JP4143209B2 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP4143209B2
JP4143209B2 JP07997699A JP7997699A JP4143209B2 JP 4143209 B2 JP4143209 B2 JP 4143209B2 JP 07997699 A JP07997699 A JP 07997699A JP 7997699 A JP7997699 A JP 7997699A JP 4143209 B2 JP4143209 B2 JP 4143209B2
Authority
JP
Japan
Prior art keywords
refrigerant liquid
heat transfer
distillation column
capacitor
liquid tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07997699A
Other languages
Japanese (ja)
Other versions
JP2000271405A (en
Inventor
信二 酒井
伸彦 津井
実 瀬戸
昌司 田中
宏 八木
敦詞 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Tokyo Gas Co Ltd
Original Assignee
Chiyoda Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Tokyo Gas Co Ltd filed Critical Chiyoda Corp
Priority to JP07997699A priority Critical patent/JP4143209B2/en
Publication of JP2000271405A publication Critical patent/JP2000271405A/en
Application granted granted Critical
Publication of JP4143209B2 publication Critical patent/JP4143209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸留カラムの頂部に設けられた凝縮管を冷媒液槽内の冷媒液に浸漬し、蒸留カラムから上昇した凝縮性ガスを凝縮すると共に生成した凝縮液を自然流下で蒸留カラムに環流させるようにしたコンデンサに関するものである。
【0002】
【従来の技術】
蒸留カラムを多数集合させた構成の蒸留装置では、各蒸留カラムの頂部に設けられた凝縮管を冷媒液槽内の冷媒液に浸漬し、蒸留カラムから上昇した凝縮性ガスを凝縮すると共に生成した凝縮液を自然流下で蒸留カラムに環流させるようにした構成のコンデンサが採用されることがある。
【0003】
【発明が解決しようとする課題】
このような構成のコンデンサでは、冷媒液槽内での冷媒液の自然対流と凝縮管の円筒壁での熱交換に依存した単純な構成となっており、伝熱性能が高いとは言い難い。特に、凝縮性ガスとの温度差が小さい冷媒液では、凝縮に必要な伝熱性能が得られ難く、伝熱性能を高めることが望まれる。また、液面を調整することで伝熱量の制御が可能であるが、単に伝熱性能を高めただけでは伝熱量の精密な制御が困難となる。
【0004】
本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、伝熱性能を向上させると同時に精密な熱量制御が可能なように構成されたコンデンサを提供することにある。
【0005】
【課題を解決するための手段】
このような目的を果たすために、本発明においては、蒸留カラムの頂部に設けられた凝縮管を冷媒液槽内の冷媒液に浸漬して、蒸留カラムから上昇した凝縮性ガスを凝縮すると共に生成した凝縮液を自然流下で蒸留カラムに環流させるようにしたコンデンサにおいて、前記凝縮管に、第1の冷媒液槽に浸漬された大容量伝熱部と、前記第1の冷媒液槽と独立して液面を調整可能に仕切られた第2の冷媒液槽に浸漬された小容量伝熱部とを設け、前記大容量伝熱部は、前記第1の冷媒液槽内の冷媒液が流通可能な上下方向の内管が複数設けられた拡径部を有するものとした。
【0006】
これによると、大容量の伝熱を確保しつつ、必要に応じて第2の冷媒液槽の液面を調整することで、精密な伝熱量の制御が可能となる。この場合、第1の冷媒液槽の液面の調整も可能であり、これにより幅の広い伝熱量制御が可能となる。
【0007】
特に、前記大容量伝熱部は、前記第1の冷媒液槽内の冷媒液が流通可能な内管が複数設けられた拡径部を有するため、容量をさほど増大することなく大きな伝熱面積を確保し、高い伝熱性能を得ることができる。
【0008】
【発明の実施の形態】
以下に添付の図面を参照して本発明の構成を詳細に説明する。
【0009】
図1は、本発明によるコンデンサが適用された蒸留装置の概略構成を示している。この蒸留装置は、常温以下の温度条件で蒸留操作を行うものであり、本発明によるコンデンサ1と、充填材が充填された複数の蒸留カラム2と、凝縮液を加熱蒸発させるリボイラ3とを1つの断熱容器4内に収容してなっている。これらコンデンサ1、蒸留カラム2並びにリボイラ3は図示しない支持部材を介して断熱容器4に支持される。
【0010】
コンデンサ1では、各蒸留カラム2の上端に設けられた凝縮管5が冷媒液に浸漬され、蒸留カラム2から上昇した凝縮性ガスを凝縮するようになっている。凝縮管5内で生成した凝縮液は流下して蒸留カラム2に環流される。またここでは、リボイラ3において、リボイラ容器7に滞留する液が電源9により動作される電熱ヒータ8で加熱されるようになっている。被蒸留物は、蒸留カラム2の中段に送入され、凝縮管5の頂部から低沸点成分が、リボイラ容器7から高沸点成分がそれぞれ引き抜かれる。
【0011】
コンデンサ1の凝縮管5には、第1の冷媒液槽としてのコンデンサ容器10の冷媒液に浸漬された大容量伝熱部11と、コンデンサ容器10の冷媒液と独立して液面を調整可能に仕切られた第2の冷媒液槽としての液受けパン12内の冷媒液に浸漬された小容量伝熱部13とが設けられている。小容量伝熱部13は、大容量伝熱部11の上方に凝縮管5を単に延出させたものである。なお、ここでは大容量伝熱部11を小容量伝熱部13の下側に設けたが、これと逆の態様も可能である。
【0012】
大容量伝熱部11は、図2に詳しく示すように、コンデンサ容器10内の冷媒液が流通可能な上下方向の内管15が複数設けられた拡径部16からなっている。この拡径部16は、蒸留カラム2の組み付け作業等の関係から所定間隔を保持して配置される凝縮管5の間隙内で形成すれば、コンデンサ1に実質的な容積の増大はない。
【0013】
凝縮管5の拡径部16は、凝縮管5と同軸的な筒状部17と、その端部開口を閉鎖する上下の端板18・19とからなっており、この上下の端板18・19間に架設された態様で内管15が設けられ、内管15の内部が上下の開口から液相中に開放されている。ここでは、内管15が、図3に示すように、凝縮管5の軸線を中心にして周方向に複数本配設されている。内管15には、図4に示すように、外周面から径方向に突出したフィン20を設けると良い。
【0014】
このように構成されたコンデンサ1の大容量伝熱部11においては、図2中に矢印で示すように、内管15内の冷媒液にサーモサイホン作用により上向流が発生し、内管15が伝熱管として機能し、この内管15の外面並びに拡径部16の内面から凝縮性ガスに冷熱を伝達する。
【0015】
さらに、冷媒液に、凝縮性ガスの凝縮点以下の沸点を有するもの、例えば凝縮性ガスがメタンである場合に冷媒に液化窒素や液化メタンを使用すると、凝縮性ガスとの熱交換により冷媒液が沸騰を起こし、この冷媒液の沸騰により発生する気泡の上昇により、内管15内の冷媒液を上向きに押し上げるガスリフト効果が生じ、内管15内の冷媒液流通量が増大する。これにより大容量の伝熱を実現することができる。
【0016】
他方、小容量伝熱部13においては、凝縮管5の円筒壁面のみで熱交換が行われ、その伝熱面積が小さいため、液受けパン12内の冷媒液面Aを調整することで、精密な伝熱量の制御が可能となる。
【0017】
図2に示すように、拡径部16が完全に浸漬されていると、伝熱量が内管15内の気泡の上昇速度に支配される関係上、伝熱量の制御が困難である。これに対して、図5に示すように、コンデンサ容器10内の冷媒液面Bから拡径部16を一部露出させ、この拡径部16の露出面における内管15の開口部分から冷媒液面Bに至る範囲に濡れ壁Cを形成すると、伝熱量を大幅に増大することができる上に、冷媒液面Bの調整により濡れ壁Cの面積を増減することで伝熱量の制御が可能となり、これにより幅の広い伝熱量制御を行うことができる。なお、冷媒液面Bから拡径部16を一部露出させて内管15の上部開口を気相中に開放させても、冷媒液の沸騰によるガスリフト効果により内管15の上部開口から冷媒液が溢れ出し、この冷媒液が拡径部16の外面を伝って流下することによりここに濡れ壁Cが形成される。
【0018】
【発明の効果】
このように本発明によれば、大容量の伝熱を確保しつつ、必要に応じて第2の冷媒液槽の液面を調整することで、精密な伝熱量の制御が可能となる。特に大容量伝熱部を、第1の冷媒液槽内の冷媒液が流通可能な内管が複数設けられた拡径部を有するものとすると、容量をさほど増大することなく大きな伝熱面積を確保することができ、高い伝熱性能と精密な熱量制御とを同時に実現する上で大きな効果が得られる。
【図面の簡単な説明】
【図1】本発明によるコンデンサが適用された蒸留装置の概略構成を示す縦断面図。
【図2】図1に示したコンデンサの拡大縦断面図。
【図3】図1に示したコンデンサの拡大横断面図。
【図4】コンデンサにおける内管にフィンを設けた例を示す横断面図。
【図5】図1に示したコンデンサに濡れ壁を形成した状態を示す図2と同様の断面図。
【符号の説明】
1 コンデンサ
2 蒸留カラム
3 リボイラ
4 断熱容器
5 凝縮管
7 リボイラ容器
8 電熱ヒータ
9 電源
10 コンデンサ容器
11 大容量伝熱部
12 液受けパン
13 小容量伝熱部
15 内管
16 拡径部
17 筒状部
18・19 端板
20 フィン
A・B 冷媒液面
C 濡れ壁
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a condensing tube provided at the top of a distillation column is immersed in a refrigerant liquid in a refrigerant liquid tank to condense the condensable gas rising from the distillation column and recirculate the generated condensate to the distillation column under natural flow. This is related to the capacitor.
[0002]
[Prior art]
In a distillation apparatus having a structure in which a large number of distillation columns are assembled, a condensing tube provided at the top of each distillation column is immersed in the refrigerant liquid in the refrigerant liquid tank to condense and generate the condensable gas rising from the distillation column. A condenser having a configuration in which the condensate is refluxed to the distillation column under a natural flow may be employed.
[0003]
[Problems to be solved by the invention]
The capacitor having such a configuration has a simple configuration depending on natural convection of the refrigerant liquid in the refrigerant liquid tank and heat exchange in the cylindrical wall of the condenser tube, and it is difficult to say that the heat transfer performance is high. In particular, it is difficult to obtain the heat transfer performance necessary for condensation in a refrigerant liquid having a small temperature difference from the condensable gas, and it is desired to improve the heat transfer performance. In addition, although the amount of heat transfer can be controlled by adjusting the liquid level, it is difficult to precisely control the amount of heat transfer simply by improving the heat transfer performance.
[0004]
The present invention has been devised to solve such problems of the prior art, and its main purpose is to improve heat transfer performance and at the same time be capable of precise heat control. It is to provide a capacitor.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, in the present invention, a condensing tube provided at the top of the distillation column is immersed in the refrigerant liquid in the refrigerant liquid tank to condense and generate the condensable gas rising from the distillation column. In the condenser in which the condensed liquid is recirculated to the distillation column under a natural flow, the large capacity heat transfer section immersed in the first refrigerant liquid tank and the first refrigerant liquid tank are provided in the condenser tube. And a small-capacity heat transfer section immersed in a second refrigerant liquid tank partitioned so that the liquid level can be adjusted , and the large-capacity heat transfer section allows the refrigerant liquid in the first refrigerant liquid tank to circulate. It has a diameter-expanded portion provided with a plurality of possible vertical inner tubes .
[0006]
According to this, it is possible to precisely control the amount of heat transfer by adjusting the liquid level of the second refrigerant liquid tank as necessary while securing a large capacity of heat transfer. In this case, it is also possible to adjust the liquid level of the first refrigerant liquid tank, thereby making it possible to control the heat transfer amount with a wide range.
[0007]
In particular, the large volumetric heat transfer unit, because it has a enlarged diameter portion in which the refrigerant fluid can flow a inner tube of the first refrigerant fluid tank is provided with a plurality, larger heat transfer area without increasing the capacity less And high heat transfer performance can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0009]
FIG. 1 shows a schematic configuration of a distillation apparatus to which a condenser according to the present invention is applied. This distillation apparatus performs a distillation operation under a temperature condition of room temperature or lower, and includes a condenser 1 according to the present invention, a plurality of distillation columns 2 filled with a filler, and a reboiler 3 that heats and evaporates the condensate. It is accommodated in one insulated container 4. The condenser 1, the distillation column 2 and the reboiler 3 are supported by the heat insulating container 4 via a support member (not shown).
[0010]
In the condenser 1, a condensing tube 5 provided at the upper end of each distillation column 2 is immersed in the refrigerant liquid to condense the condensable gas rising from the distillation column 2. The condensate produced in the condenser tube 5 flows down and is circulated to the distillation column 2. Here, in the reboiler 3, the liquid staying in the reboiler container 7 is heated by the electric heater 8 operated by the power source 9. The to-be-distilled material is sent to the middle stage of the distillation column 2, and the low-boiling components are extracted from the top of the condenser tube 5 and the high-boiling components are extracted from the reboiler vessel 7.
[0011]
The condenser pipe 5 of the capacitor 1 can adjust the liquid level independently of the large-capacity heat transfer section 11 immersed in the refrigerant liquid of the capacitor container 10 as the first refrigerant liquid tank and the refrigerant liquid of the capacitor container 10. And a small-capacity heat transfer section 13 immersed in the refrigerant liquid in the liquid receiving pan 12 as a second refrigerant liquid tank partitioned into two. The small-capacity heat transfer unit 13 is obtained by simply extending the condensation pipe 5 above the large-capacity heat transfer unit 11. Here, the large-capacity heat transfer section 11 is provided below the small-capacity heat transfer section 13, but a mode opposite to this is also possible.
[0012]
As shown in detail in FIG. 2, the large-capacity heat transfer unit 11 includes a diameter-enlarged portion 16 provided with a plurality of vertical inner pipes 15 through which the refrigerant liquid in the capacitor container 10 can flow. If the enlarged diameter portion 16 is formed in the gap of the condenser tube 5 that is disposed at a predetermined interval in consideration of the assembling work of the distillation column 2, the volume of the condenser 1 is not substantially increased.
[0013]
The diameter-enlarged portion 16 of the condensing tube 5 includes a cylindrical portion 17 coaxial with the condensing tube 5 and upper and lower end plates 18 and 19 for closing the end openings. An inner pipe 15 is provided in a manner of being spanned between the nineteens, and the inside of the inner pipe 15 is opened into the liquid phase from the upper and lower openings. Here, as shown in FIG. 3, a plurality of inner tubes 15 are arranged in the circumferential direction around the axis of the condensing tube 5. As shown in FIG. 4, the inner tube 15 may be provided with fins 20 protruding in the radial direction from the outer peripheral surface.
[0014]
In the large-capacity heat transfer section 11 of the condenser 1 configured as described above, as indicated by an arrow in FIG. 2, an upward flow is generated in the refrigerant liquid in the inner pipe 15 by the thermosiphon action, and the inner pipe 15 Functions as a heat transfer tube, and transmits cold heat from the outer surface of the inner tube 15 and the inner surface of the enlarged diameter portion 16 to the condensable gas.
[0015]
Furthermore, when the refrigerant liquid has a boiling point below the condensing point of the condensable gas, for example, when the condensable gas is methane, when liquefied nitrogen or liquefied methane is used as the refrigerant, the refrigerant liquid is exchanged by heat exchange with the condensable gas. Causes a gas lift effect that pushes up the refrigerant liquid in the inner pipe 15 and increases the circulation amount of the refrigerant liquid in the inner pipe 15. Thereby, large-capacity heat transfer can be realized.
[0016]
On the other hand, in the small-capacity heat transfer section 13, heat exchange is performed only on the cylindrical wall surface of the condensing tube 5, and the heat transfer area is small. Therefore, by adjusting the refrigerant liquid level A in the liquid receiving pan 12, It is possible to control the amount of heat transfer.
[0017]
As shown in FIG. 2, when the enlarged diameter portion 16 is completely immersed, it is difficult to control the heat transfer amount because the heat transfer amount is governed by the rising speed of the bubbles in the inner tube 15. On the other hand, as shown in FIG. 5, a part of the enlarged diameter portion 16 is exposed from the refrigerant liquid surface B in the capacitor container 10, and the refrigerant liquid is opened from the opening portion of the inner tube 15 on the exposed surface of the enlarged diameter portion 16. When the wetting wall C is formed in the range reaching the surface B, the heat transfer amount can be greatly increased, and the heat transfer amount can be controlled by increasing or decreasing the area of the wetting wall C by adjusting the refrigerant liquid surface B. As a result, a wide heat transfer amount control can be performed. Even if a part of the enlarged diameter portion 16 is exposed from the refrigerant liquid surface B and the upper opening of the inner tube 15 is opened to the gas phase, the refrigerant liquid is discharged from the upper opening of the inner tube 15 due to the gas lift effect caused by boiling of the refrigerant liquid. Overflows and the refrigerant liquid flows down along the outer surface of the enlarged diameter portion 16 to form a wet wall C.
[0018]
【The invention's effect】
As described above, according to the present invention, it is possible to precisely control the amount of heat transfer by adjusting the liquid level of the second refrigerant liquid tank as necessary while securing a large capacity of heat transfer. In particular, when the large-capacity heat transfer section has an enlarged diameter portion provided with a plurality of inner pipes through which the refrigerant liquid in the first refrigerant liquid tank can flow, a large heat transfer area can be obtained without increasing the capacity so much. It can be ensured, and a great effect is obtained in simultaneously realizing high heat transfer performance and precise heat quantity control.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a distillation apparatus to which a condenser according to the present invention is applied.
FIG. 2 is an enlarged vertical sectional view of the capacitor shown in FIG.
3 is an enlarged cross-sectional view of the capacitor shown in FIG.
FIG. 4 is a cross-sectional view showing an example in which fins are provided in an inner tube of a capacitor.
5 is a cross-sectional view similar to FIG. 2, showing a state in which a wetting wall is formed on the capacitor shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Capacitor 2 Distillation column 3 Reboiler 4 Heat insulation container 5 Condensation pipe 7 Reboiler container 8 Electric heater 9 Power supply 10 Capacitor container 11 Large capacity heat transfer part 12 Liquid receiving pan 13 Small capacity heat transfer part 15 Inner pipe 16 Diameter expansion part 17 Cylindrical shape Part 18/19 End plate 20 Fin A / B Refrigerant liquid level C Wetting wall

Claims (1)

蒸留カラムの頂部に設けられた凝縮管を冷媒液槽内の冷媒液に浸漬して、蒸留カラムから上昇した凝縮性ガスを凝縮すると共に生成した凝縮液を自然流下で蒸留カラムに環流させるようにしたコンデンサであって、
前記凝縮管に、第1の冷媒液槽の冷媒液に浸漬された大容量伝熱部と、前記第1の冷媒液槽と独立して液面を調整可能に仕切られた第2の冷媒液槽の冷媒液に浸漬された小容量伝熱部とを設け
前記大容量伝熱部は、前記第1の冷媒液槽内の冷媒液が流通可能な上下方向の内管が複数設けられた拡径部を有することを特徴とするコンデンサ。
A condenser tube provided at the top of the distillation column is immersed in the refrigerant liquid in the refrigerant liquid tank so that the condensable gas rising from the distillation column is condensed and the generated condensate is recirculated to the distillation column under natural flow. Capacitor,
A large-capacity heat transfer section immersed in the refrigerant liquid of the first refrigerant liquid tank, and a second refrigerant liquid partitioned so that the liquid level can be adjusted independently of the first refrigerant liquid tank. A small-capacity heat transfer section immersed in the tank coolant ,
The large-capacity heat transfer part has a diameter-expanded part provided with a plurality of vertical inner pipes through which the refrigerant liquid in the first refrigerant liquid tank can flow .
JP07997699A 1999-03-24 1999-03-24 Capacitor Expired - Fee Related JP4143209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07997699A JP4143209B2 (en) 1999-03-24 1999-03-24 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07997699A JP4143209B2 (en) 1999-03-24 1999-03-24 Capacitor

Publications (2)

Publication Number Publication Date
JP2000271405A JP2000271405A (en) 2000-10-03
JP4143209B2 true JP4143209B2 (en) 2008-09-03

Family

ID=13705367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07997699A Expired - Fee Related JP4143209B2 (en) 1999-03-24 1999-03-24 Capacitor

Country Status (1)

Country Link
JP (1) JP4143209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110604943B (en) * 2019-09-23 2024-08-23 青海省药品检验检测院 Heating reflux extraction device

Also Published As

Publication number Publication date
JP2000271405A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US20190357378A1 (en) Two-phase immersion cooling system and method with enhanced circulation of vapor flow through a condenser
US20190357379A1 (en) Two-Phase Immersion Cooling System and Method with Enhanced Circulation of Vapor Flow Through a Condenser
US4500612A (en) Temperature control device for a fuel cell
CN107614997A (en) Condenser-reboiler pipe
US4567736A (en) Absorption heat pump
JP4143209B2 (en) Capacitor
US4538423A (en) Cooling apparatus and cooling trap including such an apparatus
US4667482A (en) Heat exchanger device
TW200827648A (en) Reflux condenser
JPH0672723B2 (en) Liquid heating system
JP4189075B2 (en) Distillation equipment
JP4143210B2 (en) Reboiler
JPH02502478A (en) Devices for air-conditioning by absorption
CA2460543C (en) Stacked condensing assembly
JPS5860512A (en) Evaporation cooling induction electric appliance
JPS63207994A (en) Heat circulating device
JP2018161626A (en) Distillation apparatus
CN212039049U (en) Kettle type evaporator for rectifying amine ether
JP3007868U (en) Distilled water making machine
JPS6383693A (en) Secondary cooling system of nuclear reactor
JPH0634801Y2 (en) Distillation equipment
JPS6314293Y2 (en)
JPS6321287Y2 (en)
KR0147749B1 (en) Regenerator for absorptive airconditioner
RU2688317C1 (en) Method of liquid separation into fractions and device for its implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees