JP4143352B2 - Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas - Google Patents

Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas Download PDF

Info

Publication number
JP4143352B2
JP4143352B2 JP2002216426A JP2002216426A JP4143352B2 JP 4143352 B2 JP4143352 B2 JP 4143352B2 JP 2002216426 A JP2002216426 A JP 2002216426A JP 2002216426 A JP2002216426 A JP 2002216426A JP 4143352 B2 JP4143352 B2 JP 4143352B2
Authority
JP
Japan
Prior art keywords
methane
catalyst
exhaust gas
oxidizing
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002216426A
Other languages
Japanese (ja)
Other versions
JP2004057868A (en
Inventor
大塚浩文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002216426A priority Critical patent/JP4143352B2/en
Publication of JP2004057868A publication Critical patent/JP2004057868A/en
Application granted granted Critical
Publication of JP4143352B2 publication Critical patent/JP4143352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メタンを含有するとともに、少なくとも硫黄酸化物を含有し酸素を過剰に含む燃焼排ガス中のメタンの酸化用触媒および酸化除去方法に関する。ここで、酸素を過剰に含むとは、該排ガスが、それが含む炭化水素や一酸化炭素等の還元性成分を完全酸化するに足る量以上に、酸素や窒素酸化物などの酸化性成分を含むことを意味する。
【0002】
【従来の技術】
排ガス中の炭化水素の酸化用触媒として、白金やパラジウム等の白金族金属を担持した触媒が高い性能を示すことが知られている。例えば、特開昭51-106691号公報にはアルミナ担体に白金とパラジウムを担持した排ガス浄化用触媒が開示されている。しかしこれらの触媒を用いても、天然ガスの燃焼排ガスのように炭化水素の主成分がメタンである場合には,メタンの化学的安定性が高いため、十分な炭化水素の酸化性能を得るには、多量の貴金属を担持する必要がある。
また、燃焼排ガス中には通常硫黄酸化物などの阻害物質が共存し、性能が経時的に著しく劣化することが知られている。灯油や軽油などの石油系燃料は、通常含硫黄化合物を含む。また本来ほとんど硫黄化合物を含まない天然ガス燃料であっても、通常の都市ガスには、付臭剤として含硫黄有機化合物が添加されている。これらの含硫黄有機化合物は燃焼によって硫黄酸化物を生成する。
ランパート(Lampert)らは、アプライドキャタリシスB:エンバイロンメンタル(Applied Catalysis B: Environmental)14巻211-223頁(1997年)に、パラジウム触媒を用いたメタン酸化の結果を報告しているが、わずかに0.1 ppmの二酸化硫黄の存在が、数時間のうちにメタン酸化性能をほとんど失わせることを示し、硫黄酸化物の存在が性能に大きな影響を与えることを明らかにしている。山本らは、平成8年度触媒研究発表会講演予稿集(平成8年9月13日発行)においてアルミナに白金及びパラジウムを担持した触媒を用いた、都市ガスを燃料とする排ガス中の炭化水素の酸化除去の結果を報告しているが、100時間程度の間に顕著な除去率の低下が見られる。特開平11-188237号公報は、アルミナ担体にクロムとロジウムとを担持した触媒による燃焼排ガス中の炭化水素の酸化性能を開示しているが、高価な貴金属を多量に必要とする上に、二酸化硫黄の共存下で経時的劣化を示す点が問題である。
このように従来技術の大きな問題点は、メタンに対して高い酸化性能が得難く、また水蒸気や硫黄酸化物が共存する条件で大きな性能の低下が起こるために、長期にわたって高い除去率を得るには、多量の貴金属を担持する必要があり結果として高価となることである。
このような実状に鑑みて、特開平11-319559号公報には、パラジウムまたはパラジウム及び白金を担持したジルコニアが、硫黄酸化物共存下でも高いメタン酸化活性を維持する触媒として開示されている。しかしながら、この触媒であっても、高いメタン除去率を得るためには、好ましくは2重量%程度またはそれ以上の貴金属担持量を要するため、なお経済的には問題がある。
【0003】
卑金属触媒は、安価ではあるが性能は十分ではないと考えられている。例えば、フリツァニ−ステファノパウロス(Flytzani-Stephanopoulos)らは。ジャーナル・オブ・キャタリシス(Journal of Catalysis)第153巻304ページ(1995年)において、Cu0.15Ce0.85Ox等の組成を持つ蛍石型遷移金属複合酸化物によるメタン酸化試験の結果を報告しているがその性能は十分なものとは言い難い。ジー(Xie)らは、キャタリシス・レターズ(Catalysis Letters)第75巻73ページ(2001年)において、クロムとスズの複合酸化物が、水蒸気や硫黄酸化物の共存下、500℃程度の温度であってもメタンを酸化できることを示した。この触媒は、卑金属触媒としては非常に高い性能を示すものの、なお実用的には十分な性能とは言えない上に、製造工程が複雑で工業的な製造には困難が伴う。
【0004】
【発明が解決しようとする課題】
本発明は、かかる状況に鑑みて行われたものであって、その主な目的とするところは、メタンを含有するとともに、少なくとも硫黄酸化物を含有し酸素を過剰に含む燃焼排ガス中のメタンの酸化除去において、経済性に優れ、かつ、高い性能を有する触媒を提供することにある。
【0005】
【課題を解決するための手段】
発明者は、鋭意検討を重ねた結果、クロムとジルコニウムの複合酸化物が、硫黄酸化物による阻害に対して高い抵抗性を示し、少なくとも硫黄酸化物及びメタンを含む燃焼排ガスの条件下においても安定して高いメタン酸化性能を維持することを見出した。
本発明はかかる知見に基づきなされたもので、下記の排ガス中のメタンの酸化用触媒及び排ガス中のメタンの酸化除去方法を提供する。
(1)クロムとジルコニウムの複合酸化物からなり、少なくとも硫黄酸化物及びメタンを含む燃焼排ガス中のメタンを酸化除去するための酸化用触媒。
(2)貴金属として、パラジウム、白金、イリジウム、イリジウムと白金、の何れかをさらに担持してなる請求項1に記載の酸化用触媒。
(3)請求項1又は2に記載の燃焼排ガス中のメタンを酸化除去するための酸化用触媒に、少なくとも硫黄酸化物及びメタンを含む燃焼排ガスを接触させ、当該燃焼排ガス中のメタンを酸化除去する燃焼排ガス中のメタンの酸化除去方法。
【0006】
【発明の実施の形態】
本発明の少なくとも硫黄酸化物及びメタンを含む排ガス中のメタンを酸化除去するための酸化用触媒は、クロムとジルコニウムの複合酸化物からなる。
【0007】
本発明の触媒の製造には、公知の方法が適用できる。例えば、(1)クロムとジルコニウムのイオンを含む溶液から、共沈法によりクロムとジルコニウムの混合水酸化物の沈殿を得て、これを焼成することによりクロムとジルコニウムの複合酸化物を得る。(2)水酸化ジルコニウムに水溶性クロム化合物の水溶液を含浸し、蒸発乾固してクロムとジルコニウムの複合酸化物を得る。
【0008】
(1)の方法は、クロムとジルコニウムの混合が極めて均一に行われるため、複合酸化物相の形成が良好であるが、廃水処理等の問題を有する。これに対し(2)の方法では、廃水処理の必要がなく、製造が容易である。
【0009】
以下(2)の方法について詳細に説明する。水酸化ジルコニウムは、通常の市販品を用いればよい。ただし、乾燥温度があまりに高いものは、既に酸化ジルコニウムとしての結晶化が進んでいるため、複合酸化物の形成が不良となる恐れがある。従って、含水量が10重量%以上であることが望ましい。クロムの水溶性塩としては、塩化クロム(III)、硝酸クロム(III)、酢酸クロム(III)などが例示できる。この中では、酢酸クロム(III)が製造時に有害なガスを発生しないため取り扱いが容易である。
【0010】
クロムとジルコニウムの混合比は、モル基準で、1:4〜4:1程度とするのがよく、より好ましくは1:1〜1:3の範囲とする。この範囲以外では、複合酸化物よりも酸化クロムあるいは酸化ジルコニウムが主成分となって十分な性能が得られない恐れがある。水酸化ジルコニウムにクロム化合物の水溶液を含浸した後、蒸発乾固、焼成することにより本発明の触媒を得る。焼成の温度は高すぎると焼結が進んで比表面積が低下するために性能が低下する恐れがあり、低すぎても安定な複合酸化物層が形成されないため、良好な性能を得るには500〜700℃程度とするのがよく、550〜650℃程度とするのがより好ましい。このようにして得られる本発明の触媒は、通常60〜200m2/gのBET比表面積を有する。
なお、通常の酸化ジルコニウムにクロム化合物の水溶液を含浸しても、実質的に酸化クロムと酸化ジルコニウムとの混合物を形成するのみで、上記のような高い比表面積とはならず、十分な性能は得られない。
上記で得た、クロムとスズの複合酸化物に必要に応じて白金族金属を含浸担持することにより、さらに高性能の触媒を得ることができる。白金族金属としては、白金、パラジウム、ロジウム、イリジウムなどが使用できるが、この中ではパラジウムおよびイリジウムが特に好ましい。また、これらの白金族金属の2種以上を合わせて用いてもよい。これらの金属の含浸は、塩化白金酸、テトラアンミン白金硝酸塩、塩化イリジウム酸、硝酸パラジウム、硝酸ロジウムなどの水溶性の化合物を水に溶解した溶液を用いて行う。このほか、トリス(アセチルアセトナト)イリジウム、ビス(アセチルアセトナト)白金、などの有機金属化合物をアセトンなどに溶解した有機溶媒溶液で行っても良い。また、必要に応じて水に水溶性の有機溶媒を加えた混合溶媒としてもよい。
また、前記の貴金属塩は、その種類によっては混合により沈殿を生じる場合があるので、このような場合には、貴金属を1種類ずつ順番に担持しても良く、このとき、次の担持までの間では、適宜乾燥や仮焼などの工程を入れても良い。
貴金属の担持量は、少なすぎると触媒活性が低く、また多すぎると経済的に不利となるので、好ましくは複合酸化物の重量に対して0.1乃至1%、より好ましくは0.3乃至0.8%とする。貴金属担持後に再度焼成を行う。焼成温度は高すぎると、担持された貴金属の粒成長が進んで高い活性が得られない。逆に低すぎても焼成の効果が無く触媒の使用中に貴金属の粒成長が進んで安定した活性が得られないおそれがある。従って、安定して高い活性をうるためには、焼成の温度は450℃から650℃の範囲とするのがよく、より好ましくは500℃から600℃の範囲とするのがよい。
本発明の触媒は、ペレット状やハニカム状など任意の形状に成型して用いても良く、耐火性ハニカム上にウオッシュコートしたりして用いてもよいが、好ましくは耐火性ハニカム上にウオッシュコートして用いられる。
本発明の排ガス中のメタンの酸化除去方法は、上記で得られた触媒を用いることを特徴とする。触媒量は、少なすぎると有効な除去率が得られないので、ガス時間当たり空間速度(GHSV)で100,000h-1以下で使用するのが望ましい。ガス時間当たり空間速度(GHSV)を低くするほど触媒量が多くなるため、除去率は向上するが、例えば5,000h-1以下で用いるような場合には経済性の問題に加えて、触媒層での圧力損失が大きくなる問題が生じるおそれがある。また処理ガス中の酸素濃度が極端に低い場合には、反応速度が低下するので、体積基準の酸素濃度として、2%以上であり、かつガス中の炭化水素などの還元性成分の酸化当量の5倍以上の酸素が存在することが好ましい。このとき排ガス中の酸素濃度が十分高くないときには、あらかじめ所要の量の空気を混ぜてもよい。
本発明の排ガス中のメタンを酸化除去するための酸化用触媒は、高い活性を有するが、あまりに低温では活性が下がり、所望の除去率が得られない恐れがあるので、触媒層温度が400℃以上に保たれるようにするのが好ましい。また600℃を超えるような温度での使用では、触媒の耐久性が悪化するおそれがある。また、メタンの濃度が著しく高いときには、触媒層で急激な反応が起こって、触媒の耐久性に影響を及ぼすので、触媒層での温度上昇が150℃以下となる条件で用いるのが好ましい。
燃焼排ガス中には、通常5〜15%程度の水蒸気が含まれているが、本発明の方法によれば、このように水蒸気を含む排ガスに対しても有効なメタンの除去率が得られる。排ガス中には、この他に触媒活性を著しく低下させることが知られている硫黄酸化物が通常含まれるが、本発明の触媒は硫黄成分による活性低下に対して高い抵抗性を示すので、メタンの除去率が高く維持される。
【0011】
【実施例】
以下、実施例および比較例に基づき、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1(Cr-Zr複合酸化物Aの調製)]
オキシ硝酸ジルコニル(ZrO(NO3)2・2H2O) 40gを300mlの水に溶解した水溶液と、塩化クロム(CrCl3・6H2O) 26.7gを100mlの水に溶解した水溶液とを混合した。この混合溶液を攪拌しながら、アンモニア水を添加しpHを8.6とした。さらに室温で2時間攪拌を続けたのち濾過し、200mlの水で3回洗浄した。165℃で1時間乾燥した後、粉砕してさらに200mlの水で3回洗浄した。これを乾燥後600℃で6時間焼成してクロム−ジルコニウム複合酸化物(以下"Cr-Zr複合酸化物A"と記す)を得た。BET法による比表面積は133m2/gであった。
[実施例2(Cr-Zr複合酸化物Bの調製)]
水酸化ジルコニウム(ZrO2・nH2O;ZrO2として79重量%含有) 60gに酢酸クロム(Cr(OAc)3・nH2O;Crとして22.5重量%含有) 60gを100mlの水に溶解した水溶液を含浸した。このスラリーを4時間攪拌後、エバポレーターで蒸発乾固した。さらに、150℃で1時間乾燥した後、600℃で6時間焼成してクロム−ジルコニウム複合酸化物(以下"Cr-Zr複合酸化物B"と記す)を得た。BET法による比表面積は111m2/gであった。
[比較例1(Cr2O3-ZrO2の調製)]
市販の酸化ジルコニウム(日本電工製;N-PC;比表面積 35m2/g)20gに酢酸クロム(Cr(OAc)3・nH2O;Crとして22.5重量%含有) 25gを25mlの水に溶解した水溶液を含浸した。このスラリーを4時間攪拌後、エバポレーターで蒸発乾固した。さらに、150℃で1時間乾燥した後、600℃で6時間焼成して酸化クロム−酸化ジルコニウム触媒(以下"Cr2O3-ZrO2"と記す)を得た。BET法による比表面積は25m2/gであった。
[実施例3(Pd/Cr-Zr複合酸化物の調製)]
パラジウムとして0.06gを含有する硝酸パラジウムの水溶液10gに、実施例2で調製したCr-Zr複合酸化物B12gを5時間浸漬し、蒸発乾固後、550℃で6時間焼成して、0.5%Pd/Cr-Zr複合酸化物を得た。
[実施例4(Pt/Cr-Zr複合酸化物の調製)]
白金として0.04gを含有するテトラアンミン白金硝酸塩の水溶液10gに、実施例2で調製したCr-Zr複合酸化物B8gを5時間浸漬し、蒸発乾固後、550℃で6時間焼成して、0.5%Pt/Cr-Zr複合酸化物を得た。
[実施例5(Ir/Cr-Zr複合酸化物の調製)]
イリジウムとして0.06gを含有する塩化イリジウム酸(H2IrCl6)の水溶液10gに、実施例2で調製したCr-Zr複合酸化物B12gを5時間浸漬し、蒸発乾固後、600℃で6時間焼成して、0.5% Ir/Cr-Zr複合酸化物を得た。
[実施例6(Ir-Pt/Cr-Zr複合酸化物の調製)]
イリジウムとして0.06gを含有する塩化イリジウム酸水溶液と、白金として0.024gを含有する塩化白金酸(H2PtCl6)水溶液とに純水を加えて10mlとした溶液に、実施例2で調製したCr-Zr複合酸化物B12gを5時間浸漬し、蒸発乾固後、600℃で6時間焼成して、0.5% Ir- 0.2% Pt/Cr-Zr複合酸化物を得た。
[比較例2(0.5%Pd/アルミナの調製)]
パラジウムとして0.06gを含有する硝酸パラジウム水溶液14gに、アルミナ(ローヌ・プーラン社製、Pural-SB)を750℃で焼成したもの12gを4時間浸漬し、蒸発乾固後、550℃で6時間焼成して、0.5% Pd/アルミナを得た。
[実施例7(活性評価試験)]
実施例1〜6および比較例1〜2で調製した触媒を打錠成型し破砕して粒径を1mmに揃えた。これとは別に、市販の銅−マンガン系酸化触媒(ズードケミー触媒製;N-140)を破砕して同様に、粒径を1mmに揃えた。これらの3mlを反応管に充填し下記の条件で活性を評価した。まずメタン1000 ppm、酸素10%、水蒸気10%、残部窒素からなる組成のガスをGHSV(ガス時間当たり空間速度)30,000 h-1の条件にて流通し、触媒層温度450℃、500℃でメタン転化率を測定した。その後、窒素以外のガスの濃度はそのままとして二酸化硫黄3 ppmを添加し、触媒層温度を500℃に保って、メタン転化率の経時変化を測定した。30時間経過後、降温して450℃における二酸化硫黄添加後のメタン転化率を測定した。
反応層前後のガス組成は水素炎イオン化検知器を有するガスクロマトグラフにより測定した。500℃における二酸化硫黄添加前と添加1, 2, 5, 10, 20, 30時間後のメタン転化率(%)を表1に示す。また、二酸化硫黄添加前と添加後の450℃におけるメタン転化率を表2に示す。ここでメタン転化率とは、以下の式によって求められる値である。
【0012】
メタン転化率(%)=100×[1―(触媒層出口のメタン濃度)/(触媒層入口のメタン濃度)]
【0013】
【表1】

Figure 0004143352
【0014】
【表2】
Figure 0004143352
【0015】
クロムとジルコニウムの複合酸化物からなる実施例1,2の触媒は、触媒性能を低下させる効果の高い二酸化硫黄の共存下で安定したメタン転化率を示すことが分かる。これに対し、既に酸化ジルコニウムとして結晶化したものにクロムを担持した場合(比較例1)には、複合酸化物の形成が十分なされないために、活性は不十分である。また、卑金属触媒の中では酸化活性が高いとされる銅−マンガン触媒と比較すれば、本発明の触媒が高価な貴金属を用いない卑金属系触媒としては、格段の効果を奏すことが明らかである。
【0016】
クロムとジルコニウムの複合酸化物に、さらに白金族金属を添加した場合には、いずれも活性の向上が見られるが、なかでも特にパラジウムを添加したものの効果が高い。一方、メタン酸化に高い活性を有するとされている、アルミナにパラジウムを担持した触媒(比較例2)は、初期性能は非常に高いものの経時的な触媒性能の低下が顕著である。
【0017】
【発明の効果】
本発明の触媒は、燃焼排ガス条件のような水蒸気を大量に含む排ガス条件にあっても高いメタン酸化性能を持ち、また硫黄酸化物による阻害に対して高い抵抗性を持つため、排ガス中のメタンの酸化除去を経済的に有利な条件で行うことが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for oxidizing methane in a combustion exhaust gas containing at least sulfur oxide and containing oxygen in excess, and an oxidation removal method. Here, excessively containing oxygen means that the exhaust gas contains an oxidizing component such as oxygen or nitrogen oxide more than an amount sufficient to completely oxidize reducing components such as hydrocarbon and carbon monoxide. It means to include.
[0002]
[Prior art]
As a catalyst for oxidizing hydrocarbons in exhaust gas, it is known that a catalyst supporting a platinum group metal such as platinum or palladium exhibits high performance. For example, Japanese Patent Application Laid-Open No. 51-106691 discloses an exhaust gas purification catalyst in which platinum and palladium are supported on an alumina carrier. However, even when these catalysts are used, when the main component of hydrocarbon is methane, such as natural gas combustion exhaust gas, the chemical stability of methane is high, so that sufficient oxidation performance of hydrocarbons can be obtained. Needs to carry a large amount of noble metal.
Further, it is known that an inhibitor such as sulfur oxide usually coexists in the combustion exhaust gas, and the performance is remarkably deteriorated with time. Petroleum fuels such as kerosene and light oil usually contain sulfur-containing compounds. Moreover, even if it is a natural gas fuel which essentially does not contain sulfur compounds, sulfur-containing organic compounds are added as odorants to ordinary city gas. These sulfur-containing organic compounds generate sulfur oxides by combustion.
Lampert et al. Reported the results of methane oxidation using a palladium catalyst in Applied Catalysis B: Environmental, Vol. 14, pp. 211-223 (1997). The presence of only 0.1 ppm of sulfur dioxide has shown that methane oxidation performance is almost lost within a few hours, and the presence of sulfur oxide has a significant effect on performance. Yamamoto et al., Proceedings of the 1996 Catalyst Research Presentation (issued September 13, 1996), used a catalyst with platinum and palladium supported on alumina to determine the hydrocarbons in exhaust gas using city gas as fuel. Although the results of oxidation removal are reported, a remarkable decrease in the removal rate is observed in about 100 hours. Japanese Patent Application Laid-Open No. 11-188237 discloses the oxidation performance of hydrocarbons in combustion exhaust gas by a catalyst in which chromium and rhodium are supported on an alumina support. However, in addition to requiring a large amount of expensive noble metals, The problem is that it shows deterioration over time in the presence of sulfur.
As described above, the major problems of the prior art are that it is difficult to obtain high oxidation performance for methane, and a large reduction in performance occurs under the coexistence of water vapor and sulfur oxide. Is required to carry a large amount of noble metal, resulting in high cost.
In view of such a situation, JP-A-11-319559 discloses palladium or zirconia supporting palladium and platinum as a catalyst that maintains high methane oxidation activity even in the presence of sulfur oxides. However, even with this catalyst, in order to obtain a high methane removal rate, the amount of noble metal supported is preferably about 2% by weight or more, so that there is still a problem economically.
[0003]
Base metal catalysts are thought to be inexpensive but not sufficient in performance. For example, Flytzani-Stephanopoulos et al. Journal of Catalysis Vol.153, p.304 (1995) reports the results of methane oxidation tests using fluorite-type transition metal complex oxides with a composition such as Cu 0.15 Ce 0.85 Ox However, the performance is not enough. Xie et al. In Catalysis Letters Vol. 75, p. 73 (2001), a complex oxide of chromium and tin was heated to about 500 ° C in the presence of water vapor and sulfur oxide. Even showed that methane can be oxidized. Although this catalyst exhibits very high performance as a base metal catalyst, it cannot be said that it is practically sufficient, and the manufacturing process is complicated, and there are difficulties in industrial production.
[0004]
[Problems to be solved by the invention]
The present invention, which was made in view of such circumstances, the it is an primary object, as well as containing methane, at least sulfur oxides contained in the methane combustion flue gas excess oxygen containing An object of the present invention is to provide a catalyst that is excellent in economic efficiency and high performance in removing oxidation.
[0005]
[Means for Solving the Problems]
As a result of extensive studies, the inventor has shown that the composite oxide of chromium and zirconium exhibits high resistance to inhibition by sulfur oxide and is stable even under the conditions of combustion exhaust gas containing at least sulfur oxide and methane. And found that high methane oxidation performance is maintained.
The present invention has been made based on such knowledge, and provides the following catalyst for oxidizing methane in exhaust gas and a method for oxidizing and removing methane in exhaust gas.
(1) An oxidation catalyst for oxidizing and removing methane in a combustion exhaust gas comprising a composite oxide of chromium and zirconium and containing at least sulfur oxide and methane.
(2) The oxidation catalyst according to claim 1, further comprising any one of palladium, platinum, iridium, iridium and platinum as a noble metal.
(3) The oxidation catalyst for oxidizing and removing methane in the combustion exhaust gas according to claim 1 or 2 is brought into contact with the combustion exhaust gas containing at least sulfur oxide and methane, and the methane in the combustion exhaust gas is oxidized and removed. To remove methane from combustion exhaust gas.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The oxidation catalyst for oxidizing and removing methane in exhaust gas containing at least sulfur oxide and methane of the present invention comprises a composite oxide of chromium and zirconium.
[0007]
A known method can be applied to the production of the catalyst of the present invention. For example, (1) A mixed hydroxide precipitate of chromium and zirconium is obtained from a solution containing ions of chromium and zirconium by a coprecipitation method, and this is fired to obtain a composite oxide of chromium and zirconium. (2) Zirconium hydroxide is impregnated with an aqueous solution of a water-soluble chromium compound and evaporated to dryness to obtain a composite oxide of chromium and zirconium.
[0008]
In the method (1), since mixing of chromium and zirconium is performed extremely uniformly, formation of a composite oxide phase is good, but there are problems such as waste water treatment. On the other hand, in the method (2), there is no need for wastewater treatment, and production is easy.
[0009]
Hereinafter, the method (2) will be described in detail. Zirconium hydroxide may be a normal commercial product. However, if the drying temperature is too high, crystallization as zirconium oxide has already progressed, and there is a risk that the formation of the composite oxide will be poor. Therefore, the water content is desirably 10% by weight or more. Examples of the water-soluble salt of chromium include chromium (III) chloride, chromium (III) nitrate, and chromium (III) acetate. Among them, chromium (III) acetate is easy to handle because it does not generate harmful gas during production.
[0010]
The mixing ratio of chromium and zirconium is preferably about 1: 4 to 4: 1 on a molar basis, and more preferably 1: 1 to 1: 3. Outside this range, chromium oxide or zirconium oxide is the main component rather than the composite oxide, and sufficient performance may not be obtained. After impregnating zirconium hydroxide with an aqueous solution of a chromium compound, the catalyst of the present invention is obtained by evaporating to dryness and calcination. If the firing temperature is too high, the sintering proceeds and the specific surface area decreases, so the performance may decrease.If it is too low, a stable composite oxide layer will not be formed. It is good to set it as about -700 degreeC, and it is more preferable to set it as about 550-650 degreeC. The catalyst of the present invention thus obtained usually has a BET specific surface area of 60 to 200 m 2 / g.
Even if normal zirconium oxide is impregnated with an aqueous solution of a chromium compound, it merely forms a mixture of chromium oxide and zirconium oxide, and does not have a high specific surface area as described above. I can't get it.
A higher-performance catalyst can be obtained by impregnating and supporting a platinum group metal as necessary on the composite oxide of chromium and tin obtained above. As the platinum group metal, platinum, palladium, rhodium, iridium and the like can be used, and among these, palladium and iridium are particularly preferable. Two or more of these platinum group metals may be used in combination. The impregnation of these metals is performed using a solution in which a water-soluble compound such as chloroplatinic acid, tetraammineplatinum nitrate, chloroiridic acid, palladium nitrate, and rhodium nitrate is dissolved in water. In addition, an organic solvent solution in which an organic metal compound such as tris (acetylacetonato) iridium or bis (acetylacetonato) platinum is dissolved in acetone or the like may be used. Moreover, it is good also as a mixed solvent which added the water-soluble organic solvent to water as needed.
In addition, the noble metal salt may cause precipitation due to mixing depending on the type thereof. In such a case, the noble metal may be supported one by one in order. In the meantime, a process such as drying or calcining may be appropriately inserted.
If the amount of the precious metal supported is too small, the catalyst activity is low, and if it is too large, it is economically disadvantageous. Therefore, it is preferably 0.1 to 1%, more preferably 0.3 to 0.8% based on the weight of the composite oxide. . After the noble metal is supported, firing is performed again. If the calcination temperature is too high, grain growth of the supported noble metal proceeds and high activity cannot be obtained. On the other hand, if it is too low, there is no effect of calcination, and there is a possibility that noble metal grains grow during use of the catalyst and stable activity cannot be obtained. Therefore, in order to obtain high activity stably, the firing temperature is preferably in the range of 450 ° C. to 650 ° C., more preferably in the range of 500 ° C. to 600 ° C.
The catalyst of the present invention may be used after being molded into an arbitrary shape such as a pellet shape or a honeycomb shape, and may be used by wash-coating on a fire-resistant honeycomb, preferably wash-coating on a fire-resistant honeycomb. Used.
The method for oxidizing and removing methane in exhaust gas of the present invention is characterized by using the catalyst obtained above. If the amount of the catalyst is too small, an effective removal rate cannot be obtained, so it is desirable to use it at a gas hourly space velocity (GHSV) of 100,000 h -1 or less. As the space velocity per gas hour (GHSV) decreases, the amount of catalyst increases, so the removal rate improves. For example, when used at 5,000 h -1 or less, in addition to economic problems, the catalyst layer There is a risk that the pressure loss will increase. In addition, when the oxygen concentration in the processing gas is extremely low, the reaction rate decreases, so that the oxygen concentration on a volume basis is 2% or more, and the oxidation equivalent of reducing components such as hydrocarbons in the gas. It is preferable that 5 times or more oxygen is present. At this time, if the oxygen concentration in the exhaust gas is not sufficiently high, a required amount of air may be mixed in advance.
Although the oxidation catalyst for oxidizing and removing methane in the exhaust gas of the present invention has high activity, the activity decreases at too low a temperature, and the desired removal rate may not be obtained, so the catalyst layer temperature is 400 ° C. It is preferable to maintain the above. In addition, when used at a temperature exceeding 600 ° C., the durability of the catalyst may deteriorate. Further, when the concentration of methane is extremely high, a rapid reaction occurs in the catalyst layer, which affects the durability of the catalyst. Therefore, it is preferably used under the condition that the temperature rise in the catalyst layer is 150 ° C. or less.
The combustion exhaust gas usually contains about 5 to 15% of water vapor, but according to the method of the present invention, an effective methane removal rate can be obtained even for the exhaust gas containing water vapor. In addition to this, sulfur oxides that are known to significantly reduce the catalyst activity are usually included in the exhaust gas, but the catalyst of the present invention exhibits high resistance to the activity reduction due to the sulfur component. The removal rate is kept high.
[0011]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to these Examples.
[Example 1 (Preparation of Cr—Zr composite oxide A)]
An aqueous solution in which 40 g of zirconyl oxynitrate (ZrO (NO 3 ) 2 · 2H 2 O) was dissolved in 300 ml of water and an aqueous solution in which 26.7 g of chromium chloride (CrCl 3 · 6H 2 O) was dissolved in 100 ml of water were mixed. . While stirring this mixed solution, aqueous ammonia was added to adjust the pH to 8.6. Further, stirring was continued at room temperature for 2 hours, followed by filtration and washing with 200 ml of water three times. After drying at 165 ° C. for 1 hour, it was pulverized and washed three times with 200 ml of water. This was dried and then calcined at 600 ° C. for 6 hours to obtain a chromium- zirconium composite oxide (hereinafter referred to as “Cr—Zr composite oxide A”). The specific surface area by the BET method was 133 m 2 / g.
[Example 2 (Preparation of Cr—Zr composite oxide B)]
Zirconium hydroxide (ZrO 2 · nH 2 O; containing 79 wt% as ZrO 2 ) 60 g of chromium acetate (Cr (OAc) 3 · nH 2 O; containing 22.5 wt% as Cr) dissolved in 100 ml of water Impregnated. The slurry was stirred for 4 hours and then evaporated to dryness with an evaporator. Further, after drying at 150 ° C. for 1 hour, calcination was performed at 600 ° C. for 6 hours to obtain a chromium-zirconium composite oxide (hereinafter referred to as “Cr—Zr composite oxide B”). The specific surface area by BET method was 111 m 2 / g.
[Comparative Example 1 (Preparation of Cr 2 O 3 -ZrO 2 )]
25 g of chromium acetate (Cr (OAc) 3 · nH 2 O; containing 22.5 wt% as Cr) was dissolved in 25 ml of water in 20 g of commercially available zirconium oxide (Nippon Denko; N-PC; specific surface area 35 m 2 / g). Impregnated with aqueous solution. The slurry was stirred for 4 hours and then evaporated to dryness with an evaporator. Furthermore, after drying at 150 ° C. for 1 hour, it was calcined at 600 ° C. for 6 hours to obtain a chromium oxide-zirconium oxide catalyst (hereinafter referred to as “Cr 2 O 3 —ZrO 2 ”). The specific surface area by BET method was 25 m 2 / g.
[Example 3 (Preparation of Pd / Cr-Zr composite oxide)]
12 g of Cr-Zr composite oxide B prepared in Example 2 was immersed in 10 g of an aqueous solution of palladium nitrate containing 0.06 g of palladium for 5 hours, evaporated to dryness, and calcined at 550 ° C. for 6 hours to give 0.5% Pd. / Cr-Zr composite oxide was obtained.
[Example 4 (Preparation of Pt / Cr-Zr composite oxide)]
8 g of Cr-Zr composite oxide B prepared in Example 2 was immersed in 10 g of an aqueous solution of tetraammineplatinum nitrate containing 0.04 g of platinum for 5 hours, evaporated to dryness, calcined at 550 ° C. for 6 hours, and 0.5% A Pt / Cr—Zr composite oxide was obtained.
[Example 5 (Preparation of Ir / Cr-Zr composite oxide)]
12 g of the Cr-Zr composite oxide B prepared in Example 2 was immersed in 10 g of an aqueous solution of iridium chloride (H 2 IrCl 6 ) containing 0.06 g as iridium for 5 hours, evaporated to dryness, and then at 600 ° C. for 6 hours. Firing was performed to obtain a 0.5% Ir / Cr—Zr composite oxide.
[Example 6 (Preparation of Ir-Pt / Cr-Zr composite oxide)]
The Cr prepared in Example 2 was added to a solution made up to 10 ml by adding pure water to an aqueous solution of chloroiridate containing 0.06 g as iridium and an aqueous solution of chloroplatinic acid (H 2 PtCl 6 ) containing 0.024 g as platinum. -Zr composite oxide B12g was immersed for 5 hours, evaporated to dryness, and then fired at 600 ° C for 6 hours to obtain 0.5% Ir-0.2% Pt / Cr-Zr composite oxide.
[Comparative Example 2 (Preparation of 0.5% Pd / Alumina)]
12 g of alumina (Pural-SB, manufactured by Rhône-Poulenc) calcined at 750 ° C. was immersed in 14 g of palladium nitrate aqueous solution containing 0.06 g of palladium for 4 hours, evaporated to dryness, and calcined at 550 ° C. for 6 hours. As a result, 0.5% Pd / alumina was obtained.
[Example 7 (activity evaluation test)]
The catalysts prepared in Examples 1-6 and Comparative Examples 1-2 were tableted and crushed to have a particle size of 1 mm. Separately from this, a commercially available copper-manganese oxidation catalyst (manufactured by Zude Chemie Catalyst; N-140) was crushed to similarly adjust the particle size to 1 mm. 3 ml of these were filled into a reaction tube and the activity was evaluated under the following conditions. First, a gas composed of 1000 ppm of methane, 10% oxygen, 10% water vapor, and the balance nitrogen was circulated under the condition of GHSV (space velocity per gas hour) 30,000 h- 1 , and methane at a catalyst layer temperature of 450 ° C and 500 ° C. Conversion was measured. Thereafter, 3 ppm of sulfur dioxide was added while maintaining the concentration of gases other than nitrogen, and the catalyst layer temperature was kept at 500 ° C., and the change in methane conversion over time was measured. After 30 hours, the temperature was lowered and the methane conversion rate after adding sulfur dioxide at 450 ° C. was measured.
The gas composition before and after the reaction layer was measured by a gas chromatograph having a hydrogen flame ionization detector. Table 1 shows the methane conversion (%) before addition of sulfur dioxide at 500 ° C and after 1, 2, 5, 10, 20, and 30 hours of addition. Table 2 shows the methane conversion at 450 ° C. before and after the addition of sulfur dioxide. Here, the methane conversion is a value obtained by the following equation.
[0012]
Methane conversion rate (%) = 100 × [1- (Methane concentration at catalyst layer outlet) / (Methane concentration at catalyst layer inlet)]
[0013]
[Table 1]
Figure 0004143352
[0014]
[Table 2]
Figure 0004143352
[0015]
It can be seen that the catalysts of Examples 1 and 2 composed of a complex oxide of chromium and zirconium exhibit a stable methane conversion rate in the presence of sulfur dioxide, which is highly effective in reducing the catalyst performance. On the other hand, when chromium is supported on what has already been crystallized as zirconium oxide (Comparative Example 1), the formation of the complex oxide is not sufficient, and the activity is insufficient. In addition, it is clear that the catalyst of the present invention has a remarkable effect as a base metal catalyst that does not use an expensive noble metal as compared with a copper-manganese catalyst that is considered to have high oxidation activity among base metal catalysts. .
[0016]
When a platinum group metal is further added to the composite oxide of chromium and zirconium, the activity is improved in all cases, but the effect of adding palladium is particularly high. On the other hand, the catalyst supporting palladium on alumina (Comparative Example 2), which is said to have high activity in methane oxidation, has a very high initial performance, but has a remarkable decrease in catalyst performance over time.
[0017]
【The invention's effect】
The catalyst of the present invention has a water vapor high methane oxidation performance even in exhaust gas conditions including a large amount, such as flue gas conditions, also because of its high resistance to inhibition by sulfur oxides, methane in the exhaust gas Oxidation removal can be carried out under economically advantageous conditions.

Claims (3)

クロムとジルコニウムの複合酸化物からなり、少なくとも硫黄酸化物及びメタンを含む燃焼排ガス中のメタンを酸化除去するための酸化用触媒。 An oxidation catalyst for oxidizing and removing methane in a combustion exhaust gas comprising a complex oxide of chromium and zirconium and containing at least sulfur oxide and methane. 貴金属として、パラジウム、白金、イリジウム、イリジウムと白金、の何れかをさらに担持してなる請求項1に記載の酸化用触媒。  The oxidation catalyst according to claim 1, further comprising any one of palladium, platinum, iridium, iridium and platinum as a noble metal. 請求項1又は2に記載の燃焼排ガス中のメタンを酸化除去するための酸化用触媒に、少なくとも硫黄酸化物及びメタンを含む燃焼排ガスを接触させ、当該燃焼排ガス中のメタンを酸化除去する燃焼排ガス中のメタンの酸化除去方法。Combustion exhaust gas for contacting the combustion exhaust gas containing at least sulfur oxide and methane with the oxidation catalyst for oxidizing and removing methane in the combustion exhaust gas according to claim 1 or 2, and oxidizing and removing methane in the combustion exhaust gas Of oxidation removal of methane.
JP2002216426A 2002-07-25 2002-07-25 Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas Expired - Fee Related JP4143352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216426A JP4143352B2 (en) 2002-07-25 2002-07-25 Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216426A JP4143352B2 (en) 2002-07-25 2002-07-25 Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas

Publications (2)

Publication Number Publication Date
JP2004057868A JP2004057868A (en) 2004-02-26
JP4143352B2 true JP4143352B2 (en) 2008-09-03

Family

ID=31938193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216426A Expired - Fee Related JP4143352B2 (en) 2002-07-25 2002-07-25 Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas

Country Status (1)

Country Link
JP (1) JP4143352B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960580B2 (en) * 2004-03-08 2012-06-27 大阪瓦斯株式会社 Hydrocarbon removal catalyst and hydrocarbon removal method thereof
WO2010101636A2 (en) * 2009-03-02 2010-09-10 Sud-Chemie Inc. Promoted zirconium oxide catalyst support
JP5738231B2 (en) * 2012-05-07 2015-06-17 株式会社ノリタケカンパニーリミテド Exhaust gas purification catalyst material and method for producing the same
CN115870014A (en) * 2019-01-18 2023-03-31 康明斯排放处理公司 Treated SCR catalyst with enhanced sulfur resistance

Also Published As

Publication number Publication date
JP2004057868A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
EP1356863B1 (en) Method of purifying methane-containing waste gas
JP5030818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
CN100453173C (en) Exhaust gas-purifying catalyst
JP4688646B2 (en) Three-way catalyst and methane-containing gas purification method using the same
JP4025945B2 (en) Methane-containing exhaust gas purification catalyst and methane-containing exhaust gas purification method
JP4901366B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP2009262132A (en) Catalyst for purification of exhaust gas and method of purifying exhaust gas
JP5836149B2 (en) Methane oxidation removal catalyst and methane oxidation removal method
JP4143352B2 (en) Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas
JP4052866B2 (en) Catalyst for oxidizing hydrocarbons in exhaust gas and method for oxidizing and removing hydrocarbons in exhaust gas
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP6614897B2 (en) Methane oxidation removal catalyst manufacturing method and methane oxidation removal method
JP4568640B2 (en) Methane-containing exhaust gas purification method, methane-containing exhaust gas purification pretreatment method and three-way catalyst using the same
JP2002253969A (en) Catalyst for purifying waste gas and method of purifying waste gas
JP2013215718A (en) Catalyst and method for oxidizing and removing methane
JP6103955B2 (en) Methane oxidation removal catalyst and methane oxidation removal method
JP6771330B2 (en) Method for manufacturing catalyst for removing methane oxidation and method for removing methane oxidation
JP5610805B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4014266B2 (en) Purification catalyst for methane-containing exhaust gas and method for purifying methane in exhaust gas using the catalyst
JP4171849B2 (en) Hydrocarbon-containing exhaust gas purification catalyst and hydrocarbon-containing exhaust gas purification method
JP5030880B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP5825947B2 (en) Methane oxidation removal catalyst and methane oxidation removal method
JP4162411B2 (en) Catalyst for oxidation of methane in exhaust gas and oxidation removal method of methane in exhaust gas
JPH10314591A (en) Catalyst for purifying combustion exhaust gas containing methane and process for purification
JP2016165707A (en) Three-way catalyst, and method for clarification of methane-containing gas using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20041210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees