒子径が1μm未満、嵩密度が0.01g/cm3〜1.0g/cm3、差角が15°〜30°である微粒無機粉末を少なくとも0.01重量部含有してなる金属複合材料充填用アルミナ粉末。A fine inorganic powder having an average particle diameter of less than 1 μm, a bulk density of 0.01 g / cm 3 to 1.0 g / cm 3 , and a difference angle of 15 ° to 30 ° with respect to 100 parts by weight of the alumina powder is at least 0.00. An alumina powder for filling a metal composite material, comprising 01 parts by weight. 微粒無機粉末が、酸化珪素、アルミナ、酸化チタン、酸化ジルコニウムからなる群より選ばれた少なくとも1種であることを特徴とする請求項1記載の金属複合材料充填用アルミナ粉末。2. The alumina powder for filling a metal composite material according to claim 1, wherein the fine inorganic powder is at least one selected from the group consisting of silicon oxide, alumina, titanium oxide and zirconium oxide. アルミナ粉末の平均粒子径が1μm以上であることを特徴とする請求項1または2記載の金属複合材料充填用アルミナ粉末。The alumina powder for filling a metal composite material according to claim 1 or 2, wherein the average particle diameter of the alumina powder is 1 µm or more. 粗粒篩別工程を有する金属複合材料充填用アルミナ粉末の製造方法において、アルミナ粉末100重量部に対して、平均粒子径が1μm未満、嵩密度が0.01g/cm3〜1.0g/cm3、差角が15°〜30°である微粒無機粉末を少なくとも0.01重量部添加混合した後、篩別することを特徴とする金属複合材料充填用アルミナ粉末の製造方法。In the method for producing an alumina powder for filling a metal composite material having a coarse sieving step, the average particle diameter is less than 1 μm and the bulk density is 0.01 g / cm 3 to 1.0 g / cm with respect to 100 parts by weight of the alumina powder. 3. A method for producing an alumina powder for filling a metal composite material, comprising adding and mixing at least 0.01 parts by weight of a fine inorganic powder having a difference angle of 15 ° to 30 °, followed by sieving. 微粒無機粉末が、酸化珪素、アルミナ、酸化チタン、酸化ジルコニウムからなる群より選ばれた少なくとも1種であることを特徴とする請求項4記載の金属複合材料充填用アルミナ粉末の製造方法。The method for producing an alumina powder for filling a metal composite material according to claim 4, wherein the fine inorganic powder is at least one selected from the group consisting of silicon oxide, alumina, titanium oxide and zirconium oxide. アルミナ粉末の平均粒子径が1μm以上であることを特徴とする請求項4または5記載の金属複合材料充填用アルミナ粉末の製造方法。The method for producing an alumina powder for filling a metal composite material according to claim 4 or 5, wherein the average particle diameter of the alumina powder is 1 µm or more.
JP18878898A 1998-07-03 1998-07-03 Alumina powder for filling metal composite material and method for producing the same Expired - Fee Related JP4144071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18878898A JP4144071B2 (en) 1998-07-03 1998-07-03 Alumina powder for filling metal composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18878898A JP4144071B2 (en) 1998-07-03 1998-07-03 Alumina powder for filling metal composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000016862A JP2000016862A (en) 2000-01-18
JP4144071B2 true JP4144071B2 (en) 2008-09-03

Family

ID=16229814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18878898A Expired - Fee Related JP4144071B2 (en) 1998-07-03 1998-07-03 Alumina powder for filling metal composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4144071B2 (en)

Also Published As

Publication number Publication date
JP2000016862A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP6892919B2 (en) Sintered abrasive particles mainly composed of oxides present in bauxite
KR101704411B1 (en) Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
TWI457311B (en) The heat-off material and its manufacturing method
US20020187097A1 (en) Alumina fine powder and a method of producing the same
TW201034961A (en) Alpha-alumina powder
KR20120110129A (en) Method for producing zirconia-alumina composite ceramic material, zirconia-alumina composite granulated powder, and zirconia beads
TWI828674B (en) Alumina particles
US20060194885A1 (en) Alumina particles, production process thereof, composition comprising the particles and alumina slurry for polishing
EP1768938A1 (en) Highly-filled, aqueous metal oxide dispersion
MXPA02003508A (en) Electrostatic deposition formulations.
US7090821B2 (en) Metal oxide powder for high precision polishing and method of preparation thereof
EP1256548A1 (en) Alumina particles, method for producing the same, composition comprising the same, and alumina slurry for polishing
JP5846233B2 (en) Low soda α-alumina powder having excellent viscosity characteristics and method for producing the same
JP4144071B2 (en) Alumina powder for filling metal composite material and method for producing the same
JP2008127257A (en) POLYHEDRAL alpha-ALUMINA AND ITS MANUFACTURING METHOD
JPH05509285A (en) α-phase seeding of transition alumina using chromium oxide-based nucleating agents
WO2020150985A1 (en) Tabular alumina particle and method for manufacturing tabular alumina particle
US20230131773A1 (en) Composite particle and method of producing composite particle
JP5650632B2 (en) Method for producing fine, low bulk density metallic nickel powder
CN1084314C (en) Method for firing sol-gel alumina particles
JP3387555B2 (en) Method for producing α-alumina
JPH0647459B2 (en) Silica-based filler and method for producing the same
JPH0826722A (en) Inorganic powdery mixture
JP6363227B2 (en) Abrasive grains based on electrofused aluminum oxide with a surface coating comprising titanium oxide and / or carbon
US20240002250A1 (en) Tantalum oxide particle and method for producing tantalum oxide particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees