JP4143355B2 - Crystal element for piezoelectric sensor - Google Patents

Crystal element for piezoelectric sensor Download PDF

Info

Publication number
JP4143355B2
JP4143355B2 JP2002226270A JP2002226270A JP4143355B2 JP 4143355 B2 JP4143355 B2 JP 4143355B2 JP 2002226270 A JP2002226270 A JP 2002226270A JP 2002226270 A JP2002226270 A JP 2002226270A JP 4143355 B2 JP4143355 B2 JP 4143355B2
Authority
JP
Japan
Prior art keywords
crystal element
piezoelectric sensor
base
nail
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226270A
Other languages
Japanese (ja)
Other versions
JP2003130739A (en
Inventor
ブレヒビュール ステファン
ゾンマー ローランド
Original Assignee
キストラー ホールディング アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キストラー ホールディング アクチエンゲゼルシャフト filed Critical キストラー ホールディング アクチエンゲゼルシャフト
Publication of JP2003130739A publication Critical patent/JP2003130739A/en
Application granted granted Critical
Publication of JP4143355B2 publication Critical patent/JP4143355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/886Additional mechanical prestressing means, e.g. springs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost crystal element for piezoelectric sensors that can be easily mounted. SOLUTION: The one-piece-type crystal element for piezoelectric sensors that easily centers a piezoelectric element, is retained in parallel with an axial direction, can introduce ideal force, assures insensitiveness to a small assembly error α, eliminates the need for a surplus auxiliary member for support and mounting, and comprises a high-sensitivity rod signal section (11) and a base (12). Therefore, the crystal element is a component that incorporates a sensor, can be easily adapted, can constantly assure accurate parallelism, and can reduce eccentricity μ in an ordinate, which makes so called a nail-type crystal suited for a continuous assembly. By batch processing from a wafer, the manufacturing costs of the nail-type crystal can be reduced. Regardless of the complex form in the nail-type crystal, the total assembly costs of the sensor can be kept low, and at the same time all plastic support means and retention means can be excluded, thus improving quality especially when an application range exceeds 300 deg.C when all plastics become unstable.

Description

【0001】
【発明の属する技術分野】
本発明は圧電センサ用結晶素子に関し、詳細にはいわゆる釘形結晶に関する。
【0002】
【従来の技術】
圧力、力および加速度を測定するための圧電度量衡学においては、主として、結晶性水晶または他の圧電性結晶の結晶素子が使用され、様々な切断技法を用いて円板またはロッドに形状化されている。結晶素子は、予荷重の下で2つの平行平面力伝達表面の間に固定された後、測定すべき力が印加される。
【0003】
ロッド形構造は、円板形を要する縦効果よりも強い電気信号をもたらす横効果を利用している。対称にするために、ほとんどの場合、多数のロッド形素子が、最新技術を示す図1および2に示すように組み付けられている。
【0004】
【発明が解決しようとする課題】
本発明による釘形結晶は、取付けのための補助部材を必要としない、また、低コスト連続取付けに適したロッド形素子の製作を目的として開発されたものである。
【0005】
【課題を解決するための手段】
上記目的は、高感度ロッド信号部分とベースとからなる一体型の結晶素子によって実現される。
【0006】
【発明の実施の形態】
次に、本発明を、図1から図10を参照して説明する。
【0007】
図5および6から分かるように、本発明による釘形結晶10は、ロッド部分11およびベース(基部)12から成り、予荷重の下で力導入表面21と力誘導表面22の間に拘束され、同時に結晶の測定信号を信号ラインに伝送する。釘形結晶のベース12には、力導入表面21の心出しリング20を通す心出し表面13が設けられている。ロッド部分11からベース12への遷移部分は、丸み表面23によって形成されている。この組立体により、偏心誤差μを極めて小さい値に維持することができる。
【0008】
図6は、個別の素子に切断された後、円形研削によって生成される4つの心出し表面13を備えたベース12の形態を示している。ベースの正方形または長方形の平面は、釘形結晶がバッチ生産されるウェハの厚さWdによって定まる。
【0009】
図7は、同じ釘形結晶10を斜視図で示している。非金属化されているため、金属化された後、研削される絶縁性表面14をより明確に見て取ることができる。遷移丸み部18、19は、バッチ生産における切断操作によって自動的に非金属化される。
【0010】
したがって釘形結晶は、それ自体がレンズ(lends)を形成し、大量生産の効率を高めている。ウェハは、生産プロセスにおいて完全に金属化される。結晶の2つの端面16、17を利用して信号が導かれる。
【0011】
厚さWdのウェハからのバッチ処理は、通常の生産方法によって実現されるため、ここでは詳細は省略する。
【0012】
図8は、本発明による釘形結晶の変形例を示し、この変形例は直径Dの円形ベース12を有し、心出しリング20中に嵌合する。この釘形結晶はバッチ生産が可能であり、あるいは丸棒から生産することができる。
【0013】
図9は、本発明の概念による、二重釘形結晶(24)の形態の他の変形例を示している。図9では、ロッド部分11は、切り込み28によって2つの部分に分割されている。この切り込みの底部は絶縁性表面25になっており、金属化物を分離している。他の遷移丸み部15および絶縁および心出し表面13は、図5、6および7と同様であり、図9では、個別プロセスも可能ではあるが、ウェハ生産プロセスに対応している。
【0014】
図10は、図9の変形例を平面図で示している。
【0015】
本発明による釘形結晶により、今までは、300℃を超える高いセンサ温度以上ではその絶縁性能が悪影響を受ける耐温材からなる、余計な取付け手段および心出し手段を必要としない簡易センサ組立体の新規な品質を可能にする。
【0016】
表面21および22の平行度の些細な誤差αは、単一釘形結晶については誤差を生じないという可能性により、バッチの合格率が高くなり、歩留まりが向上する。
【0017】
本発明による釘形結晶は、水晶であれ、ガリウムリン酸塩であれ、あるいは他いくつかの圧電結晶であれ、結晶のタイプには無関係である。
【0018】
重要なことは、本発明による釘形結晶は、ウェハから効率良く処理することができる、ということである。
【図面の簡単な説明】
【図1】Teflon(登録商標)またはKaptonの支持スリーブ2中に保持されたロッド1の結晶素子を示す図である。このようにして、幾何形状の異なるロッドを用いることができる。
【図2】図1の平面図である。
【図3】例えばクランプ・カラーを意図した、コイルばねによって外壁3に押し付けられ、結晶が確実に保持される三重配置を示す図である。図1および3のいずれの構造も、多数の変形態様が市販されている。
【図4】図3の平面図である。
【図5】結晶を取り囲むセンサ部分を備えた、本発明による釘形結晶の正面図である。
【図6】本発明による釘形結晶の平面図である。
【図7】本発明による釘形結晶の斜視図である。
【図8】本発明による釘形結晶の変形例の斜視図である。
【図9】本発明による釘形結晶の他の変形例を、二重釘として示す図である。
【図10】図9の平面図である。
【符号の説明】
1 圧電結晶(ロッド)
2 ガイド・ケージ(支持スリーブ)
3 拘束スリーブ(外壁)
4 結晶セット
10 釘形結晶
11 ロッド部分
12 ベース
13 心出し表面
14 絶縁性表面
15 遷移丸み部
16、17 金属化端面
18、19 絶縁横方向表面
20 心出しリング
21 力導入表面
22 力誘導表面
23 丸み表面
24 二重釘形結晶
25 ベース絶縁性表面
26 横方向絶縁性表面
27 円形絶縁性表面
28 切り込み
α 力導入表面と力誘導表面の間の平行度誤差
μ 結晶軸とセンサ軸の間の偏心誤差
Wd ウェハ厚さ
D 誘導径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal element for a piezoelectric sensor, and more particularly to a so-called nail-shaped crystal.
[0002]
[Prior art]
In piezoelectric metrology for measuring pressure, force and acceleration, crystalline crystal or other piezoelectric crystal crystal elements are mainly used and shaped into disks or rods using various cutting techniques. Yes. After the crystal element is fixed between two parallel plane force transmitting surfaces under preload, a force to be measured is applied.
[0003]
The rod-shaped structure utilizes a lateral effect that provides a stronger electrical signal than a longitudinal effect that requires a disk shape. In order to be symmetric, in most cases a large number of rod-shaped elements are assembled as shown in FIGS. 1 and 2, which shows the state of the art.
[0004]
[Problems to be solved by the invention]
The nail-shaped crystal according to the present invention has been developed for the purpose of manufacturing a rod-shaped element that does not require an auxiliary member for mounting and is suitable for low-cost continuous mounting.
[0005]
[Means for Solving the Problems]
The above object is realized by an integrated crystal element composed of a high sensitivity rod signal portion and a base.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described with reference to FIGS.
[0007]
As can be seen from FIGS. 5 and 6, the nail-shaped crystal 10 according to the present invention comprises a rod portion 11 and a base (base) 12 and is constrained between a force introduction surface 21 and a force induction surface 22 under a preload, At the same time, a crystal measurement signal is transmitted to the signal line. The base 12 of the nail-shaped crystal is provided with a centering surface 13 through which the centering ring 20 of the force introduction surface 21 passes. The transition from the rod part 11 to the base 12 is formed by a rounded surface 23. This assembly makes it possible to maintain the eccentricity error μ at a very small value.
[0008]
FIG. 6 shows the form of the base 12 with four centering surfaces 13 produced by circular grinding after being cut into individual elements. The base square or rectangular plane is determined by the thickness Wd of the wafer on which the nail-shaped crystals are batch produced.
[0009]
FIG. 7 shows the same nail-shaped crystal 10 in a perspective view. Because it is non-metallized, the insulating surface 14 that is ground after metallization can be seen more clearly. The transition rounds 18, 19 are automatically demetalized by a cutting operation in batch production.
[0010]
Thus, the nail-shaped crystals themselves form lenses and increase the efficiency of mass production. The wafer is completely metallized in the production process. A signal is derived using the two end faces 16, 17 of the crystal.
[0011]
Since batch processing from a wafer having a thickness Wd is realized by a normal production method, details are omitted here.
[0012]
FIG. 8 shows a variant of a nail-shaped crystal according to the invention, which has a circular base 12 with a diameter D and fits in a centering ring 20. The nail-shaped crystals can be produced in batches or can be produced from round bars.
[0013]
FIG. 9 shows another variant of the form of a double nail-shaped crystal (24) according to the inventive concept. In FIG. 9, the rod part 11 is divided into two parts by a notch 28. The bottom of the cut is an insulating surface 25 that separates the metallized material. The other transition rounds 15 and insulating and centering surfaces 13 are similar to FIGS. 5, 6 and 7 and correspond to the wafer production process in FIG. 9, although an individual process is possible.
[0014]
FIG. 10 shows a modification of FIG. 9 in a plan view.
[0015]
Up to now, the nail-shaped crystal according to the present invention is a simple sensor assembly made of a heat-resistant material whose insulation performance is adversely affected at a high sensor temperature exceeding 300 ° C., and which does not require extra mounting means and centering means. Allows for new quality.
[0016]
The minor error α in the parallelism of the surfaces 21 and 22 increases the batch acceptance rate and improves the yield due to the possibility of no error for a single nail crystal.
[0017]
The nail-shaped crystal according to the present invention is independent of the type of crystal, whether it is quartz, gallium phosphate, or some other piezoelectric crystal.
[0018]
Importantly, the nail-shaped crystals according to the invention can be processed efficiently from the wafer.
[Brief description of the drawings]
FIG. 1 shows a crystal element of a rod 1 held in a Teflon® or Kapton support sleeve 2; In this way, rods with different geometric shapes can be used.
2 is a plan view of FIG. 1. FIG.
FIG. 3 shows a triple arrangement in which, for example a clamping collar is intended, pressed against the outer wall 3 by a coil spring to ensure that the crystal is retained. Numerous variations of both structures in FIGS. 1 and 3 are commercially available.
4 is a plan view of FIG. 3;
FIG. 5 is a front view of a nail-shaped crystal according to the present invention with a sensor portion surrounding the crystal.
FIG. 6 is a plan view of a nail-shaped crystal according to the present invention.
FIG. 7 is a perspective view of a nail-shaped crystal according to the present invention.
FIG. 8 is a perspective view of a modified example of a nail-shaped crystal according to the present invention.
FIG. 9 is a view showing another modified example of the nail-shaped crystal according to the present invention as a double nail.
FIG. 10 is a plan view of FIG. 9;
[Explanation of symbols]
1 Piezoelectric crystal (rod)
2 Guide cage (support sleeve)
3 Restraint sleeve (outer wall)
4 Crystal set 10 Nail-shaped crystal 11 Rod portion 12 Base 13 Centering surface 14 Insulating surface 15 Transition rounds 16 and 17 Metallized end surfaces 18 and 19 Insulating lateral surface 20 Centering ring 21 Force introduction surface 22 Force induction surface 23 Round surface 24 Double nail crystal 25 Base insulating surface 26 Lateral insulating surface 27 Circular insulating surface 28 Incision α Parallelism error between force introducing surface and force guiding surface μ Eccentricity between crystal axis and sensor axis Error Wd Wafer thickness D Guide diameter

Claims (8)

2つの力伝達表面(21、22)の間に機械的予荷重を受けて置かれて、端部表面(16、17)において信号が取り出される圧電センサ用結晶素子であって、主として信号発生用の少なくとも1つのロッド部分(11)と、主として保持および心出し用の少なくとも1つのベース(12)とを有する形態を特徴とする圧電センサ用結晶素子。 A crystal element for a piezoelectric sensor , which is placed between two force transmission surfaces (21, 22) under a mechanical preload and from which signals are taken out at end surfaces (16, 17) , mainly for signal generation A crystal element for a piezoelectric sensor, characterized in that it has at least one rod part (11) and at least one base (12) mainly for holding and centering. 請求項1に記載の圧電センサ用結晶素子において、前記ベースは研削されて心出し表面(13)を備え、これら心出し表面(13)が、前記力伝達表面(21)に設けた心出しリング(20)に嵌合する、圧電センサ用結晶素子。 2. The crystal element for a piezoelectric sensor according to claim 1, wherein the base is ground to have a centering surface (13), and the centering surface (13) is provided on the force transmitting surface (21). A crystal element for a piezoelectric sensor , which is fitted in (20) . 請求項1または2に記載の圧電センサ用結晶素子において、前記ベース(12)から前記ロッド部分(11)への遷移部分が連続的な輪郭に形成され、該ロッド部分の端部表面(16)と前記ベースの端部表面(17)が、許容誤差(α)のある平行度で形成される、圧電センサ用結晶素子。 The crystal element for a piezoelectric sensor according to claim 1 or 2, wherein a transition portion from the base (12) to the rod portion (11) is formed in a continuous contour, and an end surface (16) of the rod portion. And a crystal element for a piezoelectric sensor , wherein the end surface (17) of the base is formed with a parallelism having a tolerance (α) . 請求項2に記載の圧電センサ用結晶素子において、前記心出し表面(13)は、専用チャック内における円形研削によって、自動的に絶縁性となる、圧電センサ用結晶素子。 3. The piezoelectric sensor crystal element according to claim 2, wherein the centering surface (13) automatically becomes insulative by circular grinding in a dedicated chuck . 請求項1から4のいずれか一項に記載の圧電センサ用結晶素子において、前記ベースが円形形態(D)であり、導電性表面と絶縁性表面の組合せからなる、圧電センサ用結晶素子。 5. The crystal element for a piezoelectric sensor according to claim 1, wherein the base has a circular form (D) and is formed of a combination of a conductive surface and an insulating surface . 請求項2に記載の圧電センサ用結晶素子において、前記ロッド部分(11)が二重構成であり、前記ベースが単一構成であって、前記心出し表面(13)および絶縁性表面(25、26、27)を有する、圧電センサ用結晶素子。 The crystal element for a piezoelectric sensor according to claim 2, wherein the rod portion (11) has a double structure, the base has a single structure, the centering surface (13) and the insulating surface (25, 26, 27), a crystal element for a piezoelectric sensor. 請求項1から6のいずれか一項に記載の圧電センサ用結晶素子において、ウェハからのバッチ生産または円形素子からの単品生産のいずれかの生産が可能である、圧電センサ用結晶素子。 The crystal element for a piezoelectric sensor according to any one of claims 1 to 6, wherein the crystal element for a piezoelectric sensor is capable of either batch production from a wafer or single item production from a circular element. 請求項1から7のいずれか一項に記載の結晶素子を生産する方法であって、適切に切断されたウェハからのバッチ生産であり、加工済みウェハ全体が、いくつかの操作のうちの1つにおいて金属化され、ウェハを個々の結晶に切断したときに横方向絶縁性表面(18、19)が自動的に得られることを特徴とする方法。A method for producing a crystal element according to any one of claims 1 to 7, wherein the production is batch production from appropriately cut wafers, wherein the entire processed wafer is one of several operations. Method characterized in that laterally insulating surfaces (18, 19) are automatically obtained when metallized in one and the wafer is cut into individual crystals.
JP2002226270A 2001-08-02 2002-08-02 Crystal element for piezoelectric sensor Expired - Fee Related JP4143355B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH14182001 2001-08-02
CH20011418/01 2001-08-02

Publications (2)

Publication Number Publication Date
JP2003130739A JP2003130739A (en) 2003-05-08
JP4143355B2 true JP4143355B2 (en) 2008-09-03

Family

ID=4565462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226270A Expired - Fee Related JP4143355B2 (en) 2001-08-02 2002-08-02 Crystal element for piezoelectric sensor

Country Status (1)

Country Link
JP (1) JP4143355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025065A (en) * 2007-07-18 2009-02-05 Hiroshima Univ Pressure sensor and distributed pressure sensor using the same

Also Published As

Publication number Publication date
JP2003130739A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
KR102071852B1 (en) Micromechanical structure and method for manufacturing the same
JP3500105B2 (en) Support for conductive contact and contact probe unit
US5147824A (en) Semiconductor wafer
JP4143355B2 (en) Crystal element for piezoelectric sensor
JP2000100882A (en) Manufacture of semiconductor device, test method, and jig used therefor
US4165402A (en) Chip-removing machining method and apparatus for semiconducting crystals, specifically suited for the production of force and pressure measuring cells
US3848329A (en) Method for producing a semiconductor strain sensitive element of an electromechanical semiconductor transducer
KR20160104561A (en) Magnetic sensor and method of manufacturing the same
US4180892A (en) Method for the manufacture of a force transducer
EP0100501B1 (en) Vibration sensor
CN110400772B (en) Electrostatic chuck and semiconductor processing equipment
JP3551745B2 (en) Manufacturing method of semiconductor acceleration sensor
US5456117A (en) Pressure sensor apparatus and method of manufacturing wherein the silicon-crystal substrate of the sensor has inclined crystallographic axes and gage resistors formed in a cavity of the substrate
CN112683628A (en) Rapid preparation method of non-conductive and non-magnetic ceramic material test sample strip
CN220440680U (en) Tuning fork type wafer clamp
KR102045105B1 (en) Methods of attaching a module on wafer substrate
CN114800926B (en) Method for processing polymer microsphere by ion beam
Haskell et al. State-of-the-art in the design and manufacture of low acceleration sensitivity resonators
JPH07174941A (en) Optical element coupling module for optical communication and its production
JP3493885B2 (en) Manufacturing method of semiconductor acceleration sensor
US20030218264A1 (en) Method of producing optical element forming die
JPH07118889B2 (en) Method for manufacturing hollow core shaft material
CN112705910A (en) Processing method of elastomer special for sensor
JP4291438B2 (en) Method for producing conductive ceramic molded product
JPH1158197A (en) Shape measuring method of optical element and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees